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Comparative genomics reveals adaptive evolution
of Asian tapeworm in switching to a new
intermediate host
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Huangkai Zhang2,3, Aijiang Guo1, Qingshu Meng2, Junling Hou1, Bing Zhang5, Shaohua Zhang1, Meng Yang2,

Xuelian Meng1, Hailiang Mei2, Hui Li1, Zilong He2, Xueliang Zhu1, Xinyu Tan2, Xing-quan Zhu1, Jun Yu2,

Jianping Cai1, Guan Zhu6, Songnian Hu2 & Xuepeng Cai1

Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms,

respectively) are parasitic flatworms of major public health and food safety importance.

Among them, T. asiatica is a newly recognized species that split from T. saginata via an

intermediate host switch B1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes

of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications

and functional diversifications might have partially driven the divergence between T. asiatica

and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in

homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized

gene family expansions in T. asiatica that may favour its hepatotropism in the new

intermediate host. We also identify potential targets for developing diagnostic or intervention

tools against human tapeworms. These data provide new insights into the evolution of Taenia

parasites, particularly the recent speciation of T. asiatica.

DOI: 10.1038/ncomms12845 OPEN

1 State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute,
Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China. 2 CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of
Genomics, Chinese Academy of Sciences, Beijing 100101, China. 3 University of Chinese Academy of Sciences, Beijing 100049, China. 4 Division of
Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and
Prevention, Atlanta, Georgia 30329-4018, USA. 5 Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of
Genomics, Chinese Academy of Sciences, Beijing 100101, China. 6 Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical
Sciences, Texas A&M University, College Station, Texas 77843-4467, USA. * These authors contributed equally to this work. Correspondence and requests
for materials should be addressed to G.Z. (email: gzhu@cvm.tamu.edu) or to S.H. (email: husn@big.ac.cn) or to X.C. (email: caixuepeng@caas.cn).

NATURE COMMUNICATIONS | 7:12845 | DOI: 10.1038/ncomms12845 | www.nature.com/naturecommunications 1

mailto:gzhu@cvm.tamu.edu
mailto:husn@big.ac.cn
mailto:caixuepeng@caas.cn
http://www.nature.com/naturecommunications


T
apeworms (cestodes) infect all major groups of animals,
including humans and many economically important
species. Among them, Taenia solium (pork), Taenia

saginata (beef) and Taenia asiatica (Asian) tapeworms cause
taeniasis in humans (definitive host)1. Pork and beef tapeworms
are globally distributed, each infecting B50–60 million
people around the world2,3. Their larvae infect swine and
cattle (intermediate hosts), respectively, leading to considerable
economic losses and significant burdens in global food trade1.
Asian tapeworm is confined to only Asian endemics, and
was previously confused with beef tapeworm due to their
morphological similarity in adult stage until the mid-1980s
when pigs were found to be the major intermediate host. It was
recognized as a new species in 1993 (refs 4,5).

Asian and beef tapeworms differ in several morphological
details and predilection sites in intermediate hosts. Like T. solium,
the cysticerci of T. saginata (B10 mm in diameter) are mainly
established in the bovine striated muscles, whereas those of
T. asiatica (B2 mm) mainly infect pig livers6,7. For T. asiatica,
fully mature cysticerci are developed in 4 weeks (versus B10–12
weeks for T. saginata)5. The hepatotropic feature is considered
the major reason that T. asiatica has been documented only
in Asian countries where some populations consume raw or
undercooked pork livers8. However, the global impact is probably
underappreciated because adult Asian tapeworm can only be
distinguished from beef tapeworm by molecular techniques that
are not routinely used in some regions of the world, and its ability
to cause human cysticercosis has not been ruled out5,8. Besides
morphological similarity, earlier studies indicated that Asian and
beef tapeworms share a recent common ancestor that infected
hominids and bovids (resembling T. saginata) at the Pleistocene
period in Africa, suggesting a switch of the preferred intermediate
host from bovids to suids during the speciation of T. asiatica9–11.
Their divergence date were estimated between 0.78 and 1.71 Myr
ago9, or B1 Myr ago (0.24–1.64)12, based on substitution rates
of the mitochondrial COI gene. However, it is unclear how
T. asiatica became adapted to a new intermediate host and
infection site, and evolved into a new species in a relatively short
evolutionary time.

Among human intestinal tapeworms, only the pork tapeworm
genome was recently reported13. Here we present the genomes
of beef and Asian tapeworms, making the genomes of all three
human taeniasis parasites available for comparative analysis to
gain insights into their biological features and genome evolutions,
and adaptation of T. asiatica to a new intermediate host.
Our genome-scale analyses reveal that the divergence time

between beef and Asian tapeworms coincided with the
migration of Homo erectus from Africa to Asia. The frequent
gene duplications may have contributed significantly to the
speciation processes. We observe higher genome variability and
more accelerated adaptive evolution in T. asiatica, particularly in
genes involved in host–parasite interactions, physiological
homeostasis and nutrient uptake. The two genomes also
provide an urgently needed resource for identifying molecular
targets shared by human tapeworms for developing new
therapeutics, as well as species-specific genes for developing
molecular diagnostic tools as described below.

