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Abstract: Three-dimensional (3D) bioprinting, known as a promising technology for bioartificial organ
manufacturing, has provided unprecedented versatility to manipulate cells and other biomaterials with
precise control their locations in space. Over the last decade, a number of 3D bioprinting technologies
have been explored. Natural polymers have played a central role in supporting the cellular and
biomolecular activities before, during and after the 3D bioprinting processes. These polymers have
been widely used as effective cell-loading hydrogels for homogeneous/heterogeneous tissue/organ
formation, hierarchical vascular/neural/lymphatic network construction, as well as multiple
biological/biochemial/physiological/biomedical/pathological functionality realization. This review
aims to cover recent progress in natural polymers for bioartificial organ 3D bioprinting. It is structured
as introducing the important properties of 3D printable natural polymers, successful models of 3D
tissue/organ construction and typical technologies for bioartificial organ 3D bioprinting.

Keywords: 3D bioprinting; natural polymers; rapid prototyping (RP); organ manufacturing;
implantable bioartificial organs; regenerative medicine

1. Introduction

An organ is a collection of multiple tissues with particular physiological functions. The human
body is made of about 80 organs according to a classification principle [1]. Each of the organs
performs very important physiological functions. At present, the only effective therapy for organ
deformity/defect/failure is through allograft transplantation. However, the severe donor organ shortages,
the long-term treatment of immunosuppressive drugs, the life-long side effects of immune complications,
and the extremely high costs of donor organs, have greatly limited its clinical applications [2].

There is an increasing demand for manufacturing bioartificial organs to repair/replace/restore
the damaged/deformed/failed organs. This demand is enormous for all types of organs, but especially
for the visceral organs, such as the liver, heart, kidney, lung, and stomach, related to chronic and acute
failures [3,4]. A typical example is that in the United States of America the treatment of organ failures
involves 34 million surgical procedures per year with less than one tenth of donors [5]. Only in 2013,
there were 117,040 patients in this country who needed organ transplantation with near 28,053 suitable
organs available [6].
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The serious shortage in organ donor supply, together with the side effects of allograft rejections
and extremely high costs of donor organs with respect to allograft organ transplantation has fueled
numerous strategies for organ manufacturing over the last several decades [7–11]. Organ manufacturing
is an interdisciplinary field that needs to integrate a large scope of talents, such as biology, materials,
chemistry, physics, mechanics, informatics, computers, and medicine, to design and build bioartificial
organs with essential multiple cell types, hierarchical vascular/neural/lympatic networks, heterogenous
extracellular matrices (ECMs), and expected biological/biochemical/physiological functions [12–14].

Recently, three-dimensional (3D) bioprinting, also named as rapid prototyping (RP), additive
manufacturing (AM), and solid freeform manufacturing (SFM), technologies have emerged as
a promise way to produce bioartificial organs through an automatic layer-by-layer deposition
method [15–17]. The most obvious characteristic of 3D bioprinting technologies is to print living cells
together with polymeric hydrogels and/or other bioactive agents as ‘bioinks’ under the instructions of
computer-aided design (CAD) models. Multiple cell types can be encapsulated in different polymeric
hydrogels and deposited (or delivered) simultaneously.

Polymeric hydrogels are 3D hydrophilic networks which can absorb and retain large amount of water
and gel under certain biological/physical/chemical and/or biochemical/physiological/pathological
conditions. The polymeric hydrogels which have been used as ‘bioinks’ for tissue/organ 3D bioprinting
including both natural and synthetic polymers and their combinations [18–20]. The hydrogels are
usually formed by physical (reversible), chemical (reversible or irreversible) or biochemical (irreversible)
crosslinking of homopolymer or copolymer solutions. Compared with synthetic polymers, the natural
polymeric hydrogels can provide a benign and stable environment for cells/especially stem cells to grow,
migrate, proliferate, and/or differentiate inside.

Over the last decade, natural polymers as the main components of 3D printable ‘bioinks’ have
played a critical role in various 3D bioprinting technologies during the layered 3D construction
processes. Cell behaviors within the natural polymeric hydrogels can be controlled through changing
the physical/chemical/biochemical/physiological properties of the employed polymers. With these
advanced sciences and technologies Professor X. Wang has overcome all the bottleneck problems,
such as large scale-up tissue/organ engineering, living tissue/organ preservation, hierarchical
vascular/neural network construction, complex bioartificial organ manufacturing, partly/fully
controlled stem cell engagement (or differentiation), which have bewildered tissue engineers for more
than three decades. In this review, we provide a comprehensive overview of 3D bioprinted natural
polymers which have been used frequently in 3D bioprinting technologies. The intrinsic/extrinsic
properties of the natural polymers for bioartificial organ 3D bioprinting have been outlined. Typical
successful models have been highlighted.

2. Properties of Natural Polymers

Natural polymers, also referred to as bio-derived materials, occur in nature and can be extracted
using physical or chemical methods. Examples of naturally occurring polymers include silk, wool,
deoxyribonucleic acid (DNA), cellulose and proteins. These polymers have been widely applied in
many industry areas, such as foods, textiles, papers, woods, adhesives, and pharmacies.

Some natural polymers, such as gelatin, alginate, fibrinogen, hyaluronic acid (or hyaluronan),
are water-soluble, meaning that these polymers can dissolve in cell friendly inorganic solvents, such as
cell culture medium and phosphate-buffered saline, to form solutions/hydrogels. The solution or
hydrogel states of the natural polymers hold certain fluidity which makes them possible to be 3D
printed layer-by-layer under the instructions of CAD models using the discrete-stacking RP, AM,
or SFM principles [18–20]. Before, during, and after the 3D bioprinting process, the polymeric
solutions/hydrogels offer cells and/or biomolecules (i.e., bioactive agents) a mild biomimic
environment and facilitate cellular activities (i.e., cell-response bioactivities).

Theoretically, any natural polymers which have a sol-gel phase transition (i.e., gelation point)
under certain conditions can be printed through an automatic layer-by-layer deposition method. In fact,
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very few natural polymers can be printed in layers at cell benign conditions (such as room temperature)
without the help of physical/chemical/biochemcial crosslinking the incorporated polymer chains.
This is due to that very few natural polymers can meet all the basic requirements for cell/tissue/organ
3D bioprinting [21–23].

During and after the 3D bioprinting process, natural polymers have played several
essential roles in multiple cellular/biomolecular self/inter actions, homogeneous/heterogeneous
histogenesis modulations/integrations/coordinations, and bioartifical organ generations/maturations.
These essential roles include providing suitable accommodations for cellular/biomolecular activities
(e.g., growth, migration, aggregation, proliferation, differentiation/mobilization, infiltration, coaction),
enough space for extracellular matrix (ECM) patterns (e.g., formation, secretion, orientation),
biophyscial/chemical cues for tissue/organ morphologies (e.g., formation, modeling, reshaping),
and hierarchical vascular/neural/lymphatic network settings (e.g., construction, integration,
figuration). The unexpected processing parameters, such as extreme temperatures, organic solvents
and water deficiencies, which negatively influence the bioactivities of the encapsulated cells and/or
biomolecules can be avoided effectively [24–26].

