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Transcriptional Pathology Evolves over Time
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Abstract
Traumatic brain injury (TBI) causes acute and lasting impacts on the brain, driving pathology along anatomical,
cellular, and behavioral dimensions. Rodent models offer an opportunity to study the temporal progression of
disease from injury to recovery. Transcriptomic and epigenomic analysis were applied to evaluate gene expres-
sion in ipsilateral hippocampus at 1 and 14 days after sham (n = 2 and 4, respectively per time point) and mod-
erate lateral fluid percussion injury (n = 4 per time point). This enabled the identification of dynamic changes and
differential gene expression (differentially expressed genes; DEGs) modules linked to underlying epigenetic re-
sponse. We observed acute signatures associated with cell death, astrocytosis, and neurotransmission that largely
recovered by 2 weeks. Inflammation and immune signatures segregated into upregulated modules with distinct
expression trajectories and functions. Whereas most down-regulated genes recovered by 14 days, two modules
with delayed and persistent changes were associated with cholesterol metabolism, amyloid beta clearance, and
neurodegeneration. Differential expression was paralleled by changes in histone H3 lysine residue 4 trimethyla-
tion at the promoters of DEGs at 1 day post-TBI, with the strongest changes observed for inflammation and im-
mune response genes. These results demonstrate how integrated genomics analysis in the pre-clinical setting
has the potential to identify stage-specific biomarkers for injury and/or recovery. Though limited in scope
here, our general strategy has the potential to capture pathological signatures over time and evaluate treatment
efficacy at the systems level.
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Introduction
The U.S. Centers for Disease Control and Prevention
reported roughly 3 million traumatic brain injury (TBI)
incident-related in- and outpatient emergency room
visits in the United States in 2014.1 Among military
service personnel, almost 20,000 soldiers experienced
a TBI in 2019, mostly mild to moderate.2 Whereas se-
vere TBI can have long-lasting effects resulting in a
chronic disease state,3 most persons who experience a
mild, and many with a moderate, severity of TBI do
recover. However, it has also become clear that a per-
centage of mild and moderate TBIs are associated with
increased risk for late-onset neurodegenerative diseases
such as Parkinson’s and Alzheimer’s diseases.4–7

Measurement of the perturbations in gene expres-
sion in bulk tissue and single cells in rodent models
of TBI has provided a systems-level perspective of the
impacts of TBI.8–12 In the initial period after TBI, tran-
scriptional studies have identified signatures of neu-
roinflammation, and cell death, that correlate with
long-term outcomes such as cognitive dysfunction,8

with elevated transcription of inflammatory mediators
observed for up to 1 year.13 Parallel to transcriptomic
changes, initial studies of the epigenetic impacts of
TBI8,14,15 found that 7 days post-injury, DNA methyl-
ation was impacted at hundreds of sites across the
genome. Other epigenetic signatures, for example
changes to histone proteins, have also been reported
after TBI,14,16 though have not been explored in
depth at genome-wide resolution. Despite the applica-
tion of genomic approaches to dissect the impacts of
TBI, few studies have paired full transcriptome RNA-
sequencing (RNA-seq) and functional assays to link
gene-regulatory control and transcriptional outcomes
at the systems level.

Changes in gene expression post-TBI are dynamic
and responsive to the state of recovery post-injury.
For example, it is well described that cell death peaks
acutely post-injury, and that there are immediate
changes in neurotransmission that reduce plasticity,17,18

but that cognitive function recovers over a period of
weeks. Pairing longitudinal transcriptional and epige-
netic changes has the potential to illuminate mecha-
nisms underlying long-term molecular pathology and
the underlying epigenetic responses associated with
both acute and long-lasting pathology. Toward these
goals, we interrogated acute (1-day) and subchronic
(14-day) transcriptional changes paired with genome-
wide histone H3 lysine residue 4 trimethylation
(H3K4me3) profiling in ipsilateral hippocampus in

rats exposed to lateral fluid percussion (LFP) injury.
Our results map molecular signatures associated with
distinct expression trajectories post-TBI and find evi-
dence of parallel alterations in histone H3K4me3 at rel-
evant gene promoters.

Methods
Test animals
Adult male Sprague-Dawley rats (300–375 g; Envigo,
Livermore, CA) were randomly assigned to sham con-
trol (n = 6) and LFP injury (n = 8) groups (Fig. 1A).
These groups were further randomly separated for
acute assessment 1 day post-injury (n = 2 sham, n = 4
LFP) and chronic assessment on day 14 post-injury
(n = 2 sham, n = 4 LFP). Rats were housed in a campus
vivarium with regulated temperature (22�C) and hu-
midity (40–60%) and on a 12-h light/dark cycle. Rats
had free access to food and water throughout the exper-
iment. All procedures adhered to the National Insti-
tutes of Health guidelines and were approved by the
University of California Davis Institutional Animal
Care and Use Committee.

