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Simple Summary: One key question that has confounded nutritional scientists for years is how the
ruminant responds metabolically with respect to energy and nitrogen utilisation when no exogenous
energy is consumed. Fasting metabolism studies using the intragastric infusion technique (IIT)
showed this to be a glucose-deficient state characterised by elevated nitrogen excretion and heat
production. However, modern feeding systems continue to adopt fasting as the basis for measuring
utilisation efficiency of nutritionally balanced diets, giving rise to the false concept of greater feed
utilisation below than above energy maintenance. Another IIT finding was that given the animal’s
genetic capacity for protein accretion and provided a rumen undegradable protein is fed, ruminants
do not catabolise amino acids as an energy source but instead retain these to attain substantial gains in
tissue protein deposition, fuelled by endogenous energy reserves. This suggests that endogenous fat
reserves could be used to retain body protein when feed supplies are scarce or of poor nutritive value
and questions the need to use high-energy diets in the finishing pre-slaughter period. Moreover, body
protein and body fat deposition were also shown to be negatively correlated, contradicting current
feeding systems which assume that nitrogen retention is always negative in an underfeeding situation.

Abstract: Studies on energy:protein ratio in ruminants are constrained by rumen fermentation
since it governs nutrient metabolism and the ratio of energy:protein yielding nutrients available for
absorption. By circumventing rumen fermentation, the total intragastric infusion technique (IIT)
allowed objective quantification of maintenance energy and protein requirements, volatile fatty
acid utilisation efficiency, efficiency of energy utilisation for maintenance (Km) and growth (Kf) and
the origin of N retention responses to independent variation of energy and protein intake. This
review outlines the key IIT findings and whether they are reflected in current feeding systems with
implications for different production systems worldwide. Maintenance energy requirements are
similar to those derived from comparative slaughter but maintenance N requirements are significantly
lower. No differences in utilisation efficiency exist between acetic, propionic and butyric acids. At low
energy intakes, endogenous energy reserves are utilised to retain amino acids and fuel substantial
tissue protein gains. The use of fasting metabolism to measure the utilisation of nutritionally balanced
diets is questioned since it is a glucose-deficient state. Inter-species differences in glucose metabolism
appear to exist, suggesting that glucose requirements may be higher in cattle than sheep. The difficulty
in predicting nutrient requirements, particularly protein, with any one technique is highlighted.

Keywords: energy:protein; intragastric infusion technique; nitrogen; volatile fatty acids

1. Introduction

Energy:protein (E:P) ratio in ruminants is complex due to the myriad of interactions at
ruminal and post-ruminal absorption and metabolism levels which influence the response
to modulation of dietary energy and protein supply. This has presented many challenges
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to nutritionists in interpretation of experimental findings related to energy metabolism,
including absorption, metabolism and utilisation of volatile fatty acids (VFA), and animal
responses to manipulations of dietary energy and protein supply.

The fermentation process of structural and non-structural carbohydrates to VFA by
microbial action in the rumen involves an interdependency of fermentable energy and
microbial protein production [1]. This has a number of implications for the ruminant.
Energy retention efficiency is not constant between carbohydrate sources and appears
negatively correlated to the molar proportion of acetic acid produced in the rumen, derived
from high-fibre diets. Due to the obligatory requirement for nitrogen (N) by rumen
microbes in rumen fermentation [2,3], the ratio of E:P nutrients available for absorption
becomes relatively constant, irrespective of intake [4] since the amino acids (AA) absorbed
in the intestine are proportional to the energy fermented in the rumen [5]. However, the E:P
ratio absorbed can be reduced in diets containing ingredients with slower rates of ruminal
degradation where proteins from high concentrate [6] or high roughage diets [7,8] flow
intact from the rumen. Similarly, diets which support high protozoa numbers reduce the
ratio of E:P absorbed by ruminants [9], presumably through predation of rumen bacteria by
protozoa reducing microbial mass flowing from the rumen [10]. Additionally, the quantity
and profile of nutrients ultimately absorbed at the small intestine bears little resemblance
to that ingested as dietary protein [11,12]. At low (sub-maintenance and maintenance)
levels of feeding little dietary protein evades rumen degradation due to prolonged rumen
retention times [6]. Conversely, high feeding levels increase rumen outflow rate [4], reduce
protein degradation in the rumen [2] and increase N flow to the intestine [4] to increase
protein retention. This suggests that the observed increase in protein/N retention in
response to an increased energy intake [13,14] reflects a response to an increased AA
supply at the small intestine rather than an energy effect per se [11]. Furthermore, the
deposition of body protein and fat are usually positively correlated in fed animals [15].
Estimating maintenance N requirements in normally fed ruminants involves the use of
N-free diets but in these situations microbial N requirements are not met, rumen organic
matter fermentation falls and consequently feed intake grinds to a halt [2].