Over the last decade numerous natural polymers, such as gelatin, alginate, collagen, silk,
hyaluronan, chitosan, fibrinogen, agar (or agarose), and decellularized extracellular matrix (dECM),
have been printed either alone or together with other polymers as the main component of ‘bioinks’.
Each natural polymer has special physical characters (in response to various external stimuli, such
as temperature, light, pH, magnetism, and electricity), chemical properties, processing methods,
cell-material interactions, and biomedical applications. Some other natural polymers, such as growth
factors, resin, matrigel, poly (acrylic acid), polypeptide-DNA, anticoagulants (including heparin
and coumarin), and polysaccharide (including dextran and starch), have been used occassionally in
3D bioprinting areas [27–30]. Small molecular materials and/or bioactive agents (or signals), such as
ceramics, salts, sugars (including monose and fructose), and cryoprotectants (including dimethyl
sulfoxide and glycerol), can be incorporated into the polymeric solutions or hydrogels through different
approaches or protocols. These natural polymers have huge scientific research value and extravagant
commercial profit in various biomedical fields. The currently available natural polymeric ‘bioinks’ as
off-the-shelf products have been summarized in Table 1 [31–41].

Table 1. Commercially available natural polymeric ‘bioinks’.

3D Bioprinting Technique ‘Bioink’ Formulation Crosslinking Method Bioprinter Ref.

One/two nozzle
extrusion-based
3D bioprinting

Gelatin/alginate, gelatin/chitosn,
gelatin/fibrinogen,

gelatin/hyluronan, gelatin/alginate/
fibrinogen hydrogels

CaCl2/thrombin/sodium
tripolyphosphate

(TPP)/glutaraldehyde solutions
Yinhua Cell Assembler II [31]

Alginate/chitosan hydrogel CaCl2 solution EFD® Nordson printer [32]
Nanocellulose-alginate CaCl2 solution 3D discovery printer [33]

Extrusion-based
scaffold-free bioprinting

Agarose hydrogel, Novogel Sol-gel physical transition Novogen Bioprinter [34]

Polyethylene glycol
(PEG)/gelatin-PEG/fibrinogen

1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide

(EDC) and
N-hydroxysuccinimide(NHS)
solutions for gelatin scaffold,

thrombin solutions for
fibrinogen-containing samples

post-printing

EnvisionTEC
3D-Bioplotter [35]

Inkjet-based 3D bioprinting
Alginate solution CaCl2 solution after printing

MicroFab MJ-ABL
piezoelectric inkjet
printhead printer

[36]

Collagen/gelatin solution Sol-gel physical transition Valve-based inkjet printer [37]
Fibrinogen solution Thrombin solution Custom-built printer [38]

Fab@HomeTM
(one/two-syringe

extrusion-based 3D printing)
Gelatin/glucose-alginate hydrogel CaCl2 solution after printing Fab@Home Model1-3 [39]

3D-Bioplot terTM system Alginate-PCL CaCl2 aerosol + CaCl2 solution Cartilage template [40]

Laser-based bioprinting Alginate solution CaCl2 solution ExciStarexcimer laser [41]
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There are three prominent characteristics of these natural polymers for 3D bioprinting: good
biocompatibility, poor mechanical strength and rapid biodegradability. In the following section,
several representative natural polymers for organ 3D bioprinting have been reviewed in details
from the aspects of 3D printability, biocompatibility, physical/chemical/biochemical crosslinkability,
biodegradability and structural stability.

3. Natural Polymers for Tissue/Organ 3D Bioprinting

3.1. Alginate

Alginate, also called algin, is an anionic polysaccharide derived from brown algae. The term
alginate is usually used for the salts of alginic acid, which is composed of β-D-mannuronic acid
(M block) and α-L-glucuronic acid (G block) (Figure 1), and can refer to all the derivatives of alginic
acid and alginic acid itself [42]. Alginate can dissolve in water and be chemically crosslinked by
divalent cations, such as calcium (Ca2+), strontium (Sr2+) and barium (Ba2+) ions, which has been
particularly attractive in wound healing, drug delivery and regenerative medicine [43–45]. The ratio
between the M and G block is closely related to physiochemical properties of the alginate solution.
A higher G/M ratio provides rigidity to polymeric structure and mechanical properties, while lower
G/M ratio increases the flexibility [46,47].
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Figure 1. Structure units of alginate molecule [42]. Figure 1. Structure units of alginate molecule [42].

Alginate and composite alginate hydrogels have been frequently used as cell-laden ‘bioinks’
in some 3D bioprinting technologies because their good biocompatibility (i.e., low toxicity,
non-immunogenicity), rapid biodegradability, and chemical gelling capability (i.e., crosslinkable
characteristic) [48]. Alginate related 3D bioprinting processes can be completed through different
mechanisms, such as cell-laden hydrogel biopplotting in a plotting medium (crosslinker pool),
coaxial nozzle-assisted crosslinking deposition with crosslinker spraying over the extruded cell-laden
hydrogel, pre-crosslinked alginate hydrogel coextruded with cells [49,50]. Each of these 3D bioprinting
technologies has pros and cons in tissue/organ 3D printing areas.

The first alginate application in 3D bioprinting is in 2003 by Professor X. Wang, when sodium
alginate was printed with gelatin hydrogel as an additive [51]. Since the physical sol-gel transition of
sodium alginate solution is below 0 ◦C, which is much low than that of the gelatin solution (28 ◦C),
it is difficult for the alginate hydrogel to be printed alone at room temperatures [52,53]. Physical
blending and chemical crosslinking approaches have been employed in 3D bioprinting technologies
from then on.

During the 3D bioprinting processes, the viscosity of the cell-laden alginate hydrogel depends
largely on the polymer concentration, molecular weight, cell phenotype and density. Typically, when
cells are embedded in an alginate hydrogel with high polymer concentration, their bioactivities are
greatly restricted after chemical crosslinking. Meanwhile lower concentration of alginate hydrogel
facilities higher cell viability and proliferation capability. Nevertheless, when the concentration of the
alginate hydrogel is reduced, the mechanical strength of the 3D construct drops sharply even after
chemical crosslinking. An optimized alginate concentration is necessary for a typical 3D bioprinting
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technology to ensure the favorable cell viability and printing resolution. In this respect, Park et al.
summarized the suitable concentration and molecular weight of alginate hydrogel for soft tissue
bioprinting in consideration of mechanical property (i.e., module), printability and cell viability. It was
reported that the alginate hydrogel composed of 3 wt % alginate with a mixture of low and high
molecular weights in a 1:2 ratio displayed a good printability, favorable cell viability and proliferation
capability after printing for seven days [54]. Additionally, the blends of alginate hydrogel with other
polymers, such as gelatin, collagen and nano-fibrillated cellulose can effectively enhance the cellular
activities as well as the printing resolution from 1000 µm to 400–600 µm with a 300 µm diameter
nozzle [55]. Other processing parameters including nozzle size, surrounding temperature, scanning
speed and dispensing pressure can also influence the printing resolution.