Results
Genome features and comparison. We sequenced the
T. saginata and T. asiatica genomes derived from single adult
worms to B95-fold coverage using the Illumina platform, and
assembled them into 3,626 (N50¼ 583 kb, total size¼ 169.1 Mb)
and 6,904 (N50¼ 342 kb, size¼ 168.0 Mb) scaffolds with lengths
40.5 kb, respectively. (Note: for clarity, parameters will be
described in order of T. saginata and T. asiatica whenever
appropriate hereafter.) The draft assemblies are larger than that of
T. solium (122.3 Mb)13. Both genomes have an identical 42.3%
GC content, similar to those of T. solium, Echinococcus
multilocularis and E. granulosus (41.9–43.5%)13,14, but higher
than Schistosoma spp.15 and Caenorhabditis spp. (34.1–37.9%;
Table 1; Supplementary Table 1). The completeness of the
two sequenced genomes are similar, at 89.52% and 90.32%,
respectively, as estimated using the Core Eukaryotic Genes
Mapping Approach16, which are comparable with those of the
two well-assembled Echinococcus genomes (89.11–92.74%;
Supplementary Fig. 1). The two tapeworm genomes contain
10.38 and 10.90% repeated sequences, similar to other
tapeworms, but lower than flukes, and all major non-coding
RNA species, including conserved microRNA and transfer
RNA genes (Table 1; Supplementary Tables 2 and 3).

We predicted 13,161 and 13,323 protein-coding genes in the
two genomes, 77.2 and 75.7% of which were supported by RNA
sequencing (RNA-seq; Supplementary Methods). More than half
of these genes were mappable to the gene ontology (GO) terms
(1,472 and 1,461 terms), KO identifiers in the Kyoto Encyclopedia
of Genes and Genomes database (3,039 and 3,033) and Pfam
domains (3,123 and 3,111). Among the predicted proteins, 2,361
(17.93%) and 2,365 (17.75%) contained transmembrane (TM)
domains, and 1,094 (8.21%) and 1,048 (7.87%) possessed signal
peptide sequences. These genes constitute metabolic pathways

Table 1 | Genomic features of T. saginata and T. asiatica in comparison with other worms.

T. saginata T. asiatica T. solium* E. multilocularis H. microstoma S. mansoni C. elegans

Assembly size (Mb) 169 168 131 114 141 365 100
GC content (%) 43.2 43.2 43.5 42.2 36.0 35.2 35.4
Coding genes number 13,161 13,323 11,902 10,506 10,141 10,772 20,469
Average gene length (Kb) 6.0 5.9 4.6 5.4 6.1 15.4 3.1
Protein length (aa) 464 466 444 505 490 477 453
Gene density (genes per Mb) 77.9 79.3 90.9 92.2 71.9 29.5 201.0
Number of exons per gene 6.2 6.2 6.6 6.8 6.4 6.5 6.4
Mean length of exons (bp) 237 244 237 220 229 226 212
Number of introns per gene 5.2 5.2 5.6 5.8 5.4 5.5 5.4
Mean length of introns (bp) 864 831 775 684 862 2,460 354
GC content of exon (%) 49.7 49.6 50.2 50.0 44.3 36.0 42.6
GC content of intron (%) 41.5 41.2 40.8 39.9 34.6 34.7 32.5
Repeat content (%) 10.4 10.9 18.1 10.9 7.6 40.0 17.0
tRNA number 339 353 162 856 44 153 966

*T. solium v2 genome (China isolate) properties and gene models.
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that are virtually identical to those in other tapeworms, including
the loss of ability to de novo synthesize certain nutrients such
as most amino acids, steroid hormones and lipids13,14

(Supplementary Fig. 2).
Introns are present in 81.0 and 80.9% of the genes in the two

tapeworms. The lengths of short introns follow a bimodal
distribution pattern with two major peaks at B36 bp (peak-1
introns) and B73 bp (peak-2; Fig. 1a). This feature was also
observed in other tapeworms13 and the monogenean
Gyrodactylus salaris17, but not in the flukes and Schmidtea
mediterranea (peak-1 only), suggesting the presence of this
feature predating the expansion of cestodes (or before the
divergence of parasitic flatworms, but lost in the fluke lineage).
These peak-1 and 2 introns are located preferentially in the 30-end
and middle regions of genes, respectively (Fig. 1b). Genes
containing peak-2 introns tend to possess more introns than
those containing peak-1 introns (for example, average 10.52 and
14.80 introns per gene in peak-1 and 2 intron-containing
sequences in T. saginata (Po0.01 by two-sided Wilcoxon-rank
sum test) (Supplementary Fig. 3). Interestingly, peak-2 intron-
containing genes are significantly enriched to certain functional
groups (for example, pyrophosphatase activity, hydrolase activity
and nucleoside binding) and cellular components (for example,
cytoskeletal motor proteins and membrane proteins; Fig. 1c;
Supplementary Data 1). A striking but previously unreported
feature in the tapeworms is the apparent preference of the
mean lengths of neighbouring introns flanking small exons.

The minimal mean lengths of introns flanking small exons
(o400 bp) are 502 and 370 bp long in T. saginata and T. asiatica,
respectively. This feature also occurs in some other invertebrate
species, for example, S. mansoni, Caenorhabditis elegans and
Drosophila melanogaster (Fig. 1d; Supplementary Figs 4 and 5).
However, the extensiveness of this feature among eukaryotes and
the mechanism behind it remains to be elucidated. Introns in
tapeworms are biased towards A/T bases (26.8/31.1% in
T. saginata; 26.6/31.1% in T. asiatica), but not as obvious as
in S. mansoni (31.3/33.6%) and G. salaris (33.8/35.3%;
Supplementary Fig. 6). However, no A/T-bias in exons was
observed in tapeworms, although it was found in the flukes
(that is, 25.2/25.0% in T. saginata and 25.3/25.1% in T. asiatica,
versus 31.5/33.2% in S. mansoni; Supplementary Fig. 7).