Lateral fluid percussion injury rat model
Rats were randomly assigned to receive either LFP or
sham injury.19 Sham animals received identical surgical
procedures as TBI, including duration of anesthesia,
except that the fluid percussion injury was not admin-
istered. Anesthesia was induced using 4% isoflurane
(in air). Animals were then intubated, shaved, trans-
ferred to a stereotaxic frame, and mechanically venti-
lated to maintain a surgical plane of anesthesia using
1.5–3.0% isoflurane (in 2 NO2/1 O2) for the remainder
of the surgery. After sterile preparation, a subcutaneous
injection of 0.25% bupivacaine (0.1 mL) was delivered
above the dorsal surface of the skull. A midline scalp
incision was made, and the skin was retracted to expose
the dorsal cranial surface. A circular 4.8-mm diameter
parasagittal craniectomy was made over the right hemi-
sphere midway between bregma and lambda and 3 mm
lateral to midline using a trephine. Two stainless steel
screws (0–80 degrees) were secured in the skull, an-
terior and posterior to the craniectomy. A custom
three-dimensional printed injury hub, designed based
on the properties of a traditional Leur Lock, was placed
in the craniectomy and cemented to the skull with a
combination of super glue gel and dental acrylic. The
injury hub was then filled with sterile saline.

The fluid percussion device was calibrated to pro-
duce an injury of 2.12 – 0.02 atm of pressure. In our
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hands, this injury typically results in a moderate injury
with persistent spatial learning deficits for at least 2
weeks post-injury.20,21 The animal was removed from
anesthesia, attached to the device, and the injury ham-
mer was released upon return of the toe pinch reflex.22

Immediately post-injury, animals were observed for the
recovery of the toe pinch withdrawal and then were
returned to 2.5% isoflurane. Finally, the injury hub
was removed, and the wound was sutured closed (4.0
braided silk suture), and the animal was placed in a
heated cage and observed until becoming sternal.

Hippocampal tissue collection
Rats were placed in an anesthesia chamber with contin-
uous flow of 4% isoflurane with air as the carrier for
4 min and then, while still anesthetized, rapidly decap-
itated. The brain was exposed and rolled out of the
skull and placed on filter paper atop a glass dish sitting

on ice. The cortex was hemisected rostral to caudal,
then rolled back (medial to lateral), exposing the un-
derlying hippocampus. A curved, plastic spatula was
used to roll the hippocampus out of the cortex and
onto the filter paper. The same spatula was used to
completely separate the hippocampus from the cortex
and place it into a sterile microcentrifuge tube. Ipsilat-
eral (right) and contralateral (left) hippocampus were
collected separately.

RNA-sequencing experiments
Fresh hippocampus samples from injury ipsilateral tis-
sue were prepared as previously described.23 Total RNA
was isolated from samples using Ambion RNAqueous
(catalog no.: AM1912; ThermoFisherScientific, Wal-
tham, MA) and assayed using an Agilent BioAnalyzer
instrument (Agilent Technologies, Santa Clara, CA). A
TruSeq Stranded mRNA kit (Illumina P/N 20020594;

FIG. 1. Differential expression of genes subjected to TBI. (A) Summary of experimental design.
(B) Clustered heatmap of reads from upregulated (upper panel, n = 6870) and downregulated genes (lower
panel, n = 10,302) at both time points (1 and 14 days after TBI) for genes with unadjusted p value <0.05.
(C) Volcano plots of the differentially expressed genes at each of the time points. Each dot represents a
gene; those colored in red were downregulated, whereas the ones in green were upregulated, TBI versus
sham control (significance level is 99%, a= 0.05). Differential gene expression presented in log10 scale, with
example genes labeled. (D) Principal component analysis plot showing the first two components. Ellipses
represent cluster confidence intervals at the 95% confidence level (when there were only two data points,
an ellipse was manually drawn to enclose both points). mRNA, messenger RNA; TBI, traumatic brain injury.
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Illumina, San Diego, CA) was used to prepare the stran-
ded mRNA libraries that were sequenced on the Illu-
mina HiSeq platform using a single-end 50-bp strategy.
Libraries were pooled at 6–12 samples per lane; each li-
brary was quantified and pooled before submission for
sequencing. All samples were sequenced at the UC
Davis DNA Technologies Core.

ChIP-seq
Chromating immunoprecipitation sequencing (ChIP-
seq) experiments were perfromed following established
protocols.24 Frozen hippocampus tissue samples were
individually crosslinked with a 1% formaldehyde buffer
solution for 10 min, then washed and isolated. Resus-
pended crosslinked pellets were treated with protease
inhibitor and sheared by sonication. Samples were then
washed off of unbound DNA and free proteins and incu-
bated with Histone H3K4me3 antibody (monoclonal an-
tibody; catalog no.: 61979; Active Motif, Carlsbad, CA)
and magnetic beads (Dynabeads�; ThermoFisherScien-
tific) for 2 h at 4�C. After reaction, beads were magneti-
cally separated, washed and de-crosslinked. Resulting
DNA was then purified, size selected, and libraries
were prepared using the Ovation Ultralow System V2
preparation kit (NuGEN P/N 0344; NuGEN Technolo-
gies, Inc., San Carlos, CA). Input control libraries were
prepared from DNA before antibody pulldown. Libra-
ries were quantified and pooled before submission for
sequencing. The UC Davis DNA Technologies Core se-
quenced the libraries as 50-bp single-end reads on an
Illumina HiSeq 4000 instrument.