There are two common phenomena in alginate 3D bioprinting. The first one is that it is hard for
the pure alginate solution with a low polymer concentration to be printed layer-by-layer into a high
scale-up construct due to its low phase changing temperature (i.e., sol-gel transition point) and shear
thinning characteristic [42]. Another common phenomenon is that the slow biodegradation velocity of
alginate molecules can be tuned by oxidation procedures [56]. The oxidized alginate molecules with
an appropriate degradation rate may have more potential usage in organ 3D printing. In this respect,
Jia et al. focused on oxidizing alginate molecules to control the alginate printability and degradability.
Accurate lattice-structures (with higher accuracies) could be obtained through optimizing the oxidized
alginate solutions before printing. Human adipose-derived stem cells (hADSCs) could be loaded
in the oxidized alginate solutions as well. The oxidation percentage (ox.) and concentration (conc.)
of the alginate had been summarized in their research. The results indicated that 0% ox.-8% conc.
alginate induced a round cell morphology that might apply to chondrogenesis, while 5% ox.-15%
conc. alginate associated with an increased spreading cell phenotype that might improve osteogenesis.
The 5% ox.-15% conc. alginate was recommended as the most appropriate formulation of their ‘bioinks’
for 3D bioprinting. The available literature on alginate as ‘bioinks’ for 3D bioprinting technologies is
summarized in Table 2 according to the chronological sequence [57–88].
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Table 2. Alginate containing ‘bioinks’ for different 3D bioprinting applications.

3D Bioprinting Technique ‘Bioink’ Formulation Crosslinking Method Application Ref.

One nozzle extrusion-based
3D bioprinting

Hepatocytes and chondrocytes in
gelatin/alginate hydrogel

10% CaCl2 solution for 2 min
after printing

Bioartificial liver or
cartilage manufacturing [51]

Adipose-derived stem cells (ADSCs) in
gelatin/alginate hydrogel 5% CaCl2 solution after printing Vascular networks [52]

ADSCs in alginate capsules and gelatin/alginate hydrogel 5% CaCl2 solution after printing Vascular networks [53–56]

One nozzle extrusion-based 3D
low-temperature bioprinting

Adipose-derived stem cells (ADSCs) in
gelatin/alginate/fibrinogen/dimethylsulfoxide

(DMSO) hydrogel

Double crosslinking with CaCl2
and thrombin after printing No specific [57]

Adipose-derived stem cells (ADSCs) in
gelatin/alginate/DMSO and/or dextrain-40 hydrogel 5% CaCl2 solution after printing No specific [58]

Adipose-derived stem cells (ADSCs) in
gelatin/alginate/glycerol and/or dextrain-40 hydrogel 5% CaCl2 solution after printing No specific [59]

Two nozzle extrusion-based
3D bioprinting

Adipose-derived stem cells (ADSCs) in
gelatin/alginate/fibrinogen hydrogel & hepatocytes in

gelatin/alginate/chitosan hydrogel

Double crosslinking with CaCl2
and thrombin after printing

Vascularized liver tissue
manufacturing [60]

Adipose-derived stem cells (ADSCs) in
gelatin/alginate/fibrinogen hydrogel

Double crosslinking with CaCl2
and thrombin after printing

Vascularized adiose tissue
manufacturing [61]

Adipose-derived stem cells (ADSCs) in
gelatin/alginate/fibrinogen hydrogel

Double crosslinking with CaCl2
and thrombin after printing

Bioartificial pancreas
manufacturing [62]

Mutihead deposition system
(extrusion-based)

Osteoblasts & chondrocytes in polycaprolactone
(PCL)/alginate solution CaCl2 solution after printing Osteochondral tissue [63]

One nozzle extrusion-based
3D bioprinting Cartilage progenitor cell (CPCs) in alginate solution CaCl2 solution after printing Vessel-like structure [64]

Fab@HomeTM (one-syringe
extrusion-based 3D printing)

Aortic valve leaflet interstitial cells (VICs), smooth muscle
cells (SMCs) or chondrocytes in gelatin/alginate solution

300 mM CaCl2 crosslinking for
10 min after printing

Myocardial tissue, muscle tissue
and cartilage engineering [65]

One-nozzle extrusion-based
3D bioprinting Myoblasts in gelatin/alginate hydrogel CaCl2 solution after printing Muscle engineering [66]

Two-nozzle low-temperature
extrusion-based 3D bioprinting PU-ADSCs in gelatin/alginate/fibrinogen hydrogel Double crosslinking with CaCl2

and thrombin Complex organ manufacturing [67,68]
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Table 2. Cont.

3D Bioprinting Technique ‘Bioink’ Formulation Crosslinking Method Application Ref.

Combined four-nozzle
3D bioprinting

Poly(lactic acid-co-glycolic acid) (PLGA)-ADSCs in
gelatin/alginate/fibrinogen hydrogel-hepatocytes in

gelatin/chitosan hydrogel-Schwann cells in
gelatin/hyaluronate hydrogel

Double crosslinking with CaCl2
and thrombin

Vascularized liver
manufacturing [69]

One nozzle extrusion-based
3D bioprinting Gelatin/alginate hydrogel CaCl2 crosslinking

after printing No specific [70]

One nozzle extrusion-based
3D bioprinting

Human adipose stem cells (hASCs) in oxidized
alginate solution

CaCl2 crosslinking
after printing No specific [71]

Micro imprinting Mesenchymal stem cells (MSCs) in
gelatin/alginate/hydroxyapatite (HA) mixture

2% w/v CaCl2 crosslinking for
10 min after printing Cartilage tissue [72]

One nozzle extrusion-based
3D bioprinting Preosteoblasts and hASCs in alginate solution 1.2 wt % of CaCl2 flow Hepatogenic differentiation [73]

Mutihead deposition system
(extrusion-based) Chondrocytes in PCL/alginate solution 100 mM CaCl2 and 145 mM

NaCl solution for 10 min Cartilage [74]

One nozzle extrusion-based
3D bioprinting

Human umbilical vein endothelial cells in methacrylated
gelatin (GelMA)/alginate hydrogel

Photopolymerization and CaCl2
solution Heart tissue [75]

Two-nozzle extrusion-based 3D
printing

Gelatin/alginate/fibrinogen/HepG2;
gelatin/alginate/fibrinogen/hepatocyte or

gelatin/alginate/fibrinogen/hepatocyte/ADSC

Double crosslinking with CaCl2
and thrombin solutions

Liver tumor model
establishment and anti-cancer

drug screening
[76–78]

3D-Bioplot terTM system Alginate-PCL 170 mM CaCl2 aerosol + 100
mM CaCl2 solution Cartilage template [79]

Multi-head bioprinting RGD-γ alginate/poly(-ethylene glycol)-tetra-acrylate
(PEGTA)/GelMA/PCL UV light for 30 min Cartilage engineering [80]

A multilayered coaxial
extrusion system

A specially designed cell-responsive bioink consisting of
GelMA, alginate, and 4-arm poly(-ethylene

glycol)-tetra-acrylate (PEGTA)

First ionically crosslinked by
calcium ions (Ca2+ ion)
followed by covalent

photocrosslinking of GelMA
and PEGTA

Perfusable vasculature [81]
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Table 2. Cont.