The first comprehensive model to describe the relationship between energy and
protein intake to protein retention in ruminants and non-ruminants was provided by
Balch [13]. This model presumes a series of linear–curvilinear responses relating protein
and energy intake to N retention, and assumes that N retention at a given N intake depends
on the level of energy intake, provided N intake is in excess of animal requirement, thus
indicating that ruminant E:P requirements cannot be determined by simply altering the
energy and protein content of diets. Results for protein retained in the animal body will
vary depending on how the specific dietary ingredients alter the flow of dietary and
microbial protein from the rumen and energy absorption through the rumen wall and
digestive tract [2].

The development of the total intragastric infusion technique (IIT) allowed ruminant
tissue requirements for energy and protein to be determined through by-passing rumen
fermentation with entire diets [16] since this technique permitted true responses in protein
retention (and tissue AA requirements) to be quantified as a function of energy and protein
intake. Indeed, the IIT was the first technique to permit definitive work to be undertaken on
the cornerstones of ruminant nutrition, namely VFA utilisation efficiency, the efficiency of
energy utilisation for maintenance (Km) and growth (Kf), and tissue protein requirements.
Furthermore, by allowing independent variation of the E:P ratio of single-nutrient infusions
as either abomasal casein, ruminal VFA or entire diets at sub-maintenance, maintenance
and supra-maintenance energy intake, the animals’ metabolic response in N retention with
respect to energy and glucogenic precursor supply per se could be evaluated.

The objective of this review is to revisit the key findings from the IIT with respect to
E:P metabolism and to re-evaluate some concepts assumed in current feeding system with
implications for different production systems worldwide.
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2. The Total Intragastric Infusion Technique

Energy utilisation in animals with a functioning rumen fermentation, through feeding
basal diets supplemented with VFA acids infusion or VFA salts, were extremely difficult to
assess due to the impossibility of controlling the VFA composition absorbed, interference
with digestion and metabolism of the basal diet and inappetence [17]. Development of
the total IIT made definitive work on energy utilisation, VFA utilisation and tissue protein
requirements possible. A diagrammatic representation of the system is shown in Figure 1.
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For the first time, sheep [18] and cattle [16] could be entirely maintained on ruminal
VFA and abomasal protein and these nutrients could be infused independently and at
will [19] for longer periods of up to three months [18]. Central to this technique was the
use of a rumen buffer which rectified the problems of electrolyte imbalance [20], pH [18]
and osmotic pressure [16].

Since animals could be maintained on N-free infusates, the IIT also leveraged the
knowledge on urinary purine derivative excretion [21] and endogenous/basal N excre-
tion [2,22]. In addition, this technique yielded insights into urinary creatinine excretion [23],
rumen osmotic pressure [24], water kinetics [25], rumen VFA absorption [26] and utilisation
efficiency of rumen microbial N [27]. Although a regressed and thin-walled intestine was
noticed, rumen papillae length and mitotic index were unchanged [18,19]. No problems
were documented relating to ruminant species or physiological state [16]. Lactating dairy
cow reproduction was generally normal, with normal oestrus cycle, service-to-conception
interval and fully healthy calves being born on successive gestations [16] and with lambs,
carcass fat cover, composition and colour were similar to that of normally fed lambs [18].
The main findings from the IIT with respect to E:P metabolism will be reviewed as follows.

2.1. Maintenance Requirements for Energy and Protein

Maintenance energy requirements for ruminants were estimated using the IIT at
450 kJ/kg metabolic bodyweight (W.75) which is broadly similar to those derived from the
comparative slaughter technique (Table 1).

Table 1. Maintenance metabolisable energy requirement (kJ/kg W.75) estimates by IIT.

Ruminant Species Method Metabolisable Energy Reference

Lambs Intragastric infusion 450 [19]

Lambs Comparative
slaughter 420 [28,29]

Sheep and steers Calorimetry 420–460 [1]
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Maintenance N requirements are based on quantifying endogenous N losses which are
composed of endogenous urinary N (EUN) and metabolic faecal N excretion. Determined
at maintenance energy and zero N infused, EUN excretion quantifies the net minimum N
requirement for maintenance [30,31] since metabolic faecal N excretion is virtually absent
in IIT [32] (Table 2).

Table 2. Maintenance N requirement (mg/kg W.75) determined by IIT.

Ruminant Species Urinary N Faecal N Total N Reference

Lambs 427 ND 427 [30]
Lambs 340 ND 340 [33]
Steers 403 ND 406 [31]

Dry cows 295 25 325 [31]
Pregnant cows (233 d) 283 ND 283 [31]

ND: Not determined.

Maintenance N requirements determined by IIT are often lower than those estimated
by normally fed animals although similar to the values reported in milk-fed lambs using
comparative slaughter [34]. These values contrast with ARC [1] where EUN values are
3–4 times greater. This discrepancy has been attributed to the absence of endogenous
N recycling to the rumen on infusion and the negligible production of metabolic faecal
N. Metabolic faecal N and EUN production are negatively correlated [2,22], the former
increasing with increased hind-gut fermentation [30,35]. Endogenous protein can account
for up to 16% of total flow at the small intestine [36] and endogenous N secretions can
constitute 30% of total digestive tract protein synthesis in dairy cows [37].