Quantification and statistical analysis
Differential gene expression analysis. We determined
differential gene expression (DGX) between the TBI
and sham control samples by individually aligning
the FASTQ reads from the RNA-seq experiment to
the rat genome (rn5) using STAR version 2.4.2a,25

after quality-control evaluation using FASTQC version
0.11.826 and counting reads with featureCounts version
1.5.0,27 with UCSC gene annotations. We then ana-
lyzed samples using a custom R script running the
limma-voom model.28 For gene expression trajectories
across 1 and 14 days, we established sham at day 14 as
the baseline, because they had recovered from acute
sham injury, and normalized TBI gene expression
(reads per kilobase of transcript, per million mapped
reads; RPKM), using the DGX determined by the
limma-voom method. Differentially expressed genes
(DEGs) with similar trajectories were assigned into

clusters. We conducted Gene Ontology (GO) analysis
using the R clusterProfiler package,29 using p-value and
q-value cutoffs of 0.05, for the genes in each of the ex-
pression pattern clusters defined at day 1 and day 14.

Chromatin immunoprecipitation sequencing data
analysis. We quality checked and trimmed adapter
sequences from the reads of the FASTQ files from
ChIP and input control samples using FASTQC and
Trim Galore! Version 0.5.0,30 respectively. Filtered
reads were aligned to the rn5 genome (UCSC gene an-
notation) with bwa version 0.7.16a,31 with duplicate
reads removed with Samtools version 1.8.32 We gener-
ated read coverage genome-wide estimates and peak
calls for sham and TBI samples using the pileup outputs
from MACS2 version 2.1.2.33 Using custom R scripts,
we intersected coverages (pileups) from H3K4me3 in
TBI samples and respective sham controls and filtered
those annotated to gene promoters. For each individual
set (TBI and sham), we ranked the coverages and used
the ranks to compare against one another (to compen-
sate for variations in sensitivity among data sets). We
assigned up- or downregulated genes associated with
each TBI-sham pair at each time point by association
with the differential expression (DE) data.

We used the MACS2 bdgdiff function to compare
normalized H3K4me3 enrichment, focusing analysis
on gene promoters. Log likelihood of differential
H3K4me3 between TBI and sham samples was esti-
mated for all genes, and the top 100 up- and down-
regulated genes ranked by differential promoter
H3K4me3 were selected and tested for enriched GO
terms and Reactome and PANTHER pathways using
Enrichr (https://amp.pharm.mssm.edu).34 To deter-
mine whether differences in H3K4me3 change were
greater than expected by chance, average log likelihood
for differential TBI versus sham H3K4me3 for DEGs
for each gene expression trajectory module was com-
pared against genes that were not DE by linear re-
gression, and ANOVA with Tukey’s post hoc analysis
were used to generate statistically significant results.

Data and Code Availability. The genomic data gener-
ated in this study and presented in this publication
have been deposited in the NCBI database and are
accessible through GEO Series accession number
GSE173975 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE173975) and can be visualized in
UCSC track hubs whose information is provided on the
Nord Lab GitHub page (https://nordneurogenomicslab
.github.io/publications/).
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Results
Gene expression perturbations after traumatic
brain injury are both transient and persistent
Adult male Sprague-Dawley rats were randomly as-
signed to sham control (n = 6) and LFP (n = 8) groups
(Fig. 1A). These groups were separated for acute assess-
ment 1 day post-injury (n = 2 sham, n = 4 LFP) and
subchronic assessment on day 14 post-injury (n = 4
sham, n = 4 LFP). RNA-seq was performed on bulk
ipsilateral hippocampal tissue. We determined differ-
ential gene expression using the multiple-testing–
corrected p value <0.05 between TBI and sham control
at each time point. Full DGX results are reported in
Supplementary Tables S1–S3. Overall, 1351 up- and
1013 downregulated DEGs were identified 1 day
post-TBI, and 439 up- and 41 downregulated DEGs
at 14 days, relative to time-point–matched sham
controls.

Sham and TBI samples hierarchically clustered by
group and time point, indicating overall DEG sig-
natures that robustly discriminate TBI from sham as
well as acute from subchronic time points (Fig. 1B).
A volcano plot demonstrates the magnitude of change
for all tested DEGs, with the top DEGs (lowest p value
and/or highest absolute expression fold change) labeled
(Fig. 1C). In addition, a principal component analysis
(PCA), using full transcriptomic data, similarly cap-
tured a well-defined separation of condition and time
point (Fig. 1D), with the 1-day TBI signature driving the
largest proportion of variance in PCA space (i.e., PC1).

Genes that were differentially expressed at adjusted
p value <0.05 at either time point (4354 total genes)
were assigned to a coexpression module based on ex-
pression changes across time points (Fig. 2A). A rela-
tively small subset of genes was increased early after
injury and then further increased in expression at