3D Bioprinting Technique ‘Bioink’ Formulation Crosslinking Method Application Ref.

One nozzle extrusion-based
3D bioprinting

Fibroblasts in gelatin/alginate hydrogel CaCl2 solution Skin wound healing [82]

Alginate/polyvinyl alcohol (PVA) CaCl2 solution As-prepared bone tissue
engineering scaffolds [83]

Mouse calvaria 3T3-E1 (MC3T3) cells in
alginate/PVA/hydroxyapatite (HA) hydrogel CaCl2 solution Bone tissue engineering [84]

Alginate/PVAl/HA/collagen hydrogel CaCl2 solution Bone tissue engineering [85]

One nozzle
extrusion-based bioploting Human dental pulp cells (HDPCs) in gelatin/alginate hydrogel CaCl2 solution Tooth regeneration [86]

Extrusion-based
microvalvebioprinting Alginate sulfate/nanocellulose/chondrocytes 100 mM CaCl2 for 12 min

after printing Cartilage engineering [87]

One nozzle extrusion-based
3D bioprinting

Human-derived induced pluripotent stem cells (iPSCs) in
nanofibrillated cellulose (NFC)/alginate solution

100 mM CaCl2 for 5 min
prior printing Cartilage engineering [88]
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3.2. Gelatin

Gelatin is a partial hydrolyzed protein by breaking the triple helix of collagen into single-strain
molecules. It is a thermal-response linear polymer. Gelatin and its derivatives have been widely
applied in 3D bioprinting due to their excellent biocompatibility, high water-adsorbing capacity, rapid
biodegradability, non-immunogenicity and unique 3D printability (Figure 2) [53–67,89]. Gelatin
solution has a unique sol-gel transition at 28 ◦C, which is corresponding to the melt point of
gelatin hydrogel.

Before printing, the bulk gelatin-based polymers need to dissolve in an inorganic solvent, such as
phosphate-buffered saline or cell culture medium, to form fluidic solutions with a suitable viscosity.
Any types of cells and/or bioactive agents (such as growth factors, hormones, anticoagulants and
cryoprotectants) can be incorporated into the gelatin solutions [90]. After the cells and/or bioactive
agents are mixed with the gelatin-based solutions, the cells and/or bioactive agents are suspended in
the solutions. When the solutions are cooled below 28 ◦C, the fluidic solutions become sticky hydrogels
accompanying with a sol-gel transition phenomenon. Physical crosslinking (i.e., gelling or gelation)
among the gelatin molecules happens during the sol-gel transition processes. The incorporated
cells and/or bioactive agents are reversibly embedded (or encapsulated) by the polymeric chains.
Other natural polymers, such as alginate, chitosan, fibrinogen, hyaluronan, collagen, agar and matrigel,
can be incorporated into the gelatin solutions as additives, leading to the gelatin solutions/hydrogels
being printed alone or together with the other polymeric additives as the cell/bioactive agent-laden
‘bioinks’ [91]. Chemical crosslinking of the polymeric molecules is an effective approach to enhance
the mechanical properties and structural stability of the 3D printed constructs. Ten years later, these
techniques have been world widely adapted, duplicated or copied by many other groups, such as the
A. Atala’s at Wake Forest School of Medicine in North Carolina [92], and the J.A. Lewis’s in Harvard
University [93].
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Thus, the special thermal response character of the gelatin based solutions/hydrodgels allow
cells and/or bioactive agents to be injected or extruded through the nozzles/needles of 3D bioprinters
and subsequently piled up in layers at a relatively benign environmental temperature between
1–28 ◦C. During and after the 3D printing processes, the gelatin based solutions/hydrogels act both
as the backbones (such as the ECMs) to support the structural integrity of the 3D constructs and the
accommodations for cells and/or bioactive agents within the predefined 3D constructs.

Especially, in extrusion-based 3D bioprinting technologies, the printing processes can be tuned
to be no harm (or adverse effect) to the incorporated cells and/or bioactive agents with respect to
the applied parameters, such as shear forces, squeeze rates and nozzle sizes. Cell viability, especially
stem cell proliferation and differentiation capabilities, can be preserved. Extremely high cell viabilities
(i.e., 100% percentage) can be achieved by optimizing the printing parameters, such as the nozzle
diameter, acting force, printing speed and surrounding temperature [11–13,57–62]. Additionally,
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the presence of arginine-glycine-aspartic acid (or Arg-Gly-Asp, RGD) peptide domains in the gelatin
molecules may have favorable effects on cell activities, such as migration and differentiation [94].

Obviously, there are two distinguished disadvantages of the gelatin-based hydrogels in organ
3D printing areas: one is the low mechanical strength and the other is the structural instability under
physiological conditions (such as 37 ◦C). It is observed that when the printed cell-laden 3D constructs
are put into culture medium at about 37 ◦C, the physical crosslinked gel states (or structures) break
down quickly. This is because that above the melt point of 28 ◦C, the physical crosslinking bonds in the
gelatin molecules disorganize, leading to the collapses of the structural integrity of the 3D constructs.
In another word, the gelled gelatin-based constructs disperse immediately in the culture medium
due to the reversible physical crosslinking bonds. The 3D printed gelatin-based constructs need to be
further strengthened to yield a stable structure.

Consequently, various physical blending and chemical crosslinking techniques have been
applied to improve the mechanical property and structural stability of the 3D printed constructs.
For example, gelatin molecules have been chemically modified with methacrylamide groups to yield a
natural/synthetic hybrid hydrogel (i.e., gelatin/methacrylate, GelMA). The hybrid GelMA hydrogel
can be photopolymerized in the presence of a water-soluble photoinitiator and ultraviolet (UV) [95].
It is reported that the increase of the gelatin or GelMA proportion (or concentration) can significantly
elevate the viscosity and printability of the composite GelMA hydrogel. The UV crosslinking of GelMA
can dramatically enhance the mechanical properties and shape fidelity of the 3D printed constructs.
The shape fidelity can be subsequently improved from 1100–1300 µm to 350–450 µm using a 200 µm
diameter nozzle. Cell survival capability in the GelMA hydrogel can reach 83% with a cell density of
1.5 × 106 cells/mL, 10% GelMA hydrogel and 60 s UV exposure. HepG2 in the GelMA constructs can
retain a high cell viability for at least eight days, possibly due to the protective effect of the composite
GelMA hydrogels, in which the shear stress applied on the encapsulated cells resulting from the
friction of the hybrid cell-laden hydrogels with the nozzle walls.