2.2. Volatile Fatty Acid Utilisation as a Function of Energy Level (Kf) and Individual VFA Composition

The efficiency of utilisation of retained energy (Kf) obtained from IIT is shown in
Table 3. These data were obtained using indirect open-circuit calorimetry to calculate
heat production at VFA energy infusions ranging from maintenance to twice maintenance
requirements.

Table 3. Efficiency of utilisation of volatile fatty acids (VFA) for energy retention (Kf) in ruminants.

Ruminant Species
(Number)

VFA Composition
(C2:C3:C4) 1

VFA Infused
(kJ/kg W.75) Kf

2 Reference

Sheep
(3)

Acetic acid 3

450 4
0.67

[38]Propionic acid 3 0.44
Butyric acid 3 0.38

Sheep
(48)

45:45:10 450 0.64

[19]
55:35:10

900 5

0.57
65:25:10 0.61
75:15:10 0.61
85:50:10 0.59

Steers
(4)

46:46:08

675 6

0.55

[39]

56:36:08 0.55
66:26:08 0.55
76:16:08 0.55
81:11:08 0.55
86:06:08 0.55
91:01:08 0.55
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Table 3. Cont.

Ruminant Species
(Number)

VFA Composition
(C2:C3:C4) 1

VFA Infused
(kJ/kg W.75) Kf

2 Reference

Steers
(4)

36:56:08 450 0.61

[28]

46:46:08 675 0.61
56:36:08

900

0.59
66:26:08 0.59
76:16:08 0.59
81:11:08 0.59
86:06:08 0.59
91:01:08 0.59

Steers
(3)

65:27:08 450 0.64
[40]49:43:08 675 0.64

1 Acetic acid:propionic acid:butyric acid ratio. 2 Estimated value based on maintenance energy (450 kJ/kg W.75).
3 Infused as single individual VFA. 4 1 X maintenance energy requirement. 5 2 X maintenance energy requirement.
6 1.5 X maintenance energy requirement.

Compared to feeding trial results (Table 4), it can be seen that with the exception of
data from Preston et al. [41], the values are generally in broad agreement with those from
the IIT.

Table 4. Efficiency of utilisation of energy for retention (Kf) and lactation (Kl) on forage-based diets
from feeding trials.

Ruminant Species Type of Diet Kf Kl Reference

Sheep Dried autumn grass 0.45
[42]Dried autumn grass + casein 0.57

Sheep

Ryegrass + barley 0.36

[43]
Ryegrass + maize 0.42
Clover + barley 0.44
Clover + maize 0.50

Cattle
Setaria grass 0.17

[44]Pangola grass 0.28

Lactating cows Low grain intake 0.68
[45]High grain intake 0.77

Brahman bulls

Fresh maize (restricted) 0.32

[41]
Fresh napier (restricted) 0.25

Maize ad libitum 0.20
Napier ad libitum 0.15

Dry cows

Autumn pasture 0.34

[46]
Autumn pasture + maize silage 0.47

Autumn pasture + pasture silage 0.50
Autumn pasture + maize grain 0.38

Autumn pasture + palm kernel meal 0.61

Cattle and sheep

Hay:maize (100:0) 0.29

[47]

Hay:maize (80:20) 0.34
Hay:maize (60:40) 0.43
Hay:maize (40:60) 0.47
Hay:maize (20:80) 0.54
Hay:maize (0:100) 0.61

No pronounced variations were observed with Kf obtained from ITT standing in
the range of 0.55–0.64, in agreement with previous findings in dairy cows fed a basal
diet supplemented with acetic or propionic acids [48]. Although Blaxter et al. [38,49]
reported a lower Kf with high molar proportions of acetic acid [47], this was attributed to a
mathematical error and after correction [19,50], values varied from 0.44 to 0.50, thus similar
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to those from the IIT [19]. Of added interest was the fact that in some of this work the E:P
ratio was intentionally kept low to restrict glucose precursor supply [28]. One key question
remained: if we assume that no differences in Kf existed between VFA, what caused the
lower Kf for acetic acid observed by Blaxter?

In Armstrong and Blaxter’s original trial on a basal hay diet [38], no measurements
were made regarding time spent eating and ruminating. Considerable muscle activity
occurs during prehension, mastication and swallowing of feed, which can generate a 50%
increase in oxygen consumption [51]. It was therefore concluded that the differences in Kf
between concentrate and roughage diets were related to the mechanical costs of prehension,
ingestion, mastication and not due to a lower efficiency of acetic acid utilisation per se [17].
This conclusion raised another question: how does ruminant metabolism respond to
excessively high rumen acetic acid concentrations?