FIG. 2. Gene expression trajectories over time after TBI. (A) Sankey plot showing the relative gene
expression trajectory across the period 1–14 days after TBI (limma-voom model with p < = 0.05, expression
normalized/corrected for batch effect and sham effect over time). Gene trajectory modules are labeled as
follows: (i) denotes persistently upregulated genes; (ii) means acutely upregulated genes showing partial
recovery at day 14; (iii) denotes genes with delayed upregulation; (iv) and (v) denote acutely up- and
downregulated genes, respectively, showing full recovery at day 14; (vi) represents genes with delayed
downregulation; (vii) depicts acutely downregulated genes showing partial recovery; and (viii) denotes
persistently downregulated genes. (B) Expression level comparisons at both time points, TBI and sham
control, for selected genes (Csf1r, Fos, Grik4, and Hmgcr) showing different trajectories. Gene expression is
given in log RPKM (reads per kilobase of transcript, per million mapped reads). Csf1r, colony-stimulating factor
1 receptor; Fos, Fos proto-oncogene, AP-1 transcription factor subunit; Grik4, glutamate ionotropic receptor
kainate type subunit 4; Hmgcr, 3-hydroxy-3-methylglutaryl-CoA reductase; TBI, traumatic brain injury.
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14 days (80 genes, module i). A larger subset had a
larger increase on day 1 as compared to day 14, but
remained significantly elevated at the later time point
(238 genes, module ii). The largest module of genes
(n = 2085) was significantly upregulated at 1 day, but
was not statistically different from sham at the 14-
day time point (module iv). This cluster was followed
in size by the module of genes that showed the opposite
effect of downregulated at day 1 but statistically similar
by 14 days (1789 genes, module v).

There were 22 acutely downregulated genes that
demonstrated only partial recovery (module vii) by 2
weeks whereas only nine acutely downregulated genes
were even more significantly perturbed at 14 days
(module viii). In addition, there were two additional
subsets of genes that were not acutely changed on
day 1, with DE only on day 14. Of these genes,
113 had delayed upregulation (module iii) and 18 were
downregulated only at day 14 (module vi). Overall,
this analysis identified clear differences in expression
and recovery among genes sensitive to TBI in the
ipsilateral hippocampus, which may reflect both the tra-
jectory of recovery and onset of long-term pathology.

Differentially expressed gene expression
trajectory modules are associated with distinct
traumatic brain injury pathology
Critically, many of the observed DEGs are related to
known changes in protein expression post-injury, the
longitudinal design allowed for analyses of the trajec-
tory for such genes over time. For example, Figure 2B
shows expression differences for four example genes
from four different modules with known TBI associa-
tions: colony-stimulating factor 1 receptor (Csf1r;
neuroinflammation, module iii); Fos proto-oncogene,
AP-1 transcription factor subunit (Fos; persistent
activation, module iv); glutamate ionotropic receptor
kainate type subunit 4 (Grik4; synaptic signaling, mod-
ule v); and 3-hydroxy-3-methylglutaryl-CoA reductase
(Hmgcr; cholesterol synthesis, module vii).

Moving from known individual markers to a
systems-level approach to identify biological pathways
and processes associated, each of the DE trajectories
was evaluated by GO analysis performed on module
DEG sets ( p-value and q-value cutoffs of 0.05; full
results in Supplementary Table S4; Fig. 3A). As
expected, the modules harboring DEGs noted above
were associated with expected biological functions (i.e.,
neuroinflammation, synaptic signaling, and cholesterol
synthesis, respectively). In addition to these representa-

tive genes and pathways, we report the set of enriched
GO terms for each trajectory module and show repre-
sentative DEGs in Figure 3B–G.

Most of the GO terms that were enriched acutely
(Fig. 3B, module iv) were associated with biological
processes similar to previously described physiological
progression of TBI recovery.35 As examples, Capn2 and
Bax, both involved in regulation of apoptotic cell death,
were expressed acutely, but returned to baseline by day
14. Similarly, well-characterized inflammatory mark-
ers, such as Il1b and Tnf, were induced acutely and
also returned to baseline by day 14. Other module iv
upregulated GO terms included cellular homeostasis
and immune/angiogenic response (ribonucleoprotein
complex biosynthesis, angiogenesis, DNA repair, cell
division, etc.), immediate response to environmental
stimulus (response to oxidative stress, cellular response
to peptide, etc.), and apoptosis (Fig. 3B, module iv).
Module v, representing genes that were acutely down-
regulated, was enriched for GO terms associated with
synapse function and organization, potentially captur-
ing changes in neuronal state and neurotransmission in
response to both the acute excitotoxic period and acti-
vation of surrounding astro- and microglia (Fig. 3C,
module v).

Of genes that are differentially expressed at 14 days,
many were also differentially expressed acutely. These
include genes in module ii that were upregulated at
both time points, which were enriched for GO terms
associated with immediate and adaptive immune re-
sponse and phagocytosis (Fig. 3G). As a representative
gene, Il18 is a cytokine of the IL-1 family involved in
neuroinflammation.36 Another example, Tyrobp, has
previously been identified as chronically upregulated
post-TBI.37 In contrast to the relatively large number
of acutely upregulated genes showing partial recov-
ery, only 22 acutely downregulated genes (module
vii) showed continued downregulation at day 14, and
these genes did not show statistically significant enrich-
ment of specific GO terms.

