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Abstract

Post-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant
improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract
gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the b-glucuronidase (GUS)
reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first
verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young
leaf segments and protoplasts. In young leaf segments co-expressing a suppressor, EYFP reached its maximum expression at
48–96 h post-DNA introduction and maintained its peak expression for a longer time compared with that in the absence of
a suppressor. Among the five suppressors, Tomato bushy stunt virus-encoded P19 and Barley stripe mosaic virus-encoded cb
were the most efficient. Co-expression with P19 and cb enhanced EYFP expression 4.6-fold and 3.6-fold in young leaf
segments, and GUS activity 2.3-fold and 2.4-fold in protoplasts compared with those in the absence of a suppressor,
respectively. In transgenic sugarcane, co-expression of GUS and P19 suppressor showed the highest accumulation of GUS
levels with an average of 2.7-fold more than when GUS was expressed alone, with no detrimental phenotypic effects. The
two established transient expression assays, based on young leaf segments and protoplasts, and confirmed by stable
transgene expression, offer a rapid versatile system to verify the efficiency of RNA silencing suppressors that proved to be
valuable in enhancing and stabilizing transgene expression in sugarcane.
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Introduction

RNA silencing is an ancient pathway shared by eukaryotic

organisms to regulate gene expression. It particularly operates as

an adaptive defense mechanism, which is initiated by the

formation of double stranded RNAs (dsRNAs) to destroy aberrant

RNAs in the cell [1–4]. The silencing pathway is very complex in

higher eukaryotes, but some of its distinct steps and key

components are well characterized. The dsRNA trigger is first

cleaved by the RNase III-type DICER-LIKE proteins into small

RNA species of 21–26 nucleotide duplexes named short-interfer-

ing RNAs (siRNAs) or microRNAs (miRNAs) [5,6], which are

denatured and incorporated into the multi-component RNA-

induced silencing complex (RISC) with an Argonaute (AGO)

protein at its catalytic core [7]. The RISC complex then binds

complementary mRNAs guided by single-stranded siRNAs,

thereby mediating processes such as translational inhibition,

RNA degradation or chromosome modification [8–10]. Unlike

the miRNAs produced by the miRNA precursors [5,6,10], the

siRNAs can also be amplified from the target RNA by cellular host

RNA-dependent RNA polymerases (RdRPs) to produce additional

dsRNAs that will be processed into secondary siRNAs [11]. The

Suppressor of Gene Silencing 3, a dsRNA binding protein, is also

required for post-transcriptional gene silencing (PTGS) in plants

[12,13].
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Plant viruses have evolved several counter-defensive strategies to

efficiently suppress their host RNA silencing mechanism. The

production of virus-encoded suppressors of RNA silencing is one

of the strategies used to counteract host antiviral defense [14–16].

So far, several suppressors of RNA silencing have been identified

from different types of viruses, and they show a high diversity in

primary sequence and protein structure, though sharing certain

mechanistic features [16–18]. Viral suppressors seem to interfere

with the RNA silencing pathway at distinct steps, since they

potentially have different molecular targets in the host and operate

differently in widely used silencing inhibition assays [19,20]. For

instance, the Tomato bushy stunt virus (TBSV)-encoded P19 [21,22],

one of the most studied suppressors, sequesters 21-nt siRNAs in a

non-specific manner, preventing their incorporation into the RISC

complex to act as guides; it also inhibits the spread of the ds siRNA

duplex identified as the signal of RNA silencing [18,23] as well as

the translational efficiency of AGO1 mRNA by modulating the

endogenous miR168 level [24]. The suppression activity of the

Barley stripe mosaic virus (BSMV)-encoded cb was demonstrated in

Agrobacterium-mediated transient assays [25,26], and the molecular

basis of its silencing suppression is similar to that of P19 [20].

The P1/HC-Pro or HC-Pro from Potato virus Y [27] or Tobacco

etch virus (TEV) [28] was the first identified suppressor serving as a

model to study the mechanism of silencing suppression. HC-Pro is

proposed to act on the RISC complex [20,29] or downstream of

an RdRP by interfering with the DICER protein [30,31], or by

sequestrating the 21-nt siRNA duplexes [19,20] and inhibiting the

39 modification of the si/miRNAs [29,32].

Transgenic and transient expression via Agrobacterium co-

infiltration into Nicotiana benthamiana and Arabidopsis thaliana have

been extensively used to probe the phenomenon of RNA silencing

and the function of viral suppressors at the whole plant level [17].