We compared homologous genes among human tapeworms,
and observed that 12,984 (97.5%) and 11,888 T. asiatica genes
(90.3%) had homologues in T. saginata and T. solium (BLASTP
cutoff: 1e� 4; Fig. 2a). Pair-wise collinearity analysis of
orthologous blocks on scaffolds revealed a higher degree of
similarity between T. saginata and T. asiatica (n1¼ 7,201,
n2¼ 7,212, 292 blocks) than between the two species and
T. solium (n1¼ 6,055, n2¼ 6,058, 303 blocks; Fig. 2b). Similarly,
a higher nucleotide identity (92.26%) with larger alignable blocks
(total 138 Mb, mean length¼ 5.4 kb) was observed between
T. saginata and T. asiatica (versus B88.53% identity, B108 Mb
total and 3.8 kb mean lengths between beef/Asian and pork
tapeworms). These data agree with their taxonomic affiliations.
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Figure 1 | Unique intron features in the tapeworm genomes. (a) Bimodal length distributions of short introns in tapeworms (T. asiatica, T. saginata,

T. solium and E. multilocularis) and monogenean G. salaris in comparison with the unimodal distributions in the fluke S. mansoni and the free-living flatworm

S. mediterranea. (b) Preferential distributions of peak-1 and peak-2 introns toward 30-end and middle regions of genes, respectively. The curves show the

relationship between intron densities and relative positions from the 50-ends of genes. (c) Peak-2 intron-containing genes are highly enriched to certain

functional groups (shown for T. asiatica, by two-sided Fisher’s exact test). (d) Length preference of introns flanking small exons (o400 bp; shown for

T. asiatica). The minimal mean length of (50 or 30) introns flanking small exons that have a specific length (o400 bp) is 370 bp in T. asiatica.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12845 ARTICLE

NATURE COMMUNICATIONS | 7:12845 | DOI: 10.1038/ncomms12845 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


Gene duplications during divergence of tapeworms. Gene
duplication (GD) is known as a primary source of materials for
evolutionary innovations and adaptations18,19, in which the age of
a GD event is proportional to the number of synonymous
substitutions per synonymous site (Ks) of paralogous genes. In the
genomes of T. saginata, T. asiatica and other related parasitic
flatworms, the Ks distributions are typically quasi-exponentially L
shaped (Fig. 3a,b; Supplementary Fig. 8), which agrees well with
the notions that most duplications are young (for example, 4.36
and 4.98% GDs with Kso0.01 in the T. saginata and T. asiatica
genomes) because of the continuous loss of duplicated genes over
the time. These events are mostly derived from small-scale gene
duplications (SSGDs), predominated by dispersed duplications
(for example, 71.95% in T. saginata, 74.14% in T. asiatica and
69.94% in E. multilocularis), followed by tandem (16.69, 15.69
and 15.08%) and proximal duplications (10.75, 8.90 and 11.29%;
Supplementary Table 4) in the current assemblies.

Although retrotransposons are the major elements subjected to
GDs in the T. saginata and T. asiatica genomes, several functional
homologous groups (including surface antigens, HSP70, ubiquitin
conjugating enzyme, ryanodine receptor 44f, cyclin-dependent
kinase, puromycin-sensitive aminopeptidase and zinc-finger
proteins) appear to have also experienced continuous and
extensive SSGDs during the evolution history of the tapeworm
lineage (Fig. 3c; Supplementary Figs 9 and 10; Supplementary
Table 5). These SSGD events resulted in many overrepresented
super-families with high sequence diversities accompanying the
diversification of their biological functions. Among them, the
frequent duplications and retentions of tapeworm-specific surface
antigens (for example, Taeniidae antigens and diagnostic
antigen gp50) are indicative of their importance in the parasite
survival and/or adaptations to new environments. Indeed,
Taeniidae antigens are known to play important roles in the
evasion of host immunity20, while the diagnostic antigen gp50
proteins are glycosyl phosphatidylinositol-anchored membrane
glycoproteins also heavily involved in interacting with the host
immune system21. The gp50 gene family appears to have
duplicated more extensively, driven mostly by duplicative
transpositions and tandem duplications along the Taeniidae
and Taenia-specific evolution history (Fig. 3c). These duplicated
genes have been differentially retained in different tapeworms,
and might have carried out multiple functions through neo-/sub-
functionalization with greatly divergent sequences (Fig. 3d),
although their precise biological roles remain to be illustrated.

As a major force in evolution, species-specific GDs can lead to
the differentiation of gene functions, thus facilitating the
species-specific adaptation and divergence18. Both T. saginata
and T. asiatica genomes possess a large number of recently
duplicated genes (involving 866 and 1,075 in-paralogs after their
divergence, respectively) that were derived from 481 and 614
duplicate events along each lineage, respectively. The duplicate
genes appear to arise at a high average rate in their genomes
(0.0321 and 0.0404 duplicates per gene per Myr for T. saginata
and T. asiatica, respectively), similar to those in estimated in
E. multilocularis (0.0304) and C. elegans (0.0208)22, suggesting
a probable high degree of plasticity of their genomes
(Supplementary Methods, section 8.9). Species-specific GDs
were also shown by gene enrichment analysis, in which
differential distributions of significantly enriched gene
categories in biological processes (Po0.05 by two-sided Fisher’s
exact test) were observed between T. asiatica (mostly enriched in
nucleosome assembly, cilium movement and ribosome
localization) and T. saginata (mostly enriched in protein
glycosylation; Supplementary Table 6), indicative of nonrandom
processes of gene retentions in each genome. These observations
suggest that the high rate of origin of GDs and preferential
retentions of duplicated gene families might have contributed, at
least partially, to the divergence of the two closely related
tapeworms.