Although there were a relatively small number of
DEGs (80) in module i, genes upregulated acutely
and with higher levels at day 14, these were strongly
associated with specific GO terms, such as glial cell ac-
tivation. Likewise, very few genes (nine) exhibited in-
creased downregulation at day 14; however, these
genes were not related to brain-specific GO terms.
The final modules represent genes that had a pattern
of delayed transcriptional perturbation, with DEGs sig-
nificantly altered only at the 2-week time point. GO
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terms associated with delayed upregulation (module iii,
113 DEGs) are associated with innate and adaptive im-
mune activation and inflammation (Fig. 3D). As an
example, Nrlp3 has been shown to be a driver of in-
flammation and immune response post-TBI.38 A very
limited number of DEGs (18) exhibited a delayed
downregulation (module vi) and were associated with
sterol biosynthesis and metabolism (Fig. 3E), suggest-
ing a possible change in cell-membrane–related choles-
terol homeostasis.39

Interestingly, we detected a limited number of gene
changes within modules that were not associated with
GO terms or brain-specific GO terms. For example,
some of the genes represented in module vii include
Cacna1i, Cd300lf, Cntnap4, Cpne7, Dhcr24, Fam65b,
Ftl1, Hmgcr, Lgr4, Mlxipl, Nrros, P2ry12, P2ry13,
Padi2, Pnck, Ptprcap, Ptprn, Rgs10, Spint1, Srebf2, T2,
and Trpc7. Although each gene has been associated
with one or more GO terms, the module as a whole
did not show enrichment for one particular ontology.

FIG. 3. Gene Ontology (GO) analysis stratified according to expression trajectories. (A) Heatmap depicting
brain-specific or general biological term enrichment for clusters identified as in Figure 2A (adjusted p value
< = 0.05, 10 top enriched terms for each gene group defined). (B) Dot plot showing significance of top 20
GO categories for modules showing acutely upregulated genes showing full recovery at day 14 ( p < = 0.05,
q < = 0.05). (C) Same as (B) for acutely downregulated genes. (D–G) Network plots depicting genes
annotated to up to the five most significant brain-related GO terms for the module with (D) delayed
upregulation of gene expression in response to TBI, (E) delayed downregulation of gene expression,
(F) persistent, increasing perturbation in gene expression, and (G) acutely upregulated genes showing a
partial recovery at two weeks. ATP, adenosine triphosphate; MAPK, mitogen-activated protein kinase;
mRNA, messenger RNA; NF, nuclear factor; TBI, traumatic brain injury.
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Of note, Hmgcr is associated with cholesterol homeo-
stasis, which has been described in module vi. Likewise,
module viii includes genes such as Adra2a, Ccdc33,
Dpp10, Fdft1, Hmcn1, Klhl14, Slc38a4, Tacr3, and Tfrc,
which do not show significant enrichment for any term
as a whole, even though each gene is a part of other
ontologies and are associated with neurodegeneration.

Parallel histone H3 lysine residue 4 trimethylation
epigenetic changes at differentially expressed
gene promoters 1 day after traumatic brain injury
To explore the link between transcriptional changes
and TBI-induced acute epigenetic effects, we conduc-
ted ChIP-seq with antibodies targeting H3K4me3,
a histone H3 post-translational modification found
to be a signature for active transcription history that
is characteristically found at gene promoters.40,41

H3K4me3 is generally associated with transcriptional
activation, and, as expected, overall gene expression
levels were correlated with H3K4me3 at the promoter.

Specifically, in line with DEG changes post-TBI,
upregulated genes had generally higher H3K4me3 en-
richment in TBI versus sham samples, and the inverse
was true for downregulated genes (Fig. 4A). Changes in
H3K4me3 in TBI samples were generally subtle, and
many DEGs did not exhibit changes at the level of sen-
sitivity of these experiments. However, a small set of
upregulated DEGs (n = 223) showed strong enrichment
of H3K4me3 in TBI samples when compared with sham
controls, as indicated in the dashed box in Figure 4A.

For these genes, the level of promoter H3K4me3
in sham controls was low or undetectable, suggesting
transition from a silent to active transcriptional state
post-TBI.

Genes exhibiting this pattern were highly enriched
in GO terms associated with leucocyte migration and
activation of immune response and phagocytosis (Sup-
plementary Table S5). Although most DEGs exhibited
subtle epigenetic impacts, we found significant increa-
ses in H3K4me3 for all but one cluster of acutely upre-
gulated expression trajectory modules ( p < 0.05) and
a significant decreases H3K4m3 for acutely downregu-
lated modules (Fig. 4B). Figure 4C,D depicts ChIP-seq
coverage genomic representation of H3K4me3 changes
for TBI and sham controls at day 1 around up- and
downregulated DEGs, respectively. Genes shown are
Bcl3, Scocs3, and Fos for upregulated and Car2, Tgfb2,
and Ank3 for downregulated.