Protoplasts of N. benthamiana and A. thaliana proved useful to

investigate transient gene expression [33], RNAi-mediated silenc-

ing of gene expression [34,35] and the RNA silencing suppressor

function [36–38] at the cellular level. Viral suppressors of silencing

were quantitatively evaluated by transient co-expression with the

Green Fluorescent Protein (GFP) in germinating lima bean (Phaseolus

lunatus L.) cotyledons via particle bombardment [39].

Sugarcane (Saccharum spp. hybrid) is an economically important

sugar and bioenergy producing polyploid crop, which is amenable

for improvement through genetic engineering [40–42]. Transgene

silencing is currently one of the major limiting factors to produce

improved transgenic varieties, and to achieve commercially useful

expression levels of transgenes in this crop [43–45]. In the present

study, the strategy of using viral RNA silencing suppressors to

counteract RNA silencing was adopted in sugarcane in an attempt

to enhance transgene expression and stability. Four RNA silencing

suppressors were evaluated for their silencing suppression

efficiency by their transient and stable transgenic co-expression

with the Enhanced Yellow Fluorescent Protein (EYFP) or the b-

glucuronidase (GUS) reporter gene. These include the TEV-

encoded P1/HC-Pro, the BSMV-encoded cb, the TBSV-encoded

P19, and one putative suppressor, the Sugarcane bacilliform virus

(SCBV)-encoded OrfI. In addition, a P19 suppressor mutant,

P19/R43W, whose overexpression did not induce developmental

defects, was also evaluated [46]. The suppressor-reporter gene

constructs were tested in the dicot Nicotiana benthamiana plants and

monocot onion epidermal cells, to determine that they are

expressing functional suppressors. An efficient transient suppres-

sor-reporter gene co-expression system, based on young leaf

segments and protoplasts of sugarcane, was first established and it

was subsequently used to demonstrate that several silencing

suppressors enhanced EYFP and GUS expression to a significant

level. That the transient expression system provided a rapid

analysis of viral RNA silencing suppressor efficiencies was further

supported by the generation of stable transgenics. Combined,

these results show the usefulness of the system to probe the activity

of these suppressors, while these proved to be valuable in

enhancing and stabilizing transgene expression in sugarcane.

Results

Assaying the Activity of Viral RNA Silencing Suppressors
in Model Plant Systems

To verify that the genetic constructs were expressing functional

suppressors (P1/HC-Pro, P19, and cb), we first tested these in N.

benthamiana using the standard suppressor activity assay [21]

(Legend, Figure S1). A construct expressing GFP was co-

agroinfiltrated with a suppressor-expressing construct into N.

benthamiana leaves, and GFP expression was compared to the

treatment with GFP construct alone. These experiments verified

that expression of the suppressors led to the expected enhanced

and prolonged GFP expression in the dicot N. benthamiana (Figure

S1).

To determine whether the suppressors were active in a monocot

system, onion epidermal cells were co-bombarded with constructs

expressing the EYFP gene and those expressing the suppressor

genes (Figure S2a). In this case, the SCVB OrfI suppressor was

also included. It has been established that an increase in the

number of fluorescent cells correlates with the effectiveness of

suppressor activity [47], thus we monitored the effect of co-

bombardment with a suppressor on the number of EYFP-

expressing cells (Figure S2b). The results of these comparisons

indicated that, unlike in N. benthamiana, for unknown reasons not

all suppressors performed optimally, even though the suppression

effect was often more evident when two suppressors were

combined (Figure S2b). For instance, the SCVB OrfI and cb

suppressors exhibited the most prominent effect (Figure S2b), but

whether this is related to their origin of being a monocot-infecting

virus remains to be determined. Due to the relative small number

of cells that expressed EYFP (Figure S2a), quantification with

western analysis was technically not feasible, so any suppressor

effect at the cellular level could not be quantified. Therefore, either

the onion cells yielded unexpected results in not responding to

certain suppressors in an expected manner to be explored in future

experiments, and/or the system itself was insufficiently quantifi-

able. Thus, we felt that a more robust transient system for

monocot expression, preferably sugarcane itself, needed to be

established.

Development of Transient Expression Systems for the
Rapid Testing of viral RNA Silencing Suppressor
Efficiencies in Sugarcane

To evaluate the ability of viral RNA silencing suppressors in

enhancing transgene expression in sugarcane, we first established

two rapid and efficient transient systems for the co-expression of

the suppressor and the reporter gene in the same tissues or cells.