Duplicated genes in the process of acquiring new functions at
the time of species separation are likely to contribute to species
differentiation19. Using out-paralogous genes from T. solium as
outgroups, we compared the evolutionary rate for each pair of the
in-paralogous genes arising after the divergence of T. saginata
and T. asiatica, and identified a number of newly duplicated
genes that evolved significantly asymmetrically between
paralogous pairs (88/592 in T. saginata, 72/804 in T. asiatica;
Po0.05 by Tajima’s relative rate test), implying that they were
prone to diverge functions. Particularly, the cytoskeleton
components (for example, actin, dynein heavy chain and
kinesin), tegument surface antigens (for example, EG95
and gp50), ion transporters/channels (for example, ryanodine
receptors 44f, solute carrier family 12 and multidrug resistance
protein) and growth/development-related proteins (for example,
fibroblast growth factor receptor 4, round spermatid basic protein
1 and segment polarity protein disheveled) appear to not reach at
a stable rate yet in T. asiatica (Supplementary Data 2).
These proteins are probably important in the speciation of
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T. asiatica, considering their roles in the tegument maintenance,
homeostasis regulation and growth/reproduction. The
galactosyltransferase gene family may play a particularly
important but yet undefined biological role in T. saginata

because of its continuous duplications along tapeworm
evolution. In addition, the evolutionary divergence of recently
duplicated gene pairs is echoed by the divergences in their
expression patterns (R2¼ 0.2462 in T. saginata; 0.0114 in
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Figure 3 | Gene duplications revealed by Ks analysis. (a) The percentage of paralogous gene pairs of duplicated genes along with Ks values are typically L

shaped in the T. saginata (Tsa) and T. asiatica (Tas) genomes, indicating the occurrence of continuous gene duplication events and the losses of duplicated

genes over the time. (b) Distribution of Ks values in orthologous genes with peaks indicating the splits between various flatworms T. asiatica (Tas),

T. saginata (Tsa), T. solium (Tso), E. granulosus (Egr), E. multilocularis (Emu), S. mansoni (Sma) and S. japanicum (Sja). The grey bar indicates the divergence

point between the Taenia and Echinococcus lineages. (c) Extensive duplications of diagnostic antigen gp50 genes in the tapeworm lineage (Taenia,

Echinococcus and Hymenolepis). (d) Sequence logo shows the conserved and distinct sequence characteristics of the gp50 sequences from the tapeworms.

The sequence logo was generated from 183 sequences aligned at the conserved blocks selected by Gblocks with a less stringent selection

(http://molevol.cmima.csic.es/castresana/Gblocks_server.html).
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T. asiatica) (Supplementary Fig. 11) and gene structures
(accounting for 23.82 and 15.05% in-paralogous pairs in
T. saginata and T. asiatica), indicative of their possible
functional divergences.

Speciation history and accelerated evolution in T. asiatica.
We collected 102 single-copy genes conserved in 10 flatworms and
related species for estimating the divergence dates of tapeworms
using a relaxed-clock Bayesian approach23. The genome-based
analysis suggested that beef and Asian tapeworms diverged at 1.142
Myr (0.55–1.43, 95% highest probability density) in the early
Pleistocene period (Supplementary Fig. 12), which was close to
previously estimated date (B1.0 Myr ago) based on mitochondrial
genes11,12. This split predated the domestication of pigs and cattle
(B10,000 years ago)24, and the migration out of Africa of Homo
sapiens (B100,000 years ago)25, but fell within the periods of
population expansion and migration of H. erectus from Africa to
Asia (from B1.8 to 0.4 Myr ago)26. Currently, the closest relatives
of T. saginata and T. asiatica (for example, T. simbae) are only
found in Africa or adjacent regions10,11. If the ‘minimum number
of host shifts’ theory was assumed, our finding agrees with an
earlier speculation9–11 that the common ancestor of beef and Asian
tapeworms (T. saginata like) first colonized humans at or before
early Pleistocene, and the hominid ancestor H. erectus acquired
this tapeworm from bovids in Africa and then transmitted it to
suids in Asia. We further speculate that the persistent hunting
activity in H. erectus permitted long and consistent interactions
among three host species, thus mediating the transfer of
T. saginata-like ancestor from bovids to suids, giving rise to
T. asiatica.

Despite high molecular and morphological similarities between
Asian and beef tapeworms, the nucleotide substitution rate
(branch-length) in protein-encoding genes of T. asiatica (0.00467
mutation per site) is 1.27-fold higher than that of T. saginata
(0.00379 mutation per site) (Supplementary Fig. 13; Tajima’s

relative rate test, Po0.01). In addition, the nucleotide
mutation rate in the T. asiatica genome is at 4.09� 10� 9

(3.27–8.52� 10� 9) mutations per site per year (versus B3.32�
10� 9 in T. saginata and B2.82� 10� 9 in T. solium), which is
B10-fold higher than that of humans (0.33–0.47� 10� 9)27.
The higher mutation rate provided a greater genome variation
for selection and adaptation needed for the divergence/speciation
of T. asiatica from T. saginata. However, the mechanism leading
to the accelerated evolution rate in the T. asiatica genome is
unclear.

By mapping useful sequence reads of short paired-end libraries
to the assembled genomes, we detected substantial numbers of
heterozygous single-nucleotide variations (SNVs). The overall
SNV rate in T. asiatica is 2.97-fold higher than in T. saginata
(Supplementary Table 7). The genomes of T. asiatica and
T. saginata contained 60,734 (362 sites per Mb) and 20,700
(122 sites per Mb) high-quality heterozygous SNVs, respectively.
Among them, 6.90% (T. asiatica) and 5.96% (T. saginata) were
located in protein-coding genes, in which the most significantly
enriched genes were transporters in T. asiatica, including those
for ions (n¼ 32), organic anions (n¼ 11), amino acids (n¼ 5)
and sulfates (n¼ 2; Supplementary Data 3). These proteins are
mostly involved in maintaining cellular homeostasis and
nutrients absorption (Supplementary Fig. 14). In addition, we
observed more small indels (size¼ 1–5 bp) in the T. asiatica
genome (2,359 indels) than in T. saginata (1,014 indels;
Supplementary Table 7). Both natural mutations over the time
and genetic exchanges between individuals might contribute to
heterozygosity, but their individual contributions in T. asiatica
could not be established here due to the lack of intra-species
genetic diversity data.