Another example is that the gelatin-based hydrogels can be chemically crosslinked by some small
bioactive agents (or chemicals), such as glutaraldehyde and CaCl2 [96]. The rapid biodegradation
property of the gelatin-based hydrogels, such as the gelatin, gelatin/alginate, gelatin/chitosan,
and gelatin/fibrinogen, has been greatly enhanced through the chemical crosslinked polymer
chains. Typical chemical crosslinked gelatin based hydrogels contain the glutaraldehyde crosslinked
gelatin molecules, CaCl2 crosslinked alginate molecules, tripolyphosphate (TPP) crosslinked chitosan
molecules, and thrombin polymerized fibrinogen molecules. Much more stable 3D constructs can
be obtained through double/triple crosslinking the composite (or hybird) gelatin-based hydrogels.
For instance, gelatin/algiante/fibrinogen hydrogel is a natura/natural/natural hybrid hydrogel,
it can be effectively stabilized through double crosslinking the polymer molecules in the hybrid
hydrogel using both CaCl2 and thrombin solutions (i.e., using CaCl2 to crosslink the algiante molecules
and thrombin to polymerize the fibrinogen molecules in the gelatin/alginate/fibrinogen hydrogels).
Though progressive loss of the uncrosslinked gelatin molecules in the long-term in vitro cultured
gelatin/alginate/fibrin constructs has been detected, the living 3D constructs can be maintained
properly over four weeks until the new tissue/organ generation [11–13]. The representative literature
on the gelatin-based hydrogels as ‘bioinks’ in tissue/organ 3D bioprinting is summarized in Table 3
except those appeared in Table 2 [97–106].
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Table 3. Gelatin containing ‘bioinks’ for different 3D bioprinting applications.

3D Bioprinting Technique ‘Bioink’ Formulation Crosslinking Method Application Ref.

One nozzle extrusion-based 3D
low-temperature bioprinting

Hepatocytes in gelatin/chitosan hydrogel 3% sodium tripolyphosphate (TPP) Hepatic tissue manufacturing [97]
Hepatocytes in gelatin hydrogel 2.5% glutaraldehyde Hepatic tissue manufacturing [98]

Hepatocytes in gelatin/fibrinogen hydrogel Thrombin induced polymerization Hepatic tissue manufacturing [99]
Gelatin/hyluronan 2% glutaraldehyde Brain tissue repair [100]

Two-nozzle low-temperature
extrusion-based 3D printing

Polyurethane (PU)-gelatin/5% or 10%
lysine hydrogel 0.25% glutaraldehyde Liver manufacturing [101]

PU-adipose-derived stem cell
(ADSC)/gelatin/alginate/fibrinogen/glycerol or

dimethyl sulfoxide (DMSO) hydrogel

Double crosslinking with CaCl2
and thrombin solutions Bioartificial liver manufacturing [102]

One-syringe extrusion-based
3D printing Nanosilicate/GelMA UV light (320–500 nm) for 60 s at an

intensity of 6.9 mW/cm2
Electrical conductive agent for

bone tissue engineering [103]

EnvisionTEC 3D-Bioplotter® Polyethylene glycol
(PEG)/gelatin-PEG/fibrinogen

Gelatin scaffolds were cross-linked
with 15 mM EDC and 6 mM NHS,

fibrinogen-containing samples were
treated post-printing with 10 U/mL

thrombin in 40 mM CaCl2 for
~30 min

Grid structures for cell seeding [104]

Dual-syringe Fab@Home
printing device

Gelatin ethanolamide methacrylate
(GE-MA)-methacrylated hyaluronic acid (HA-MA)

(GE-MA-HA-MA)/HepG2 C3A, NIH 3T3, or
Int-407 cell

Ultraviolet (UV) light (365nm,
180 mW/cm2) photocrosslinking

Tubular hydrogel structures for
cell attachment [105]

Multiple cartridge
extrusion-based 3D printer

Polycaprolactone
(PCL)-gelatin/fibrinogen/hyaluronic

acid/glycerol

Thrombin induced
fibrinogen polymerization

Bone, cartilage and skeletal
muscle tissues [91]

One nozzle extrusion-based
3D bioprinting

Human mesenchymal stem cells (MSCs) in
gelatin/alginate/hydroxyapatite (HA) mixture

2% w/v CaCl2 crosslinking for
10 min after printing Bone tissue [40]

Inkject-based 3D bioprinting FC3T3 in fibrin-gelatin hydrogel Thrombin solution Skin tissue engineering [106]
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3.3. Hyaluronic Acid

Hyaluronic acid (HA) or hyaluronan is a polysaccharide existing in living organisms composed
of D-glucuronic acid and N-acetyl-D-glucosamine (Figure 3) [107]. As a component of ECM, HA has
excellent biocompatibility and biodegradability, which has played an essential role in cell proliferation,
angiogenesis and cell-receptor interactions. HA can be rapidly degraded (i.e., glycolytically degraded
in a glycolytic pathway) by hyaluronidase, β-glucuronidase and β-N-acetyl-glucosaminidase into low
molecule weight hyaluronic acid and oligosaccharides [108,109]. It is a lubricating hydrophilic polymer
that can form highly viscous hydrogels at low concentrations, and can be applied as an additive to
alter the viscosity of the above mentioned gelatin based ‘bioinks’.
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Like most of the natural polymers, HA has poor mechanical properties which result in low
shape fidelity during 3D bioprinting. Numerous modifications have been carried out to improve the
mechanical properties and shape fidelity of the HA based 3D printing processes. These modifications
include physical or chemical crosslinking of HA with other polymers. For example, hyaluronic
acid methacrylate (HAMA) is a natural/synthetic hybrid polymer generated by photochemically
crosslinking HA and methacrylate using UA-light source [110]. Emphasis should be given that
although HAMA has altered the poor physical properties of the HA, the bioinert characters of the
HAMA, including non-biodegradability of polymethacrylate (i.e., PMA), high hardness (or stiffness)
and low shape fidelity, have greatly limited its application in organ 3D bioprinting areas [111].

Another example is the gelatin or GelMA blended HA (e.g., HAMA-GelMA). The printing
parameters of the hybrid HAMA-GelMA (i.e., concentration or composition ratio) directly affect the
mechanical properties of the printed 3D constructs, the degradation rate of the natural components in
the 3D constructs, as well as the cell spreading, adhesion and proliferation features in the 3D constructs.
In this respect, Camci-Unal et al. reported that the addition of 1% v/w HAMA into the GelMA hydrogel
could decrease the mass swelling ratio and degradation rate, but increased the compressive moduli
of the 3D constructs. No cell spreading was found within the 3D printed HAMA construct. Cell
spreading could only be observed in the samples with 3% GelMA and 1% HAMA, possibly due to the
existence of the cell adhesive motifs in the gelatin molecules [112].