2.3. Relationship between VFA Composition, N Excretion and Blood Metabolite Concentrations

Changes in VFA composition are reflected in metabolic changes at animal level.
Ørskov and MacLeod [17] measured blood plasma parameters, N excretion and heat
production in growing steers infused to 1.5 maintenance energy requirement where the
molar proportion of acetic acid ranged from 0.30 to 0.92 (varying inversely with propionic
acid and butyric acid held constant at 0.08). The results are shown in Figure 2.
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Figure 2. Effect of volatile fatty acid composition on (a) β-hydroxybutyrate (solid line) and acetic
acid (dashed line) in urine, and (b) on heat production (solid line) and urinary N excretion (dashed
line) of four steers. Adapted with permission from [17].

At high molar proportions of acetic acid (i.e., 0.75–0.90), plasma betahydroxibu-
tyrate (BHB), urinary N and acetic acid excretion increase and heat production decreases
(Figure 2). Due to the lack of glucogenic precursors, AA are partially oxidised during
protein turnover leading to increased N excretion, in agreement with previous observations
with sheep [38,52] and lambs [53,54]. The associated decrease in heat production [28,39]
suggests that the excess acetic acid is not oxidised to yield heat but eliminated in the urine
at no further energetic cost to the animal [17]. Additionally, plasma glucose and insulin
decrease while non-esterified fatty acids (NEFA) increase [28,39]. Taken together, these
changes may reflect the animal’s ability to acclimatise to its environmental conditions to
efficiently manage its own energy reserves. To establish how the ruminant responds to
fluctuating energy intake, experiments were then conducted to establish the metabolic
response to deficiencies in energy and glucose supply.
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2.4. Metabolic Changes Induced by Fasting and Key Role of Glucogenic Precursors

Glucose is a key nutrient required by the nervous system, foetus, mammary gland,
muscle and for fat synthesis and turnover [7]. In ruminants, propionic acid is the main
source of glucose as little glucose is absorbed directly from the diet [55]. Isotopic studies
have shown that up to half [56] or more [57] of absorbed propionic acid is converted to
glucose, reaching up to 90% in the fasted state [58].

On fasting, endogenous body reserves are mobilised leading to an increase in plasma
ketones and NEFA, urinary N excretion and heat production [7,59,60]. Since these pa-
rameters revert to normal with glucose infusions [61], this suggests a glucose-deficient
state in fasting. Fasting N excretion varies with age, growth and maturity with higher
levels observed in young immature vs. mature fat steers (727 mg/kg W.75 vs. 539 mg/kg
W.75 [60]) and young vs. adult castrate sheep [62]. In addition, large reductions of about
40% N excretion have been recorded with glucose infusions [63], illustrating the N-sparing
effect of glucose on protein catabolism in ruminants [52]. However, a limit to this effect
appears to exist since above a glucose infusion level of 5.5 g/kg W.75 no further N-sparing
effect was observed [61]. Isoenergetic infusions of lipids also failed to elicit a N-sparing
effect [63].

Urinary N excretion reflects the level of protein oxidation at tissue level with added
glucose shown to spare relatively small amounts of protein catabolism in sheep and steers,
even when large quantities of glucose (over 100 g) were infused [64]. Similar proportional
reductions in fasting N excretion were observed by infusing casein-N in cattle [65] and
sub-maintenance VFA in sheep [31,62] which accompanied reductions in heat production.
Reductions in fasting heat production (per kg W.75) relate to the lower energetic costs of
proteolysis, protein synthesis, lipolysis and ketogenesis [64,66]. Of the additional heat
produced in fasting, 26% in cattle [60] and 22% in sheep [66] relates to the higher energy
costs associated with protein turnover rather than lipid turnover [67].

2.5. Differences between Kf and Km

The efficiency of utilisation of metabolisable energy below maintenance (Km) is ac-
cepted to be higher than that above maintenance (Kf) [7,17,68] and this is assumed in
current NRC [69] and ARC [1] feeding systems. Maintenance energy requirements are
based on fasting metabolism which is typically assessed after a period of diet restriction
over four weeks followed by a four day fast [70,71], which reduces metabolic rates [72] and
maintenance requirements by 10–50% [73]. This impacts the numerical value of fasting
metabolism [7,17]. Furthermore, fasting metabolism varies within and between breeds of
similar metabolic body weight [71] and fasting N excretion is up to 40% greater than basal
VFA energy infusion [64]. For these reasons, the adequacy of applying fasting metabolism
to conventional feeding regimes has been questioned [11,61]. Using data derived from a
variety of diets, Km values were quoted to range from 0.60 to 0.80 and Kf values from 0.25
to 0.50 [55].