Gene set enrichment analysis was conducted on the
set of 100 up- and downregulated genes with the stron-
gest acute change in H3K4me3 (Fig. 4E,F). As noted
above, genes with the largest increases in H3K4me3
were associated with inflammation/immune response
and were acutely upregulated genes showing partial re-
covery at day 14. Overall, genes with strong epigenetic
changes at day 1 were enriched with GO terms and bi-
ological pathways akin to the full set of up- and down-
regulated DEGs, reflecting the same general
pathophysiological processes associated with transcrip-
tional and epigenetic response to TBI. These findings

‰

FIG. 4. H3K4me3 at promoters of genes differentially expressed after TBI. (A) Coverage rank plot for TBI versus
sham for H3K4me3 at day 1. y-axis is for the TBI sample, whereas the x-axis is for the sham control. Each dot is a
gene promoter locus present at either of the two conditions. Green-colored dots are associated with promoters of
upregulated genes, whereas red-colored ones are for downregulated genes. Region highlighted with dashed red
box denotes genes with distinctive H3K4me3 enrichment in TBI at day 1. Dots labeled with name of genes were
manually annotated for example genes that showed more prominent differences between TBI and its sham
control. (B) Box plot showing the distribution of relative likelihood ratios for each of the DE gene trajectories
defined in Figure 2A compared to genes that were not differentially expressed (NS). Green- and pink-filled boxes
denote up- and downregulated associated genes, respectively; red stars above the plot indicate the statistical
significance of Tukey means comparison between groups and the NS group ( p values shown below the plot).
(C) Example of a representation of H3K4me3 genomic enrichment coverage region for sham and TBI at day 1 for
upregulated loci (Bcl3, Socs3, and Fos). (D) Same as (C) for downregulated genes (Car2, Tgfb2, and Ank3). (E) Bar
plot depicting the most significant function annotation terms (GO biological process, Reactome, and PANTHER
pathways) for the upregulated genes showing H3K4me3 differential enrichment. (F) Same as (E) for downregulated
genes. Ank3, ankyrin 3; Bcl3, BCL3 transcription coactivator; Car2, carbonic anhydrase 2; DE, differential expression;
Fos, Fos proto-oncogene, AP-1 transcription factor subunit; H3K4me, histone H3 lysine residue 4 tri-methylation;
Socs3, suppressor of cytokine signaling 3; TBI, traumatic brain injury; Tgfb2, transforming growth factor beta 2.
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indicate that epigenetic changes in H3K4me3 both par-
allel and can precede transcriptional changes, given
that all trajectory modules showed some evidence for
epigenetic changes in the same direction as transcrip-
tional changes.

Discussion
TBI activates a cascade of events that can lead to acute
secondary effects as well as chronic pathology. In

the LFP model, cell death peaks in the first 24 h, with
negative effects significantly reduced by 1 week post-
injury,42 and cognitive performance is most signifi-
cantly diminished in the first weeks post-injury.43

Similarly, the acute inflammatory response and persis-
tent neuroinflammation is well characterized,44 which
is associated with ongoing neurodegeneration.45,46 Our
results corroborate previous transcriptome studies and
recapitulate known physiological pathology that occurs
in the injury and recovery.47–49 For example, we
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detected a peak in excitotoxicity acutely post-injury,
with DEGs and GO terms associated with cell death
mostly absent at the delayed time point. Although
downregulation of neurotransmission and synaptic plas-
ticity genes were also obvious acutely, these genes were
included in modules that largely resolved by 14 days.

Our results capture neuroinflammation responses
that separate into three DEG modules, including those
that: 1) peak acutely; 2) maintain similar elevation in
the transition from acute to 2 weeks; and 3) are higher
at 14 days post-injury as compared to acutely post-
injury. Finally, we identified epigenetic substrates of
DEG evident at 1 day post-injury. TBI-induced genes
exhibited promoter H3K4me3 changes, indicating epi-
genetic activation as a response to TBI and suggesting
that such changes may underlie long-term transcrip-
tional dysregulation.

Many studies have used transcriptomics approaches
to understand the molecular and cellular changes in
the brain post-TBI, though far fewer have examined
genome-wide epigenetic changes. Our study corrobo-
rates and expands on this literature. First, the dominant
transcriptomic signatures we describe correspond to ef-
fects that are well established, including induction of
immunity and inflammation, cell death, and downre-
gulation of neuronal genes.8–12 This demonstrates the
validity of our study, and our systems-level analysis
provides further evidence and increased granularity
of cellular and molecular outcomes associated with
TBI. Second, our 1- and 14-day time points capture
the trajectory of recovery during the transition from
subacute to chronic, leveraging RNA-seq and systems-
level analysis, an improvement in sensitivity compared
to previous candidate and microarray time-course
studies. Finally, few studies have examined both epige-
netic and transcriptomic changes in parallel in the
same TBI model.8,50,51 These studies have focused on
DNA methylation, which has distinct biological rele-
vance compared to H3K4me3, a promoter-associated
epigenetic signature that correlates with transcriptional
activation.

Transcriptomics studies have consistently identi-
fied major DE signatures across various TBI mod-
els,8,47,50,52–58 and the limited number featuring
time-course designs reveal dynamic changes across pe-
riods from the hours post-injury to months and even
years later.13,59–62 Our results support a previously pro-
posed mechanistic model where surviving neurons
activate a transcriptomic signature of cellular reprog-
ramming, development, and regeneration in the after-

math of injury,53 with relevant terms enriched here in
upregulated modules ii and iv. Our findings are also
in line with a study that used NanoString to profile
candidate genes, finding differences in trajectories of
sets of immune and inflammation genes, as well as de-
creased and shorter persistence of downregulation sig-
natures post-TBI.60

A recent microarray study included the same two
time points as used here and found similar time-
dependent inflammation signatures.13,59 Our results
are generally aligned with findings from this study,
though our methods are anchored on DE changes
rather than covariance and are thus by transcrip-
tional pathology. Further, by integrating expression
and H3K4me3 ChIP-seq in our comparison, we identi-
fied underlying epigenetic activation and repression of
differentially expressed loci, as describe below.