Until the present, the hybrid HAMA-GelMA ‘bioinks’ with proper proportion of HAMA and
GelMA have been applied in some tissue engineering applications, including neural, cardiovascular,
cartilage and bone tissues. One example is that Duan et al. have improved the spreading and adhesive
capabilities of the human aortic valvular interstitial cells, and the phenotype maintaining ability of
the fibroblasts in the 3D printed trileaflet valve conduits through increasing the GelMA concertration
in the hybrid HAMA-GelMA hydrogels (with decreased stiffness) [113]. Similar results have been
found by Skardal and coworkers through changing the ratio of HAMA and GelMA, Skardal et al.
reported that a high ratio of HAMA/GelMA would result in a stiffer construct, but poor cell adhesive
ability, while low ratios lead to poor mechanical strengths but better cell adhesions. The 80/20 ratio of
HAMA/GelMA was an optimal choice with all aspects considered [101].
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3.4. Collagen

Natural collagen has been widely used as a scaffold material for tissue engineering over the last
several decades (Figure 4). It can significantly improve the adhesion, proliferation and differentiation
capabilities of osteoblasts, chondroblasts, and mesenchymal stem cells on the porous scaffolds [114].
Especially, the pore size of 50–150 µm of the collagen scaffold facilitates cell seeding on the surface of
the pores. It is supposed that the collagen molecule, which has the same RGD peptide domains with
gelatin, can be recognized by integrin receptors on the cell membrane and promote cell adhesion and
proliferation. Nonetheless, the properties of acid-soluble collagen solution can be easily affected by
the potential of hydrogel (pH) and temperature, which make it difficult for the collagen solution to
be 3D printed at ambient conditions. The reason is that collagen molecules tend to assemble to form
hydrogel and can be rapidly degraded by collagenases and metalloproteinases into amino acids when
the solution is neutralized at 37 ◦C.
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Especially, collagen type I and II have been frequently employed for cartilage and bone repair
scaffold 3D printing. There are three obvious advantages for the 3D printed scaffolds to be used for tissue
repair. Firstly, most of the 3D printed scaffolds have scale-up go-through channels, which are different
from the traditional tissue engineering porous scaffolds, and helpful for nutrient, oxygen, and metabolite
transportation. Secondly, the structural morphology and material composite of 3D printed scaffolds can
be gradient, which are benefit for multiple functionality realization. Thirdly, living cells can be directly
incorporated into the biocompatible materials for hard/soft tissue/organ engineering. For example,
the articular cartilage has a zonal ECM distribution with gradient cell density from articular surface
to calcified cartilage. One of the main defects of conventional tissue engineered articular cartilage is
the difficult to mimic zonal mechanical and biological properties of natural cartilage, while bioprinting
technologies have the capability to fabricate well-designed constructs with accuracy cell distribution [115].
A study by Ren et al. focused on the engineered zonal cartilage by bioprinting collagen type II hydrogel
constructs with a gradient chondrocyte density. In this study, collagen type II had the ability to maintain
chondrocyte phenotype and played an essential role to promote chondrogenic differentiation. The 3D
printed zonal cartilage had a gradient ECM distribution, which was positively correlated to chondrocyte
density. Both the both the cell density and cell distribution pattern in the bioprinting process had been
modulated in different zonal areas for better biological effects [116].

Until now, the low viscosity and fast degrading rate of the pure collagen hydrogels have seriously
limited their applications as ‘bioinks’ in tissue/organ 3D bioprinting. Blending with other polymers,
such as alginate, fibrin, agarose, and hyaluronic acid, has become the most common strategies to alter
the viscosity, degradation rate, and printability of the natural collagen [114]. However, the blending
of collagen with alginate or agarose has greatly comprised the cell viability. This is because that the
ultimate biocompatibility of the blend is determined by the worst of component of the composite, such
as alginate in the collagen/alginate hydrogel and agarose in the collagen/agarose hydrogel. On the
contrary, a hybrid of chondrocyte-encapsulated hyaluronic acid and osteoblast-encapsulated collagen
type I hydrogel was reported for osteochondral bioprinting with good results [117]. Recently, a 3D
bioprinted collagen/heparin sulfate scaffold was reported to promote neurological function recovery
by providing continuous guidance channels for axons and enough mechanical strength for the injured
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spinal cord. The heparin modification has resulted in enhanced compress modulus and binding affinity
of the new secreted ECM proteins [118].

In our group, collagen I has been printed with polyurethane simultaneously using our
home-made double-nozzle low-temperature 3D bioprinter for a double layer nerve repair conduit
manufacture [119–121]. Swann cell compatibility in the double layer nerve repair conduit has been
significantly improved. Meanwhile nerve repair speed inside double layer nerve repair conduit has
been the has been extremely accelerated.

3.5. Fibrin

Fibrin is a blood-derived fibrous (i.e., non-globular) protein formed by polymerizing fibrinogen
in the presence of the protease thrombin (Figure 5) [121]. Over the last several decades, fibrin
has been widely used in many biomedical fields, such as pharmacy, wound healing, and tissue
repair. Compared with plant-derived natural polymers, such as alginate and agarose, fibrin has
excellent biocompatibilities in biomedical fields. In the context of cell viability, fibrin hydrogel,
has super cytocompatibility for cell encapsulation, delivery and culture [122–124]. With respect to the
degradation velocity, fibrin can degrade rapidly due to the presence of proteolytic enzymes [125].
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Despite the superior biological/biochemical/biomedical properties, the low viscosity, rapid
gelation process, quick degradation velocity and limited mechanical strength of the fibrin-based
hydrogels all need to be addressed for organ 3D bioprinting with anti-suture capability. Especially,
when the fibrinogen solution was printed alone with cells, the rapid gelation process is difficult to
control to form stable 3D constructs. An effective solution is to blend the fibrinogen solution with
other chemical crosslinkable natural polymers, such as gelatin, alginate, hyaluronan, and collagen.

Like alginate, the first report of fibrin in 3D bioprinting is in 2007 by Professor X. Wang, in which
fibrinogen was acted as an additive of the gelatin based hydrogel for hepatic tissue or vascularized
hepatic tissue manufacturing [21]. The physical blending and chemical crosslinking fibrinogen with
gelatin molecules can evidently avoid the collapse of the 3D printed constructs, slow down the
polymer degradation rate and amend the structural stability. Nowadays, the physical blending and
chemical crosslinking have rapidly expanded to much more complicated hybrid polymeric ‘bioinks’,
such as the gelatin/fibrinogen/alginate, gelatin/fibrinogen/chitosan gelatin/fibrinogen/hyaluronan,
and gelatin/fibrinogen/hyaluronan/glycerol (dimethyl sulfoxide, dextran-40, or heparin) [54,55,61,62].
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The combination of physical blending and chemical crosslinking is a successful way to make the natural
polymeric ‘bioinks’ to fulfill various requirements for tissue/organ 3D bioprinting, such as providing
adequate benign environments for cell encapsulation during and after the printing processes.