The T. asiatica genome also experienced more gene family gain
(n¼ 231) and expansion (n¼ 408) than T. saginata (n¼ 182
and 308; Fig. 4a). The gained gene families are mainly novel
domains of unknown functions, possibly related to certain
specialized adaptations, while the gene copy-number variations
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Figure 4 | Evolution of gene families in the flatworms and roundworms. (a) The dynamics of gene family sizes in the genomes of T. saginata, T. asiatica,

T. solium, E. granulosus, E. multilocularis, H. microstoma, S. japonicum and S. mansoni. Numbers above and below the branches indicate gene family gains/

losses (red) and the expansions/contractions (blue), respectively. (b) Phylogenetic reconstruction clustered low-density lipoprotein receptor (LDLR) genes
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are related to functional extension. Intriguingly, significant
expansions (branch-specific P valueso0.05) of low-density
lipoprotein receptor (LDLR) and fatty acid desaturase (FADS)
genes were noticed in T. asiatica (n¼ 9 and 4 versus n¼ 7 and 1
in T. saginata or T. solium; Fig. 4b,c). We speculate that this
expansion played an important role in the switch of
the intermediate host from cattle to swine by promoting
the establishment of cysterici of Asian tapeworm in the
lipid-rich liver.

Adaptive selection in the T. asiatica genome. Positive selection
is an important source of evolutionary innovation and one of the
major forces driving species divergence. To evaluate the role of
positive selection in the evolution of T. asiatica, we selected 1:1
orthologous genes from six tapeworms for branch-site model
analysis by Phylogenetic Analysis by Maximum Likelihood
(PAML)28, and identified 134 and 102 positively selected genes
(PSGs) in the T. asiatica and T. saginata genomes (likelihood
ratio test, Po0.05; Supplementary Data 4). We analysed the PSGs
in T. asiatica to examine whether these rapidly evolving genes
were enriched for specific functions after the divergence from T.
saginata. We observed evolutionary pressures on some essential
genes in cellular processes, including those involved in
transcription, translation and regulating protein degradation
(for example, various ribosomal proteins, tRNA guanine N7
methyltransferase, bifunctional aminoacyl-tRNA synthetase,
small subunit processome component 20, transcription factors
and ubiquitination-associated proteins; Supplementary Data 4).

Adaptive selection signals were also observed in some genes
associated with specialized survival environment for T. asiatica,
but not in T. saginata. For instance, selection was detected in
genes involved in pH maintenance and ion homeostasis
(for example, carbonic anhydrase, glutamate receptor ionotropic
kainite and amiloride-sensitive cation channel 4), implying
adaptation to the new host internal environment. In addition to
LDLR and FADS genes, we observed PSGs involved in lipid
scavenge (for example, Niemann Pick C1 protein, fatty acid-
binding protein and glycolipid transfer protein) and glycolysis
(for example, pyruvate kinase and fructose-2,6-bisphosphatase)
that were probably beneficial to T. asiatica in establishing
infection in the lipid/sugar-rich liver in pigs. The tegument is
essential for protecting parasitic flatworms from attacks by host
defence systems29–31. We observed strong selection signals in
genes responsible for maintaining body surface integrity in Asian
tapeworm, including cytoskeleton-associated proteins32,33

(for example, myotubularin protein, myosin heavy chain,
dynein heavy and light chains, kinesin-related proteins,
intraflagellar transport protein, calponin, katanin and 4.1
protein, ezrin, radixin, moesin (FERM) domain-containing
protein), cell adhesion/junction (for example, tight junction
protein, b-catenin protein, protocadherin gamma and FRAS1-
related extracellular matrix protein), and a glycosyltransferase
gene probably involved in forming the thick glycocalyx layer on
the tegumental surface13,34.

Proteins involved in host–parasite interactions. We analysed
proteases, protease inhibitors (PIs) and excretory/secretory (E/S)
proteins that are commonly involved in interacting with hosts
and modulating host immune responses35,36. Particularly,
secreted proteases can modulate host Th2 immune responses
against helminths37. We predicted 157 and 161 proteases, plus
142 and 155 non-protease homologues, in the T. saginata and
T. asiatica gnomes, which were comparable to those in
E. multilocularis13 (Supplementary Data 5 and 6). They belong
to five major classes (aspartic, cysteine, metallo, serine and

threonine), predominated by metallo- (n¼ 46–48), cysteine
(n¼ 41–44) and serine proteases (n¼ 27–30; Supplementary
Fig. 15). In addition, 23 and 26 proteases are encoded by the top
10% highly transcribed genes in larval T. saginata and adult
T. asiatica (Supplementary Table 8). The two genomes encode
70–71 PIs that are all serine, cysteine and metalloprotease
inhibitors, including I39 family PIs that interact with
endopeptidases regardless of the catalytic type (Supplementary
Data 7). The largest PI family is I02 (n¼ 22, 14.0% in T. saginata
and n¼ 20, 12.4% in T. asiatica), which are serine PIs (aka Kunitz
inhibitors; Supplementary Table 9). Several families of proteases
and PIs were among the most enriched E/S proteins
(Supplementary Tables 10 and 11). By comparison with PIs in
S. mansoni, we identified several tapeworm-specific inhibitor
families (for example, I87, I21 and I93), suggesting that
tapeworms and flukes employ lineage-specific mechanisms to
regulate protease activities.