To circumvent fasting, it was then suggested [7,17] to incorporate a baseline of approx-
imately 0.3 of metabolisable energy maintenance requirements so that glucose precursor
requirements could be met [7,11,17] (Figure 3). This proposal is not reflected in the cur-
rent feeding models which assume a differential efficiency below and above maintenance,
leading to the misleading assumption that feeds are used less efficiently above than below
maintenance [11].
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Ørskov and MacLeod [17] argued that the anomalies associated with fasting metabolism
were an artefact of the method used to determine it, giving rise to differences in Km and Kf
(Figure 3) which they deemed as “dubious”. They also affirmed that Kf values between
diets were closely related to the determined maintenance energy level, in agreement with
recent affirmations by Cabezas-Garcia et al. [74] and that these values were prone to vary
widely with even minor changes in heat production (of 10%).

2.6. Inter-Species and Physiology Stage Differences in Response to Glucogenic VFA or Glucose Infusions

Suggestions that glucose requirements are higher in cattle than sheep have been
made [55,61]. These were based on the higher plasma BHB in fasted cattle than sheep and
greater amount of glucose required to reduce plasma BHB to basal levels (5.5 g/kg W.75

in steers [61] vs. 1.6 g/kg W.75 in sheep [59]), higher glucose oxidation rate (41 kJ in
steers vs. 35 kJ in sheep [75]), higher fasting N excretion in cattle (529 mg/kg W.75 vs.
466 mg/kg W.75 [61]) and greater response per unit of glucogenic VFA infusion (55:35:10)
in cattle than in sheep [61]. Girdler et al. [76] using sheep maintained wholly by total
intragastric infusion of VFA and casein-N to 1.1 times maintenance energy requirement,
postulated a glucose requirement of 2.44 g/kg W.75 in sheep. Lobley [77] indicated a glucose
requirement in fasted sheep of only 0.99–1.43 g/kg W.75.day but glucose utilisation rates
appear to fall on fasting [78]. Lower glucose absorption rates have also been hypothesised
in cattle vs. sheep [79] and wool growth is also known to have a high requirement for
sulphur AA, some of which are glucogenic [80].

2.7. N Retention Responses
2.7.1. Positive N Balance at Negative Energy Balance

Energy:protein ratios at whole animal level have been described by Balch [13] (Figure 4)
to determine N requirements for ruminants and formulation of diets [1,68].
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The slope of the linear portion of N retention to N intake curves depends on the
similarity between the balance of AA required by the animal compared with the balance of
the AA absorbed, reflecting catabolism of non-utilised AA. One of the key assumptions
from this model is that at low energy intake protein retention is in all circumstances
negative, irrespective of N intake [13]. This implies that AA are oxidised during protein
turnover at times of undernutrition when AA requirements exceed dietary AA supply [82].
Comparable curvilinear responses in N retention to energy and protein intake have been
reported with sheep [14] and other broadly similar linear-plateau models were proposed
for growing lambs [83] and growing non-castrated male pigs [84].

Although the model of Balch [13] implies a negative N balance at very low energy
input, evidence to the contrary was shown in dairy cows, sheep and steers (Table 5).

Energy balance was calculated for each energy infusion level as the sum of the
VFA and casein-N energy equivalent (assuming maintenance energy requirements of
450 kJ/kg W.75) [19]. These findings, confirmed in lambs [23] and steers [65], proved that
ruminants do not oxidise the supplied protein as a source of energy but instead utilise it to
attain N balance and deposit tissue protein by oxidising their body fat to fuel the energy
deficit, an effect also observed in humans [85]. Similar findings were also reported using
the comparative slaughter technique with milk-fed lambs [86].

The N retention response curves to sub- and supra-maintenance VFA energy intakes
were shown to vary between curvilinear [62,65] and linear [59,87], reflecting the diversity of
animals used in the studies regarding stage of growth and maturity. Protein requirements
of growing ruminants are determined by their capacity to deposit and retain body protein
which in turn depends on factors such as genotype, sex and liveweight [84] and on a
metabolic liveweight basis, are considerably higher in young lambs than young calves [2].
Curvilinear response curves suggest a variable efficiency of utilisation of absorbed AA
unlike the linear response in the model of Balch [13] which assumes a fixed efficiency of
utilisation. This linear response seems to contradict more recent studies which show that
AA utilisation for milk protein synthesis varies depending on dietary AA supply [88,89]
and AA composition [90–92].
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Table 5. Level of gross energy infusion (kJ/kg W.75) at which zero N balance was attained.

Ruminant Species (Number) Gross Energy Infused Type of Infusion 1/Day Reference

Lactating cows
(2)

281
(SE 2 26)

Gross (VFA + protein) energy of 675 kJ/kg W.75

Fixed casein N of 750 mg/kg W.75

Gross infusion reduced to energy value of casein N (118 kJ/kg W.75) [5]

115
(SE 16)

460 kJ/kg W.75 + 972 mg N/kg W.75

450 kJ/kg W.75 + 0 mg N /kg W.75

225 kJ/kg W.75 + 0 mg N/kg W.75

0 kJ/kg W.75 + 0 mg N/kg W.75

147 kJ/kg W.75 + 938 mg N/kg W.75

Steers
(4)

154
(SE 38)