As noted, the signatures identified here differ sub-
stantially between the genes that are induced (i.e., upre-
gulated) post-injury and those that are downregulated.
TBI induces waves of primary (modules ii and iv) and
secondary (module iii) induced signatures capturing
distinct inflammation and immune responses. In con-
trast, downregulation was dominated by early changes
at day 1, with most genes returning to baseline by day
14 and only a small, but relevant, set of new DEGs
emerging at this later time period. Many of the last-
ing downregulated DEGs are involved in processes relevant
to recovery and long-term neurodegeneration post-TBI.

We identified a delayed-onset DEG module com-
prised of genes related to cholesterol metabolism and
amyloid-beta clearance. This signature is of particular
interest, given that formation of plaques in the rat
model of LFP has not been observed. In addition, a
small set of loci associated primarily with sterol metab-
olism and maintenance were significantly decreased
only at the delayed 14-day time point. TBI and cho-
lesterol metabolism have been suggested as causative
factors in Alzheimer’s and other neurogenerative
diseases.63–66

There was also a small number of genes (n = 9) that
were downregulated early, but were even further di-
minished at the 2-week time point, including Adra2a,
Ccdc33, Dpp10, Fdft1, Hmcn1, Klhl14, Slc38a4, Tacr3,
and Tfrc. Each of these genes have been reported as
downregulated in models of chronic neurodegenera-
tive disease such as Alzheimer’s and Parkinson’s dis-
eases.66–77 These lasting transcriptomic changes may
be drivers of functional and cognitive impairment
post-TBI. A primary finding from our module-based
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approach is the identification of distinct, time-
dependent sequence of neuroimmune and inflamma-
tion DEG modules that are induced post-TBI.

Studies that looked at later time points than this
effort using similar rodent TBI models report that per-
sistent immune and inflammation signatures that over-
lap with modules identified here last up to 2 years post
injury,60 and that this is, at least in part, attributable to
microglial transition to a persistent altered inflamma-
tory state.61,78 Some of these long-term immune and
inflammation transcriptional signatures can also be
modulated by drug treatment.60,62 The genes and mod-
ules identified by our approach capture molecular
mechanisms and represent new potential biomarkers
for stage and biological pathway-specific components
of recovery and lasting pathology post-TBI. Further,
future studies evaluating the intersection between neu-
rodegeneration, neuroinflammation, and neurotrans-
mission over time may provide better insight into
why behavior and, in particular, cognition shows some
recovery over time, but perhaps not quite to an equiva-
lent performance as an age-matched control.

Although transcriptomics has been widely adopted,
far fewer studies have examined genome-wide epige-
netic changes post-TBI. Among these, one relevant re-
cent study paired RNA-seq with genome-wide DNA
methylation analysis at a single time point, 7 days
after fluid percussive injury, and used similar systems-
level approaches to examine gene networks and tie
epigenetic changes to expression.8 In addition to the in-
creased information from inclusion of two RNA-seq
time points, our study revealed novel insights versus
this previous study through our interrogation of
H3K4me3, with revealed global epigenetic changes at
gene promoters paralleling expression. Most strik-
ingly, the strongest H3K4me3 increases occurred at
promoters of upregulated immune and inflammation
loci, representing an epigenetic mechanism that may
underlie persistent pathological immune and inflam-
mation post-TBI. In contrast, the differential methyla-
tion signatures in the previous analysis were not
described as having distinct enrichment for specific
transcriptional signatures that we describe.

These differences are likely attributable to specifics
of DNA methylation versus post-transcriptional his-
tone modification (here H3K4me3) with regard to
epigenetic responsiveness to TBI. Expanded studies of
histone post-translational modification changes geno-
mewide, of which ours is among the first, will be par-
ticularly relevant in understanding molecular and

genomic changes that may be responsive to histone
deacetylase inhibitors, which are a promising emerging
therapeutic tool in TBI.16,79,80

Conclusion
Given that TBI can result in progressive inflammation
and neurodegeneration and lasting behavioral disor-
ders, intersecting transcriptomics and epigenetic changes
as the brain transitions from an acute response to re-
covery and ultimately into the chronic state can pro-
vide insight into long-term genomic impacts. Our
paired RNA-seq and H3K4me3 ChIP-seq data provide
novel insights on the trajectory of transcriptomic signa-
tures and identify epigenetic underpinnings of lasting
inflammation and immune expression dysregulation.
Moving beyond mRNA, single-time-point transcrip-
tomic studies have also examined long intervening/
intergenic non-coding RNA,81 microRNA,82 and circu-
lar RNA83 and applied methods to profile exosome
RNA,84 epitranscriptomic modifications,85 and refine
readout to the single-cell level.12 Future studies are
needed to similarly examine the variety of epigenetic
modifications associated with gene regulation, to inte-
grate emerging multi-dimensional omics and single-
cell data over time toward understanding pathological
genomic and transcriptomic changes post-TBI at the
level of specific cell types and circuits and evaluate
additional chronic time points to determine whether
2 weeks is a time point representative of ongoing dy-
namic changes or a more stable transcriptomic phase.
This initial investigation reveals novel insights into
dynamic genomic processes associated with recovery
post-TBI. Though limited in scope, our data demon-
strate the power of systems-level epigenetic and tran-
scriptomic analyses to understand mechanistic changes
in the days to weeks after TBI.
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76. Ayka, A., and Sxehirli, A.Ö. (2020). The role of the SLC transporters protein
in the neurodegenerative disorders. Clin. Psychopharmacol. Neurosci. 18,
174–187.