The secretomes are large in T. asiatica (n¼ 824, 6.18%) and
T. saginata (n¼ 885, 6.72%; Supplementary Tables 10 and 11;
Supplementary Fig. 16). Many of them are proteases and PIs as
described above. The two genomes also encode a large set of other
classes of E/S proteins that may be involved in modulating host
immune responses. For instance, some ‘Taeniidae antigens’
(n¼ 24 in T. asiatica and n¼ 39 in T. saginata) could impair
neutrophil chemotaxis and/or modulate Th2 polarization38.
Another large E/S family is venom allergen-like proteins, which
are known to modulate host immune function and regulate sexual
development of parasites in the host39.

Molecular targets for intervention and diagnosis. Together with
the previously reported T. solium and Echinococcus genomes, the
availability of T. saginata and T. asiatica genome sequences
allowed us to identify potential targets shared by all human
tapeworms but divergent or absent in hosts for developing
therapeutics. We identified 75–78 G-protein-coupled receptors
(GPCRs) and 353–355 protein kinases in T. asiatica and
T. saginata that are well-known classic drug targets
(Supplementary Data 8 and 9). Most GPCRs are rhodopsin family
proteins (n¼ 63), while protein kinases cover B10 major classes,
in which 180 kinase groups (Supplementary Data 9) could not be
clustered with those from the reference species (that is, human,
D. melanogaster and C. elegans), thus may serve as potential
ideal drug or vaccine targets against the parasitic helminthes.
Ligand-gated ion channels (LGICs) are validated targets for many
current antihelminthic drugs. We identified at least 33 members
of three major LGIC families (glutamate-activated cationic
channels, cys-loop LGIC and ATP-gated ion channels), and B20
members of related families (that is, cyclic-nucleotide-gated
cation channel and amiloride-sensitive sodium channel related;
Supplementary Data 10). Most of these drug targets are conserved
among tapeworm genomes, thus might potentially serve as broad-
spectrum drug targets.

We further searched for parasite-specific sequences from the
potential drug targets and host–parasite interaction-associated
proteins, and identified 34 sequences (T. saginata) and 45
sequences (T. asiatica) with no homologues in mammals
(Supplementary Data 11 and 12). Most of these sequences were
supported by transcription data, including several homologues of
known drug targets. Among them, cystatin and phytochelatin
synthase are the top drug target candidates because they are
present in all tapeworms and critical in interacting with hosts and
heavy-metal detoxification, respectively13,40.

The tapeworm genomes were searched for species-specific
genes potentially valuable in developing molecular and/or
immunological diagnostic tools, particularly those for specific
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detection of Asian tapeworm. We collected all single-copy genes
in the T. saginata and T. asiatica genomes, and ranked them by
nucleotide sequence divergence as a community resource for
developing molecular detection tools (Supplementary Data 13).
We also recovered 15 (versus T. saginata) and 110 (versus
T. solium) high-confidence species-specific protein-coding genes
in the T. asiatica genome (Supplementary Table 12). However,
the feasibility of these genes in developing immunological assays
needs experimental evaluations.

Discussion
T. asiatica is morphologically indistinguishable from T. saginata
in adult stage, but shares the same intermediate host with
T. solium. Its speciation and switch of the intermediate host are
intriguing evolutionary questions. Our comparative analysis
revealed that the three human taeniasis parasites share many
common genomic features but differ from each other in the
evolutions and diversifications of certain specialized gene families,
and reaffirmed the sister relationship between T. asiatica and
T. saginata. Genome-based analysis suggests that Asian and beef
tapeworms diverged B1.14 Myr ago, which coincides the
migration of H. erectus to Asia, rather than the more recent
migration of H. sapiens9,11. Thus, the speciation of T. asiatica
predated that of H. sapiens. The divergence between the Asian
and beef tapeworms might have been driven by the differential
GDs in their genomes that display typically L-shaped distribution
patterns. The high rates of extensive and continuous duplications,
differential retentions and subsequent functional diversifications
of gene families in the two tapeworm genome (for example,
families associated with the cytoskeleton components, tegument
surface antigens, ion transporters/channels in T. asiatica and
glycosylation in T. saginata) might have significantly contributed
to the speciation of T. asiatica.

We observed accelerated evolution in T. asiatica in mutation
rate, heterozygosity and gene family gain/expansion that are all at
higher rates than in T. saginata, suggesting that this parasite is of
high evolution vigour in adaptation to new host environments.
These observations challenge the hypothesis that T. asiatica
species is at risk of extinction due to its minimal genetic diversity
and limited geographical distribution41–43. Given that those
studies were only based on analyses of a limited number of
mitochondrial or nuclear genes, the real intra-species diversity
within the T. asiatica populations may still need further
large-scale investigations.

The PSGs in T. asiatica are more concentrated to gene families
involved in internal homeostasis (for example, carbonic
anhydrase), tegumental development (for example, cytoskeletal
proteins, cell junction proteins and glycosyltransferases) and lipid
uptake (for example, LDLR and fatty acid-binding protein),
which are probably associated with the establishment of new
immune-evasion and nutrient uptake strategies at the lipid-rich
infection site (liver) in a new intermediate host (pigs). Our
analysis indicates that tegument and membrane proteins in
tapeworms are under particularly high evolutionary pressure in
adaptation to new hosts, as evidenced by the rapidly evolved new
genes/adaptive evolution/gene expansion associated with the
recent host switch or speciation in T. asiatica. The tegument
surface antigens (for example, Taeniidae antigens and diagnostic
antigen gp50) may be of particular importance in tapeworm’s
survival and/or adaptations to new environments due to their
critical roles in interacting with the host immune systems.