450 kJ/kg W.75 + 1 g N/kg W.75

450 kJ/kg W.75 + 0 g N/kg W.75

0 kJ/kg W.75+ 0 g N/kg W.75

150 kJ/kg W.75 + 1 g N/kg W.75

250 kJ/kg W.75 + 1 g N/kg W.75

350 kJ/kg W.75 + 1 g N/kg W.75

450 kJ/kg W.75 + 1 g N/kg W.75

Lambs
(4)

162
(SE 29)

VFA energy of 0, 120, 230, 340, 450, 560 and 670 kJ/kg W.75

Fixed casein N of 972 mg N/kg W.75

Infusions stepped up or down from starting level of 340 kJ/kg W.75 [28]

150
(SE 22)

VFA energy of 0, 75, 150, 250, 350, 450, 575 and 700 kJ/kg W.75

Fixed casein N of 530 mg N/kg W75 and 1060 mg N/kg W.75

Infusions stepped up or down from starting level of 450 or 575 kJ/kg W.75

Lambs
(8)

330
+ 250 VFA energy

157
+ 0 VFA energy

VFA energy of 0 or 250 kJ/kg W.75

Casein-N of 0, 250, 500, 750, 1350, 1950 and 2550 mg N/kg W.75

Casein-N infusions stepped up or down
[62]

Lambs
(10)

195 Fixed VFA energy of 91 kJ/kg W.75

Incremental casein N of 0, 250, 500, 750, 1500, 2250 and 3000 mg N/kg W.75 [59]

205 Gross (VFA + protein) energy of 91 kJ/kg W.75

Incremental casein N of 0, 250, 500, 750, 1500 and 2250 mg N/kg W.75

Steers (2) fasting 264 Zero VFA energy
Incremental casein N of 0, 250, 500, 750, 1000, 1500 and 2000 mg N/kg W.75 [65]

1 Molar proportions of 0.65, 0.25, 0.10 acetic, propionic and butyric acids in all cases. 2 Standard error.

2.7.2. Influence of Animal Factors

Animal-related factors such as prior feeding level and mature body weight influ-
ence N retention response. Using Suffolk-cross sheep given a sub-maintenance VFA
infusion of a very high propionic acid mix (91 kJ/kg W.75) and increasing casein-N, Chowd-
hury et al. [59] reported a greater N balance in the lighter (39 ± SD 4.5 kg BW) vs. heavier
(61 ± SD 2.2 kg BW) sheep (Figure 5). This was attributed to compensatory N repletion
and an improved efficiency of N retention [23] of the light sheep due to a period of under-
feeding before the trial [59]. Previous work by Hovell et al. [93] had shown a 52% increase
in N retention (1103 vs. 724 mg N/kg W.75) after a period of protein depletion in sheep
infused with VFA at 650 kJ/kg W.75 and casein-N at 2430 mg N/kg W.75. Additionally,
despite being of similar age, the lighter sheep would presumably have had a lower body
protein mass [94] and greater cell growth potential per unit mass [95]. As animals grow,
whole-body protein synthesis increases but daily protein synthetic activity per unit tissue
falls [95,96] and the contribution of both lean body mass and absolute protein turnover
rates increase, which may mask the individual tissue/organ differences [95,97]. Thus,
Chowdhury et al. [62] concluded that animals fed on a high plane of nutrition pre-trial
used their accumulated endogenous fat reserves to substitute for exogenous VFA and exert
a role on N retention.
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2.7.3. Influence of Glucogenic Precursors in VFA

Responses in N retention to exogenous VFA infusion could be related to both gluco-
genic and energy components of the VFA mixtures [59,61,62]. Chowdhury et al. [62]
concluded a positive glucogenic effect on N retention using fasted lambs infused with
sub-maintenance VFA (250 kJ/kg W.75) at low levels of casein-N (0−500 mg N/kg W.75;
Figure 6).
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It was suggested that the N balance response reflected a glucose precursor supply
(provided by the casein) rather than a specific exogenous energy effect per se since adequate
endogenous energy reserves were available. Evidence to support this hypothesis was also
shown in steers [61]. These authors, using two energy levels and two VFA mixtures high
and low in glucogenic precursor supply infused to growing steers, observed a significantly
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higher coefficient of N retention for the high propionic acid mixture than the low propionic
acid mixture at both energy levels (Figure 7). This indicated a likely role of glucogenic
precursors on N retention response at the highest level of N infusion.
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Studies using multi-catheterisation of the hepatic portal vasculature to measure nutri-
ent fluxes post-absorption have also postulated a N-sparing effect of glucogenic precursors
on amino acid gluconeogenesis at the level of the whole body [98], liver [99], splanchnic
tissues [100], gastrointestinal tract [101] and mammary gland [88].