Optimization of transient expression in vivo in young leaf

segments. To investigate the optimal parameters of imaging

EYFP-expressing cells in sugarcane young leaf segments following

bombardment, we used multicolor fluorescence imaging at low

and high optical magnifications combined with ImageJ data

analysis. Images of young leaf segment cells were acquired at 48 h

after bombardment with pUbi:EYFP:Tnos (EYFP under the

control of the maize ubiquitin 1 (Ubi) promoter and the Agrobacterium

nopaline synthase terminator (Tnos); Figure S3) (0.5 mg) using

filter sets for different fluorophores such as rhodamine, eGFP and

Enhanced Gene Expression and Silencing Suppressors
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YFP with different detection spectra, at 15x and 150x magnifi-

cations. Imaging at a high magnification (150x) allowed the

distinction of EYFP-expressing cells from autofluorescence derived

from damaged cells or any object present on the tissue surface, but

the field of vision was restricted to few cells only; however, imaging

at a low magnification (15x) provided a significantly larger area of

cells for image capture and analysis (Figures S4 and S5). The

overlaid image generated from merging the YFP and bright field

images clearly showed that the EYFP-expressing cells were intact

(Figure S5). Furthermore, images taken with the rhodamine filter

failed to show any prominent fluorescent spots, indicating that

there is no visible autofluorescence from damaged/dead cells in

leaf segments expressing pUbi:EYFP:Tnos+pUbi:Tnos or from

those bombarded with pUbi:Tnos (Figure S3) or water (negative

controls) at 15x and 150x magnifications (Figures S4 and S5).

Quantitative assessment of EYFP expression in leaf segments of

negative controls using ImageJ indicated that the level of

autofluorescence from damaged/dead cells or any object present

on the tissue surface is minor (Figure S6). Although the EYFP foci

count number of both negative controls (12.1060.30) was about

9.4% of the total foci count number of pUbi:EYFP:Tnos+pU-

bi:Tnos (129.40615.70), their EYFP expression level (gray

value6pixels) (0.016105) was only 1% of that of pUbi:EYFP:T-

nos+pUbi:Tnos (0.95610560.156105) (Figure S6). Since the

degree of cell damage during bombardment and the chance of

having foreign objects on the tissue surface will be the same for

each treatment, the level of autofluorescence derived from

damaged/dead cells or any foreign object present on the tissue

surface can be assumed to be uniform for all treatments.

Therefore, we are confident that the sugarcane leaf segment-

based transient gene expression system and the data analysis by

ImageJ coupled with fluorescent microscopy at 15x magnification,

adopted in the current study, provide a reliable approach for the

quantitative analysis of EYFP expression in order to investigate the

effect of RNA silencing suppressors in sugarcane.

To optimize the conditions of transient expression of EYFP in

sugarcane young leaf segments, we investigated the duration of 0,

3 and 5 days of pre-culture of leaf segments on media prior to

bombardment and the dosage of the introduced gene. Data

collected at 48 h after bombardment with EYFP (pUbi:EYFP:T-

nos; Figure S3) showed that leaf segments bombarded without pre-

culture (0 day) had the lowest EYFP expression (expression level:

3.65610560.266105; foci count: 228.00617.00). However, leaf

segments pre-cultured for 3 days and 5 days displayed significantly

(p,0.05) higher EYFP expression levels (8.12610560.626105 and

7.41610560.566105, respectively) and foci counts (438.00616.00

and 443.00627.00, respectively) than those without pre-culture at

48 h after bombardment. These results show that pre-culture of

sugarcane young leaf segments for 3–5 days prior to bombardment

enhanced EYFP expression (as measured by EYFP foci count and

expression level).

To determine a suitable amount of DNA to be used for a higher

EYFP expression, six EYFP plasmid (pUbi:EYFP:Tnos) concentra-

tions (from 0.125 mg to 4.0 mg DNA per bombardment) were

tested in 3 day-pre-cultured sugarcane young leaf segments. Data

collected at 48 h after bombardment showed that EYFP expression

increased in a linear manner with increasing amounts of EYFP

DNA from 0.125 mg (foci count: 237.00618.00; expression level:

1.19610560.106105), to 0.25 mg (262.00614.00;

2.70610560.106105) and to 0.5 mg (320.00617.00;

4.80610560.406105), until it reached a plateau with 1.0 mg,

2.0 mg and 4.0 mg. The highest EYFP foci count of 369.00

(629.00) and expression level of 6.706105 (60.706105) were

obtained with 4 mg of EYFP DNA per bombardment, but this

increase was not significantly different from the one obtained with

0.5 mg, 1 mg or 2 mg of EYFP DNA per bombardment. However,

we opted to use the 0.25 mg dose in the transient experiments with

young leaf segments, to decrease the fluorescence background of

EYFP expression (from the EYFP plasmid alone) and avoid

interference with image data collection (data not shown).