Among all the fibrin containing ‘bioinks’, gelatin/alginate/fibrin has been chosen as an optimal
constituent for complicated organ 3D bioprinting [54,55,61,62]. Partly due to that the composite
gelatin/alginate/fibrin hydrogel can be double reinforced by polymerizing the fibrinogen molecules
using thrombin and crosslinking the alginate molecules using CaCl2. After the double chemical
crosslinking, the gelatin/alginate/fibrin hydrogel has exceptional mechanical properties, excellent
cytocompatibilities, and extraordinary physiological functions. Correspondingly, the compressive and
elastic modulus of the 3D bioprinted constructs have been strengthened remarkably [126].

An outstanding character of the gelatin/alginate/fibrin hydrogel is that all the cells and bioactive
agents can be incorporated and 3D bioprinted without reducing their bioactivities. Stem cells, such as
adipose-derived stem cells (ADSCs), can be induced into various target tissues/organs with proper
growth factor engagement [54,55,61,62]. It is regarded as a milestone in large vascularized organ
manufacturing fields. Until now, stem cells have been regarded as the ideal cell types for large scale-up
vascularized organ 3D bioprinting [127–129].

Recently, fibrin has been used in some other 3D bioprinting technologies, such as skin and
adipose organ engineering, with excellent cell and tissue compatibilities [106,130]. For example,
Hakam et al. reported the gelatin/fibrin hydrogel for skin bioprinting. The hybrid hydrogel with
1:1 v/v gelatin/fibrin ratio was selected as an optimal composition to evaluate the water/glucose
absorption capability, polymer degradation rate, mechanical compression situation and water vapor
transmission. As a result, this hybrid hydrogel could provide the cell pellets within 200–250 µm in
diameter, with better cell viability [105]. Additionally, in situ printing of fibrin-collagen hydrogels with
amniotic fluid-derived stem cells could result in increased wound closure rates, as well as increased
vascularization of the regenerating tissues [131].

3.6. Chitosan

Chitosan is a natural polysaccharide (derived from shrimp shell) formed by deacetylation of
chitin, which has been applied in many biomedical fields, such as bone, skin and cartilage repair,
due to its low or non-toxic, antibiotic and biodegradable properties (Figure 6) [132–138]. Chitosan
can be biodegraded by lysozymes into amino-sugars [119,139]. Similar to alginate and hyaluronan,
the poor mechanical strengths and slow gelation properties of the chitosan solutions have obvious
hindered its application in organ 3D printing areas.
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Similar stabilization strategies have also been used in chitosan 3D bioprinting by Professor
X. Wang [97]. The mechanical properties can be intensified as expected by physical blending
and chemical crosslinking chitosan with other supportive polymers, such as alginate, gelatin
and collagen [97]. As a normal approach, high viscosity of chitosan is recommended in the
extrusion-based hybrid polymeric hydrogel 3D bioprinting technologies. Recently, collagen/chitosan,
alginate/chitosan, gelatin/alginate/chitosan have been frequently utilized as ‘bioinks’ in various
organ 3D bioprinting areas. Exceptionally, chitosan itself can be chemically modified to improve its
printability at suitable pH (7–7.4) with no detriments on its biocompatibility and biodegradability.

3.7. Agarose

Agarose derived from the cell wall of red algae is a naturally linear polysaccharide that mainly
composes of β-D-galactopyranose and 3,6-anhydro-α-L-galactopyranose (Figure 7) [140]. It is another
thermal-response natural polymer besides gelatin with a liquefaction temperature approximate 30 ◦C,
which is suitable for the extrusion-based 3D bioprinting processes [141].
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Unlike gelatin, the gelling temperature of agarose depends on the polymer concentration. Agarose
has no cell adhesion motifs and the cell encapsulation capacity is poor. It is usually used as bacterium
culture substrates. Recently, it appears as a modified polymer in 3D bioprinting by blending or
crosslinking with other supportive components in a hybrid polymeric hydrogel [142]. For example,
an optimal composite hydrogel with 50% v/v Matrigel and 3% w/v agarose can support the growth
and adhesion of intestinal epithelial cells, especially at a constant temperature of 37 ◦C [143].

3.8. Decellularized Extracellular Matrix (dECM)

Decellularized extracellular matrix (dECM) is a mixture of natural polymers, which is obtained
from decellularization of different animal tissues, such as skin, small intestinal submucosa,
and liver [144]. After decellularization, the composition and topology of the original tissues
can be highly remained, which can provide tissue-specific microenvironments for preserving
cell-specific functions. The decellularization processes can be either physical, chemical, biochemical
(e.g., enzymatic) or their combinations, which can affect the final dECM compositions [145].
The resulted dECM-based solutions gel immediately beyond 15 ◦C and form physically crosslinked
hydrogels. It was reported that, procine-liver-derived dECM could be used as a functional substrate
for hepatocyte culture. The liver-specific dECM could maintain hepatocyte functions through
albmin secretion, mRNA expression of bilesalt export pump (BSEP) and sodium taurocholate
co-transporting polypeptide (NTCP), which was regarded as a promising scaffold material in tissue
3D bioprinting [146].

For organ 3D bioprinting, dECM can provide cells with customized milieus. Due to its low
viscosity, dECM ‘bioinks’ often need other supportive polymers to provide basic 3D printability
and shape fidelity. For example, an adipose-derived dECM/polycaprolactone (PCL) hydrogel with
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encapsulated ADSCs has been printed by a multi-head tissue building system and resulted in a high
cell viability (>90%) [147].

Currently, there is a growing interest on using dECM-derived ‘bioinks’ for a variety of customized
bioartificial organ 3D bioprinting, both in academic and industrial settings. Some dECM-derived
‘bioinks’ have been examined as potential replacements for clinical applications. Nervetheless,
the clinical success depends largely on how well the mechanical property preserved. Although
dECM has remarkable advantages for tissue/organ-specific function preservation, it still faces many
other challenges for complex organ 3D bioprinting. Firstly, it is difficult to efficiently remove antigenic
epitopes to eliminate immune responses created by the allogeneic or xenogeneic recipients of dECMs.
Secondly, residual DNA or nuclear materials are retained more or less in the dECMs, which probably
affects the encapsulated cell behaviors. Lastly, the extremely weak mechanical properties, poor
construction resolution, remarkable shape shrinkage and rapid degradation rate are major problems to
be solved in the future [148].

4. Typical Organ 3D Bioprinting Technologies

Unlike tissues, which can be printed using simple 3D printers and ‘bioinks’. All the organs have
large scale-up heterogeneous cell/tissue components with complex vascular, neural or lymphatic
networks. The complexity of the geometrical architecture and material constituent determines the
difficulty levels of the organ 3D bioprinting technologies.