77. Chen, D., Zhu, J., Zhong, J., Chen, F., Lin, X., Dai, J., Chen, Y., Wang, S., Ding,
X., Wang, H., Qiu, J., Wang, F., Wu, W., Liu, P., Tang, G., Qiu, X., Ruan, Y., Li, J.,
Zhu, S., Xu, X., Li, F., Liu, Z., and Cao, G. (2019). Single cell atlas of domestic
pig brain illuminates the conservation and divergence of cell types at
spatial and species levels. bioRxiv. DOI:10.1101/2019.12.11.872721.

78. Laskowski, R., Creed, J., and Raghupathi, R. (2015). Pathophysiology of
mild TBI: implications for altered signaling pathways, in: Brain Neuro-
trauma: Molecular, Neuropsychological, and Rehabilitation Aspects. F.
Kobeissy (ed). CRC Press/Taylor & Francis: Boca Raton, FL.

79. Dash, P.K., Orsi, S.A., and Moore, A.N. (2009). Histone deactylase inhibition
combined with behavioral therapy enhances learning and memory fol-
lowing traumatic brain injury. Neuroscience 163, 1–8.

80. Lu, J., Frerich, J.M., Turtzo, L.C., Li, S., Chiang, J., Yang, C., Wang, X., Zhang,
C., Wu, C., Sun, Z., Niu, G., Zhuang, Z., Brady, R.O., and Chen, X. (2013).
Histone deacetylase inhibitors are neuroprotective and preserve NGF-
mediated cell survival following traumatic brain injury. Proc. Natl. Acad.
Sci. U. S. A. 110, 10747–10752.

81. Zhong, J., Jiang, L., Cheng, C., Huang, Z., Zhang, H., Liu, H., He, J., Cao, F.,
Peng, J., Jiang, Y., and Sun, X. (2016). Altered expression of long non-
coding RNA and mRNA in mouse cortex after traumatic brain injury. Brain
Res. 1646, 589–600.

82. Liu, L., Sun, T., Liu, Z., Chen, X., Zhao, L., Qu, G., and Li, Q. (2014). Traumatic
brain injury dysregulates microRNAs to modulate cell signaling in rat
hippocampus. PLoS One 9, e103948.

83. Jiang, Y.-J., Cao, S.-Q., Gao, L.-B., Wang, Y.-Y., Zhou, B., Hu, X., Pu, Y., Li, Z.-L.,
Wang, Q., Xiao, X., Zhao, L., Wang, S., Liang, W.-B., and Zhang, L. (2019).
Circular ribonucleic acid expression profile in mouse cortex after trau-
matic brain injury. J. Neurotrauma 36, 1018–1028.

84. Zhao, R.-T., Zhou, J., Dong, X.-L., Bi, C.-W., Jiang, R.-C., Dong, J.-F., Tian, Y.,
Yuan, H.-J., and Zhang, J.-N. (2018). Circular ribonucleic acid expression
alteration in exosomes from the brain extracellular space after traumatic
brain injury in mice. J. Neurotrauma 35, 2056–2066.

85. Yu, J., Zhang, Y., Ma, H., Zeng, R., Liu, R., Wang, P., Jin, X., and Zhao, Y.
(2020). Epitranscriptomic profiling of N6-methyladenosine-related RNA
methylation in rat cerebral cortex following traumatic brain injury. Mol.
Brain 13, 11.

Cite this article as: Catta-Preta, R, Zdilar, I, Jenner, B, Doisy, ET,
Tercovich, K, Nord, AS, Gene G. and Gurkoff, GG (2021) Transcriptional
pathology evolves over time in rat hippocampus after lateral fluid
percussion traumatic brain injury. Neurotrauma Reports 2:1, 512–525,
DOI:10.1089/neur.2021.0021.

Abbreviations Used
ANOVA ¼ analysis of variance

bp ¼ base pair
ChIP ¼ chromatin immunoprecipitation

ChIP-seq ¼ ChIP with sequencing
Csf1r ¼ colony-stimulating factor 1 receptor

DE ¼ differentially expressed
DEGs ¼ differentially expressed genes
DGX ¼ differential gene expression

Fos ¼ Fos proto-oncogene, AP-1 transcription factor subunit
GO ¼ Gene Ontology

Grik4 ¼ glutamate ionotropic receptor kainate type subunit 4
H3K4me3 ¼ histone H3 lysine residue 4 tri-methylation

Hmgcr ¼ 3-hydroxy-3-methylglutaryl-CoA reductase
LFP ¼ lateral fluid percussion

mRNA ¼ messenger RNA
PCA ¼ principal component analysis

RNA-seq ¼ RNA-sequencing
RPKM ¼ reads per kilobase of transcript, per million mapped reads

TBI ¼ traumatic brain injury
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