2.8. Endogenous Energy Reserves as a Fuel for Protein Deposition
2.8.1. Growing Ruminants

At sub-maintenance energy intake, substantial mobilisation of body fat reserves is
required to fuel protein anabolism and attain N balance [65]. Chowdhury et al. [59] using
sub-maintenance energy infusions and infused casein-N at three times maintenance N
requirements calculated body fat losses ranging from 1.29 to 4.03 kg in sheep and that for
each kJ protein accretion 0.781 kJ of endogenous energy was used with an efficiency of 0.56.
Previously, these authors reported a daily reduction of 100 g adipose tissue to equate to a
N retention in lambs of 750 mg N/kg W.75.day at negative energy balance (approximately
−180 kJ/kgW.75.day) [62]. These findings imply that body and carcass composition can be
manipulated under this dietary regime and contradict other observations suggesting that
body fat and protein depositions are positively correlated [15]. High levels of lean tissue
gain can occur at these N infusion levels. Chowdhury et al. [65] infused fasted 400 kg steers
with protein as the only exogenous nutrient and concluded that the N retention of 283 mg
N/kg W.75.day at the highest infusion level (2000 mg N/kg W.75.day) equated to a weight
gain of 0.8 kg/day, while only achieving an energy intake equivalent of 264 kJ/kg W.75.day
(approximately half-maintenance energy requirements). Comparable levels of lean tissue
gain (g/kg W.75.day) were reported in sheep [66]. Fattet et al. [102] also confirmed these
findings using conventional diets over a 92-day N supplementation period. These authors
showed that in lambs fed a basal NaOH-treated straw diet to sub-maintenance energy
intake with or without 75 g/day of supplemental fishmeal, wool-free body protein was
increased by 0.5 kg and body fat decreased by 1.5 kg [102]. These results are consistent with
reduced hepatic protein oxidation while protein synthesis remains constant in lambs fed
sub-maintenance protein [103]. However, a similar response was not observed when energy
supply was reduced relative to protein supply [99]. Protein anabolism and catabolism
occur continuously at sub-maintenance energy intakes, yet a 2% change in synthesis rate
can alter protein accretion by 20–40% [97,104]. It has been suggested that the secretion of
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insulin-like growth factor I and growth hormone when exogenous amino acids are supplied
to a ruminant in negative energy balance are responsible for these simultaneous processes
of proteolysis and lipolysis [82] and insulin appears to reduce protein catabolism [105].

2.8.2. Lactating Dairy Cows

High yielding dairy cows in early lactation and negative energy balance are particu-
larly sensitive to increased AA supply in the small intestine [12,106], an effect also seen
in dairy goats [107,108]. Incremental casein infusions were shown to double the negative
energy balance of cows fed a mixed diet (from −20.5 to −41 MJ/day with 0 to 750 g/day
casein-N), with a daily fat-corrected milk yield increase of 3 kg and milk protein concentra-
tion increase of 13% [109,110]. Relative to the amount of N infused, equal quantities were
retained as milk protein and body protein, the latter to replenish the high levels of tissue
labile body protein reserves mobilised in early lactation [111]. It was hypothesised that
the high levels of body fat mobilised to support this yield increase was induced by AA
supplied from the casein [110] rather than a glucogenic effect per se [12] or mediated by
hormonal influence [112]. Indeed, lysine and methionine have been shown to be the most
limiting AA for milk protein synthesis [80,113].

Casein infusion in early lactation appears to strengthen the homeorhetic drive [114]
from mobilising body reserves towards milk secretion [115], a situation which seems to be
reversed later in lactation. Homeorhetic regulation is maintained under hormonal control
through alterations in circulating levels of hormones including insulin, growth hormone,
prolactin, somatotropin and corticoids [114]. Large milk yield responses to casein infusions
were also shown in mid lactation cows which are typically in positive energy balance [116]
but where the output of milk energy far exceeds that supplied by the casein itself [112]. This
additional energy may have derived from an increased efficiency of utilisation of energy
for lactation (kl) or nutrient reallocation between body tissues and milk synthesis [116].
Responses to protein supply in late lactation cows were lower compared to those of mid
lactation [117].

The adverse effects of energy and N deficits in high yielding cows on welfare and
fertility have been documented [111,113,118]. Studies involving the feeding of glucogenic
or lipogenic diets to early lactation cows have reported a reduced negative energy bal-
ance [119,120]. Conversely, attempts to reduce the protein deficit in early lactation by
increasing the protein infusion level appear to further exacerbate the negative protein
deficit [121]. Inadequate homeorhetic/homeostatic control in early lactation has been
associated with metabolic ketosis [122,123].