Generally, natural polymers as the main component of various ‘bioinks’ should meet several basic
requirements for a successful organ 3D bioprinting as well as clinical applications: (1) biocompatible
(i.e., nontoxic or no obvious toxicity); (2) biodegradable (vs nonbiodegradable polymers can be used
as supportive structures); (3) biostable with strong enough mechanical strength; (4) bioprintable
(processable); (5) biostorable in a proper period.

In 2008, a double-nozzle extrusion-based 3D bioprinter was innovated at the center of organ
manufacturing in Tsinghua University, professor Wang’s laboratory (Figure 8) [88,89]. Using this
technology, two cell types with large population of cells have been simultaneously printed into large
scale-up living organs (Figure 8b–h). With the updated hard- and software, both the hierarchical
branched vascular templates and grid go-through (i.e., interconnected) channels have been properly
integrated into the living organs under the instructions of the CAD models [149–151]. Much more
complex structures can be accomplished through imitating those of the natural organs [152–155].

These results have certified that by proper polymeric ‘bioink’ and 3D bioprinter design,
the gelatin-based hydrogels in the solid 3D constructs can serve as optimal 3D substrates that engender
nutrient and growth factor infiltration, multi-cellular communication (such as endothelization or
vascularization), and new organ generation (i.e., a special program that is relevant to tissue colonization
and organ morphologies). As those in the single-nozzle/syringe 3D bioprinting, ADSCs entrapped
in the gelatin-based hydrogels can be engaged into heterogeneous tissues for large vascular organ
manufacturing. Primary hepatocytes can form functional parenchymal tissues beside the hierarchical
vascular and/or neural networks in the 3D constructs. This integration of natural polymers with
multi-nozzle extrusion-based 3D printing technologies has reshaped the healthcare landscapes, and will
unavoidably change the lives of countless individuals and bring huge benefit to the whole human
beings [156,157].



Polymers 2018, 10, 1278 18 of 26

Polymers 2018, 10, x FOR PEER REVIEW  18 of 26 

 

 
Figure 8. A large scale-up 3D printed vascularized organ (i.e., adipose tissue) constructed through the 
double-nozzle (syringe) 3D bioprinter: (a) The 3D printer; (b) a computer-aided design (CAD) model 
containing a branched vascular network; (c) a CAD model containing the branched vascular network; 
(d) 3D bioprinting with ADSCs encapsulated in the gelatin/alginate/fibrin hydrogel and hepatocytes 
encapsulated in the gelatin/alginate/chitosan hydrogel before epidermal growth factor (EGF) 
engagement, immunostaining with pyrindine (PI) for cell nuclei in red; (e) several 3D printed layers 
of the construct; (f) half an ellipse of the 3D construct; (g) hepatocytes in the gelatin-based hydrogel 
after 3D bioprinting; (h) hepatocytes in a 3D printed fiber; (i) hepatocytes in a grid structure; (j) 
hepatocytes in a magnificant image, the crosslinked alginate/fibrin fibers can be observed; (k) ADSCs 
in the gelatin-based hydrogel after 3D bioprinting before growth factor engagement; (l) ADSCs in the 
gelatin-based hydrogel after 3D bioprinting after EGF engagement, CD31 immunofluorescence 
staining endothelial cells on day 10 after EGF engagement. Most cells located on the walls of the go-
through channels were CD31 positive cells with bright color (i.e., mature endothelial cells). 

These results have certified that by proper polymeric ‘bioink’ and 3D bioprinter design, the 
gelatin-based hydrogels in the solid 3D constructs can serve as optimal 3D substrates that engender 
nutrient and growth factor infiltration, multi-cellular communication (such as endothelization or 
vascularization), and new organ generation (i.e., a special program that is relevant to tissue 
colonization and organ morphologies). As those in the single-nozzle/syringe 3D bioprinting, ADSCs 
entrapped in the gelatin-based hydrogels can be engaged into heterogeneous tissues for large 
vascular organ manufacturing. Primary hepatocytes can form functional parenchymal tissues beside 
the hierarchical vascular and/or neural networks in the 3D constructs. This integration of natural 
polymers with multi-nozzle extrusion-based 3D printing technologies has reshaped the healthcare 

Figure 8. A large scale-up 3D printed vascularized organ (i.e., adipose tissue) constructed through
the double-nozzle (syringe) 3D bioprinter: (a) The 3D printer; (b) a computer-aided design (CAD)
model containing a branched vascular network; (c) a CAD model containing the branched vascular
network; (d) 3D bioprinting with ADSCs encapsulated in the gelatin/alginate/fibrin hydrogel and
hepatocytes encapsulated in the gelatin/alginate/chitosan hydrogel before epidermal growth factor
(EGF) engagement, immunostaining with pyrindine (PI) for cell nuclei in red; (e) several 3D printed
layers of the construct; (f) half an ellipse of the 3D construct; (g) hepatocytes in the gelatin-based
hydrogel after 3D bioprinting; (h) hepatocytes in a 3D printed fiber; (i) hepatocytes in a grid structure;
(j) hepatocytes in a magnificant image, the crosslinked alginate/fibrin fibers can be observed; (k) ADSCs
in the gelatin-based hydrogel after 3D bioprinting before growth factor engagement; (l) ADSCs in the
gelatin-based hydrogel after 3D bioprinting after EGF engagement, CD31 immunofluorescence staining
endothelial cells on day 10 after EGF engagement. Most cells located on the walls of the go-through
channels were CD31 positive cells with bright color (i.e., mature endothelial cells).

5. Conclusions

Organ manufacturing is an interdisciplinary field that needs to integrate a large scope of talents,
such as biological, material, chemical, physical, mechanical, medical and clinical. The emerging
of 3D bioprinting technologies is the integration results of mechanics with biomaterials and other
sciences and technologies, such as biology, chemistry, physics, informatics, computer and medicine.
Natural polymers, such as gelatin, alginate, hyaluronic acid, fibrinogen, and their combinations,
have played several critical roles in various tissue/organ 3D bioprinting technologies with profound



Polymers 2018, 10, 1278 19 of 26

influence in cellular/biomolecular selfaction/interaction, histogenesis formation/modulation and
organ construction/maturation. These polymers acted as the main components of variety ‘bioinks’ are
essential for bioartificial organ 3D bioprinting to provide cell-, tissue- and organ-specific structures
and functions. However, the notorious poor mechanical properties of the natural polymeric ‘bioinks’
have greatly limited their usage in complex organ 3D printing with anti-suture structures, such as the
hierarchical vascular, neural and lymphatic networks. Physical blending, chemical crosslinking and
the combination of both natural and synthetic polymers are effective ways to solve the geometrical,
mechanical, structural, physiological and clinical problems. The better understanding of the physical,
chemical and biological characteristics of the natural polymers helps to build much more complex
tissues and organs with much more specific structures and functions, such as the glomeruli in
the kidney and biliary networks (or biliary ducts) in the liver. This is particularly important for
future individual or customized organ reverse engineering/manufacturing with predefined essential
architectures, diversified material compositions, specialized cellular/biomolecular activities and
expected physiological/biomedical functionalities.
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