Establishment of a cellular transient expression system

based on protoplasts. A homogenous cell suspension was

obtained from compact globular white-yellow embryogenic

sugarcane callus, originating from leaf rolls (Figures S7a–b), in

liquid MS medium with 2,4-dichlorophenoxyacetic acid (2,4-D)

(3 mg/L). Subsequently, protoplasts were successfully isolated

from this cell suspension after culturing for 2–3 days, with an

average yield of about 26106 protoplasts per 1 mL of suspension

(Figure S7c). The polyethylene glycol (PEG)-calcium chloride

(CaCl2) transfection efficiency of the isolated protoplasts (16105

protoplasts; 100 mL) was assessed by using 10 mg of EYFP plasmid

DNA (pUbi:EYFP:Tnos) and three transfection (protoplast incu-

bation with DNA) periods of 5 min, 10 min and 15 min. Image

analysis data collected at 24 h after co-transfection of the

protoplasts showed that around 30% of the transfected protoplasts

expressed EYFP, i.e. 30% of protoplasts were successfully

transfected (Figures S7d–f). This transfection rate was maintained

to the same level during the 15 min time period (data not shown),

indicating that this is a less critical factor to be considered.

Dosage effect of the viral RNA silencing suppressors on

transgene expression. Because P19 enhanced transgene

expression in N. benthamiana and in our preliminary experiments

using sugarcane young leaf segments, we determined the optimal

amount of the P19 suppressor to increase EYFP expression and

GUS activity in sugarcane young leaf segments and protoplasts,

respectively. When EYFP (pUbi:EYFP:Tnos) (0.25 mg) was intro-

duced with no suppressor in 3 day-pre-cultured young leaf

segments, EYFP expression reached its peak at 24 h (EYFP foci

count) or 48 h (EYFP expression level) post-introduction and then

declined (Figures 1a and b). However, co-bombardment of EYFP

(0.25 mg) with increasing doses of P19 (pUbi:P19:Tnos; Figure S3)

extended the EYFP expression peak to at least 72 h and enhanced

EYFP expression (foci count and expression level) (Figures 1a and

b). The highest increases in EYFP expression were obtained with

0.125 mg (335.00614.00; 2.90610560.306105) and 0.25 mg

(335.00616.00; 2.10610560.206105) of P19. The 0.125 mg and

0.25 mg P19 concentrations resulted in 1.6-fold increase in EYFP

foci counts, and 3.2-fold and 2.3-fold increase in EYFP expression

levels, respectively, compared to those in the absence of P19

(216.00612.00; 0.90610560.106105) at the 120 h time point

(Figures 1a and 1b). Co-introduction of EYFP (0.25 mg) with

higher doses of P19, such as 0.5 mg and 1.0 mg, still enhanced the

EYFP foci count (356.00623.00 and 343.00617.00 at 120 h,

respectively) by 1.7-fold and 1.6-fold, respectively, but a significant

decrease was observed with the 2-mg dose (241.00622.00 at 120 h)

(Figure 1a).

Similarly, increasing the amount of the P19 suppressor co-

transfected with GUS was observed to enhance GUS activity in

sugarcane protoplasts (Table 1). Co-expression of protoplasts

(16105) with GUS (pUbi:GUS:Tnos, Figure S3) (5 mg) and P19

(pUbi:P19:Tnos) at 2.5 mg (61.8063.50) and 5.0 mg (89.2065.60)

resulted in a significant (p,0.05) increase of 1.6-fold and 2.4-fold

more than those to those transfected with EYFP with no suppressor

(vector) (37.6063.20), respectively (Table 1). The highest level of

GUS activity was reached with 10 mg of P19 (96.8065.00)

(Table 1).

Enhanced Gene Expression and Silencing Suppressors
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Enhancement of Transient Gene Expression by Co-
expression of viral RNA Silencing Suppressors in
Sugarcane Young Leaf Segments and Protoplasts