3. Current Feeding Systems and Their Limitations

Although the IIT is no longer used due to animal welfare concerns, its key findings
remain relevant today. However, these are not embodied in current feeding systems such as
the ARC [1], NRC [69], INRA [124] or AFRC [68]. Firstly, fasting metabolism continues to
be used to estimate the efficiency of utilisation of nutritionally balanced diets, although this
appears conceptually incorrect since glucose requirements are not met and N excretion is
elevated. Secondly, the ruminant’s ability to maintain a positive N balance while in negative
energy balance, which has also been shown by the comparative slaughter technique, is not
recognised. Given a ruminant’s genetic capacity for protein accretion, lean-body mass can
be raised and carcase composition manipulated provided a rumen undegradable protein
is fed, even when at sub-maintenance energy intake. Therefore, on extensive production
systems, ruminant body fat reserves can be used as an “endogenous” energy source during
the dry season when feed supply is sparse or of poor nutritive value. This strategy could be
of particular importance to improve feed resource utilisation in developing countries and
reduce the environmental impact of ruminant production systems. On intensive production
systems, the findings question the need for feeding high energy diets at the finishing period
(pre-slaughter) in lambs or steers and call for the current system of energy allowances to
be reconsidered.
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Although all major energy systems today continue to assume a higher Km than Kf,
different equations are used to estimate efficiency of utilisation of metabolisable energy
(maintenance, growth and lactation). Across systems, equations to predict maintenance
energy requirements differ in energy units (net energy or metabolisable energy), method
used (calorimetry or comparative slaughter) and apply to the predominant breeds in each
geographical area (e.g., British and Continental breeds for AFRC [68] and Bos taurus and
Bos indicus for NRC [125] in the USA and Canada). For AFRC [68] maintenance energy
requirements continue to be based on fasting metabolism plus an allowance for physical
activity and a different metabolic weight basis is used compared to INRA [124] (.67 vs. .75).
It is of interest that with respect to energy requirement predictions, the French net energy
system distinguishes between the pre-ruminant and ruminant growth stages, different
genotypes (dairy vs. beef origin) and, as with NRC [125], includes predictive equations for
enteric methane production [74].

The curvilinear response between milk protein output and efficiency of metabolisable
protein use [90,91] is not recognised in current feeding systems, which instead conform to
the single limiting AA theory [91,92] by assuming a fixed 0.67 efficiency in metabolisable
protein use for milk protein synthesis in NRC [69], 0.68 in the UK system [68] or 0.64 in both
the Dutch [126] and French [124] systems. These efficiency figures also exceed the reported
values of 0.5 [116], 0.65 [112], 0.5 [127] and 0.45 in finishing beef steers [128], against the
ARC [1] value of 0.75. Regarding energy, current feed evaluation systems are incapable of
predicting the differing responses to isoenergetic inputs of glucogenic or lipogenic diets to
early lactation cows [91].

The ability of ruminants to use endogenous energy to fuel protein deposition [59,62]
has led to calls for the current system of energy allowances to be reconsidered [11] since
this concept questions the need for high energy diets for lambs or beef cattle in the finishing
stage pre-slaughter. The potential to improve carcase protein:fat ratio by limiting energy
intakes in the finishing period has also been shown in other studies [129,130].

Feeding rumen-protected protein to high yielding dairy cows in early lactation does
not appear to alleviate the extent of the protein deficit but glucogenic diets may help reduce
the energy deficit [119]. On a global scale, efficiency of production is not solely restricted to
high genetic merit progeny fed high quality diets but can equally exist with indigenous
breeds fed on local, low quality feed resources and where the choice of feed supplements
will depend on local resources and presence (or absence) of industrial by-products.

Recent years have shown the replacement of a factorial with a more mechanistic model
of rationing based on studies to predict the flux of energy yielding nutrients [131,132] and
protein [132,133] post-absorption. These systems describe constant turnover functions such
as protein turnover in the muscle and viscera and triglyceride turnover in adipose tissue
while assuming that requirements are a function not only of the present state but also prior
feeding regime [134]. The application of such models on farm is however constrained by
their high errors in predicting performance (liveweight gain, milk yield/day [131,134]).

4. Conclusions

The IIT was invasive in nature but versatile in allowing E:P ratio in ruminants to be
studied in absolute terms, without the confines imposed by a functioning rumen. However,
infusions were controlled, no feed or rumen microbiota was propelled through the gut, only
small animal numbers were used and at sub-maintenance rather than supra-maintenance
infusion levels. The main VFA (acetic, propionic and butyric acids) are utilised with a
similar efficiency of typically 60%. General curvilinear and linear responses exist in N
retention to increased energy and protein intakes. Fasting metabolism is an inappropriate
basis to measure the utilisation of nutritionally balanced diets due to a lack of glucogenic
precursors and such estimates should be made at a basal level of intake (approximately
one third maintenance energy requirements) to ensure glucose requirements are met.
Ruminants have the innate ability to distinguish between protein and energy yielding
nutrients and prioritise essential nutrients to maintain tissue protein by using body fat
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reserves to “fuel” the energetic costs of protein deposition. The classical concept of E:P
ratio does not consider the potential role of endogenous energy reserves. The complexity of
energy:protein metabolism in the ruminant implies that predicting nutrient requirements
of ruminants is difficult and no one technique including the IIT can accurately quantify the
true response to nutrients fed. This difficulty is also reflected in the large errors associated
with predicting performance in modern mechanistic nutrient modelling systems.
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