We identified several sets of proteins that might serve as
broad-spectrum drug targets in tapeworms, including kinases,
GPCRs and ion channels, as well as two proteins (cystatin and
phytochelatin synthase) that could serve as potentially ideal

targets in T. saginata and T. asiatica. Due to the morphological
similarities, misdiagnosis between T. saginata and T. asiatica is
not uncommon. Recently, several molecular approaches using
sequence-specific DNA probes, PCR-based RFLP and
multiplex PCR based on mitochondrial sequences were explored
for differential diagnosis of the two Taenia tapeworms44–46. We
also provide here a list of nuclear genes based on sequence
divergence between the two closely related tapeworms for
development of new molecular diagnostic tools.

Methods
Samples and preparations. Adult worms of T. saginata and T. asiatica were
isolated from two patients (one worm per patient) in Yunnan Province, China. The
study was approved by the ethics committee of Affiliated Hospital of Dali
University (Yunnan, China) and patients have given written consent to publication
of this study with the exclusion of any personal identifiers. Larvae (cysticerci) of
T. saginata were obtained from the skeletal muscle of an experimentally infected
calf 7 weeks after infection. The animal was cared in accordance with good animal
practice according to the Animal Ethics Procedures and Guidelines of the People’s
Republic of China, and the study was approved by the Institutional Committee for
the Care and Use of Experimental Animals of Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural Sciences (no. LVRIAEC2010-002).
Genomic DNA was extracted from freshly collected middle proglottids for
constructing two paired-end libraries (300 and 500 bp inserts) and three mate-pair
libraries (1, 5 and 10 kb) for T. saginata, and two paired-end libraries (500 bp) and
seven mate-pair libraries (2, 2, 3.5, 5, 5, 7 and 10 kb) for T. asiatica (Supplementary
Methods, section 1). Messenger RNA was isolated from T. saginata larvae and the
middle proglotids of T. asiatica for the construction of paired-end cDNA libraries
(300 bp). For each worm, the clonality was confirmed by the distribution of minor
allele frequencies of the heterozygous sites (Supplementary Fig. 17).

High-throughput sequencing and assembly. Paired-end and mate-pair
sequencing was performed using the Illumina Sequencing Systems. Adaptor
sequences, PCR duplicates, contaminants and low-quality sequences were removed,
and high-quality sequences were assembled into contigs using ABySS (v1.3.5)47

and SOAPde novo (v1.05)48. Scaffolds were constructed from contigs using
SSPACE (v-PREMIUM-2.3)49. Gaps in the scaffolds were closed using GapFiller
(v1.10)50. Assembly completeness and redundancy were assessed with Core
Eukaryotic Genes Mapping Approach16 and RNA-seq data (Supplementary
Methods, section 2). Genome sizes were estimated by the k-mer-based method
(Supplementary Fig. 18). For transcriptome analysis, high-quality RNA-seq reads
were mapped to the genomes using TopHat (v2.0.12)51. Transcripts were built by
Cufflinks (v2.0.2)52 with default settings. De novo assembly of RNA-seq reads was
performed using Trinity (v2.0.3)53. Expression levels were evaluated by fragments
per kilobase of transcript per million fragments of mapped genes, using Cufflinks
(v2.0.2) (-G parameter) referenced to the final EVM integrated GFF files
(Supplementary Methods, section 4).

Gene prediction and annotation. We combined several approaches to predict
protein-encoding genes, including homology-based searches, ab initio prediction
and transcriptome-based prediction methods. Individual predictions were merged
by EvidenceModeler (v1.1.1)54. Untranslated regions were added with PASA
(v2.0.0)55. Predicted proteins were searched by BLAST algorithms for homologues
in the National Center for Biotechnology Information non-redundant protein
databases and Uniprot database. InterproScan5 (ref. 56) was used for identifying
domains, mapping GO terms and assigning functional classifications. KO terms
were assigned and pathway mapping was performed using the annotation tools at
the Kyoto Encyclopedia of Genes and Genomes server (http://www.genome.jp/
tools/kaas/) (see Supplementary Methods, section 5). Non-coding RNA and repeat
elements were also predicted (Supplementary Methods, section 3.2).

Comparative genomics and SNV analysis. Protein similarities were
determined by all-against-all BLASTP searches (1e� 4) using predicted proteome
sequences of T. asiatica as queries against those of T. saginata and T. solium. The
T. solium genome assembles (version 2) available at http://taenia.big.ac.cn/taenia/
index.html were used in all analyses or otherwise as specified. The resulting
T. asiatica-specific genes were further searched by BLASTP (1e� 3, 80% length
coverage) against genome assemblies of T. saginata and T. solium to identify
high-confident-specific genes. The assemblies of the three human tapeworms were
aligned using MUMmer (v3.22)57 to identify genome syntenic blocks. The
collinearity analysis for orthologous genes on scaffolds was conducted using
MCscanX58 (Supplementary Methods, section 6). High-quality reads were mapped
to the reference assemblies using Bowtie2 (v2.2.3)59. Reads corresponding to PCR
duplicates were removed by MarkDuplicates from PICARD (v1.119)
(http://picard.sourceforge.net), followed by base quality recalibration and indel
realignment by GATK (v3.5)60. SNVs and indels in the T. asiatica and T. saginata
genomes were detected by HaplotypeCaller from GATK and filtered by the
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coverage, mapping quality score, FisherStrand (FS) value (Phred-scaled P value
using Fisher’s exact test) and other filters. To make the result comparable, a similar
coverage (B65� ) of reads for each genome was used to calculate the proportion
of variants removed by each filter (Supplementary Methods, section 3.3).

Gene family construction and phylogeny analysis. Gene families were identified
using protein sequences of T. saginata, T. asiatica and 8 other worms (that is.,
T. solium, E. granulosus, E. multilocularis, Hymenolepis microstoma, Schistosoma
japonicum, S. mansoni, Ascaris suum and C. elegans; Supplementary Table 13) by
OrthoMCL (v2.0.9)61 (Supplementary Figs 19 and 20). A maximum likelihood
phylogenetic tree was inferred from a concatenated nucleotide data set containing
747 single-copy orthologous genes shared by all 10 species by RAxML (v8.0.24)62

with the best fit model (GTRþ Iþ 4-rate G for CDS; Supplementary Methods,
section 7). The divergence dates were estimated with the relaxed-clock model using
BEAST2 (v2.1.3)23 (Supplementary Methods, section 8).

Gene family analysis. Gene family expansion and contraction were determined
using the CAFÉ (v3.0)63 based on the phylogenetic tree constructed by RAxML
(v8.0.24). The minimum ancestral gene families were determined using DOLLOP
program included in the PHYLIP package (v3.695)64 to estimate gain/loss
evolutions of gene families.

Paralogous gene groups and GDs. An all-against-all protein sequence similarity
search was performed using BLASTP (e valuer1e� 10), followed by clustering the
paralogous groups within each genome using Markov Clustering (MCL)
(mclblastline pipeline)65. For each gene family, a protein alignment was
constructed using MAFFT (v7.147b)66. This alignment was used as a guide for
aligning the DNA sequences of gene family pairs, using ParaAT (v1.0)67.
Paralogous gene pairs were retained if the two sequences were alignable over a
length of 4150 amino acids with an identity score of at least 30%. Ks value was
calculated with the maximum likelihood estimation method using the program
codeml (CodonFreq¼ 2, runmodel¼ � 2) in the PAML package (v4.8). Only Ks

values r5 were retained for further analysis. An average linkage clustering
approach was used to correct the redundancy of Ks values that correspond to GD
events. The GD modes of each genome were estimated by MSCANX. Recently,
duplicated genes (in-paralogs) along T. asiatica and T. saginata that arise after their
divergence were determined by Inparanoid (v4.1)68. The Tajima’s relative rate test
for in-paralogous gene pairs was performed, using orthologous genes of T. solium
as outgroup (supplementary Methods, section 8).

Likelihood ratio tests for PSGs. A total of 6,581 one-to-one orthologous gene
groups were extracted from genomes of the six tapeworms (T. asiatica, T. saginata,
T. solium, E. granulosus, E. multilocularis and H. microstoma) to identify PSGs.
Multiple protein-coding DNA sequence alignments were generated using ParaAT
(v1.0)67 and MAFFT (v7.147b)66. All gaps in the alignments were removed, and
likelihood ratio tests for selection (Po0.05) on each branch of the phylogenetic tree
were performed using Codeml implemented in the PAML package (v4.8)28 with a
modified branch-site model A (model¼ 2, NSsites¼ 2; Supplementary Methods,
section 9).

Identification of potential drug targets. Putative proteases and PIs were detected
using the MEROPS batch BLAST server (http://merops.sanger.ac.uk/cgi-bin/
batch_blast) (E valueo1e� 4). LGIC genes were identified by searching tapeworm
homologues against the LGIC database (http://www.ebi.ac.uk/compneur-srv/
LGICdb/) and annotated LGIC proteins from E. multilocularis and S. mansoni13,15.
The resulting hits were used as BLASTP queries against the National Center for
Biotechnology Information non-redundant database. Sequences homologous to
LGIC-related proteins or having no hits in the non-redundant database were
retained as putative LGICs. Protein kinase domain-containing proteins were
extracted from InterProScan5 domain annotations. The corresponding domains
were clustered with a reference domain data set (Human, fly and C. elegans;
KINBASE; http://kinase.com/kinbase/FastaFiles/) using OrthoMCL. The non-
assignable domains during the clustering were searched against other tapeworm
kinases for classification. TM domains were first predicted by Phobius algorithm69

(length 4250 aa). The resulting proteins with Z3 and r15 TM domains were
retained and searched by HMMER (v3.1b1)70 with HMMs against annotated
GPCR sequences from Pfam database and from other tapeworms. Hits were further
filtered by BLAST search against the non-redundant protein database
(Supplementary Methods, section 11). Several bioinformatics tools were employed
to identify classic and non-classic E/S proteins in the T. asiatica and T. saginata
genomes (Supplementary Methods, section 10).

Data availability. All sequence data that support the findings of this study have
been deposited in GenBank with the following accession numbers:
LWMK00000000 and LWMJ00000000 for Whole Genome Shotgun projects of
T. saginata and T. asiatica under BioProject accession PRJNA71493 and
PRJNA299871, respectively; SRR2890401, SRR2890402, SRR2890403, SRR2890404

and SRR2890405 for the T. saginata genome sequencing data; SRR2890205,
SRR2890207, SRR2890209, SRR2890210, SRR2890211, SRR2890213, SRR2890214,
SRR2890215 and SRR2890216 for the T. asiatica genome sequencing data;
SRR2895139 and SRR2895068 for the transcriptome data of T. saginata and
T. asiatica, respectively. The genome assemblies and annotations used in this study
are also available at http://taenia.big.ac.cn/taenia/index.html. All other data
supporting the findings of this study are available within the article and its
Supplementary Information files, or from the corresponding authors on request.
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Erratum: Comparative genomics reveals adaptive
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& Xuepeng Cai

Nature Communications 7:12485 doi: 10.1038/ncomms12845 (2016); Published 22 Sep 2016; Updated 3 Nov 2016

This Article contains errors in Fig. 3. In panel b, the axes are displaced relative to the data, and in panel c, the label ‘Species-specific
GD’ in red should read ‘Species-specific GD (tandem)’. The correct version of Fig. 3 appears below as Fig. 1.
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