After establishing the two transient expression systems for

sugarcane, we tested the five suppressors, P19, P19/R43W, cb,

P1/HC-Pro and SCBV OrfI (under the control of the Ubi

promoter and nos terminator; Figure S3), in young leaf segments

and in protoplasts. In the leaf segment system, when EYFP

(pUbi:EYFP:Tnos) was introduced alone, EYFP expression peaked

at 48 h post-bombardment (foci count: 258.00611.00; expression

level: 1.20610560.106105) and then declined rapidly (Figure 2a

and 2b; Figure S8). However, when EYFP was co-introduced with

one of the five suppressors, EYFP expression reached its maximum

within 48–96 h post-bombardment and maintained its peak for a

longer time (Figures 2 and S8). P19 and cb induced the highest

peaks of EYFP expression levels (3.30610560.306105 and

2.60610560.206105, respectively) and foci counts

(406.00622.00 and 334.00617.00, respectively) at 192 h post-

bombardment (Figures 2a and 2b). Each of these two suppressors

resulted in a highly significant improvement in the transient

Figure 1. Dosage effect of the TBSV-encoded P19 RNA silencing suppressor on transient expression of the EYFP reporter gene in
sugarcane young leaf segments. EYFP (pUbi:EYFP:Tnos; Figure S3) (0.25 mg per shot) was co-bombarded with each of five concentrations of P19
DNA (pUbi:P19:Tnos; Figure S3), and EYFP expression as measured by foci count (a) and expression level (b) was monitored for 120 h post-
bombardment of sugarcane young leaf segments (3 day-pre-cultured). Vector with no suppressor (pUbi:Tnos; Figure S3) was used as a negative
control. Values represent two independent experiments and ten technical repeats, and are reported with the standard error. Quantitation of EYFP foci
counts and expression levels is provided in Materials and Methods.
doi:10.1371/journal.pone.0066046.g001

Enhanced Gene Expression and Silencing Suppressors
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transformation efficiency, as shown by up to a 4.6-fold and 3.6-

fold increase in the EYFP expression level at 192 h after

bombardment, respectively, when compared to the control

(absence of a suppressor) (expression level: 0.70610560.106105)

(Figure 2b). P19/R43W (a P19 mutant) also enhanced EYFP

expression to significant levels (2.30610560.306105), i.e. 2.8-fold

increase in EYFP expression level compared to that with EYFP in

the absence of a suppressor (0.80610560.106105) at 144 h post-

bombardment (Figure 2b). P1/HC-Pro and SCBV OrfI showed

no significant effect (p.0.05) on EYFP expression (Figures 2 and

S8).

In the protoplast system, we quantified expression of GUS at

24 h after co-transfection with or without a suppressor. When co-

expressed with GUS, each of cb (100.84641.17), P19

(95.40632.00), and P19/R43W (67.78618.82) enhanced GUS

activity by 2.4-fold, 2.3-fold and 1.6-fold, respectively, as

compared to GUS in the absence of a suppressor (41.3366.91)

(Figure 3). Co-transfection of protoplasts with GUS and each of

P1/HC-Pro and SCBV OrfI resulted in no significant increase in

GUS activity (Figure 3).

Enhancement of Stable Transgene Expression by Co-
expression of the Viral RNA Silencing Suppressor P19 in
Sugarcane

In order to study the long term protection of transgene

expression by the RNA silencing suppressor P19, a total of 41

transgenic plants, representing seven independent stably trans-

formed lines were generated, from leaf roll disc explants, by co-

bombardment of the GUS reporter (pUbi:GUS:Tnos) and the P19

(pUbi:P19:Tnos) suppressor genes. Successful gene co-integration

was confirmed by Southern blot analysis (data not shown). Lines

co-expressing P19 and GUS (P19-GUS) developed normally and

showed a significant (p,0.05) enhancement in GUS activity, i.e.

an average of 53.2% increase when compared to lines expressing

GUS alone (Table 2; Figure 4a). Significant (p,0.05) increases of

1.9-fold (in 39% of transgenics) to 3.5-fold (in 20% of transgenics)

in GUS activity were observed in P19-GUS transgenics when

compared to those expressing GUS alone (Table 2). No significant

increase in GUS activity was noted in the remaining of the P19-

GUS transgenics (16 plants) (data not shown).

P19 expression and protein accumulation in the high GUS

expressing P19-GUS plants (belonging to 6 lines) were below

detectable levels (Northern and qRT-PCR, Figure 4a; western

data not shown). This phenomenon has been previously reported

in different species transformed with the wild-type P19 gene

[31,48–51]. However, P19 was highly expressed in the low GUS

expressing P19-GUS plants (one line) (Figure 4a).

Even though seven independent transgenic lines were generat-

ed, a detailed molecular analysis is presented here for the

representative highest GUS expressing line 1 and the lowest GUS

expressing line 3. For instance, P19 was expressed in P19-GUS line

1 (three representative plants) by an average of only 1.9% relative

to the P19 highest expressing plant (100%) of P19-GUS line 3

(Figure 4a). GUS levels, on the other hand, accumulated in plants

of P19-GUS line 1 by an average of 21.2-fold more than in those of

P19-GUS line 3 (Figure 4a). At the DNA level, P19-GUS line 1

displayed a simpler profile than P19-GUS line 3, which showed a

multiple loci integration pattern of the P19 and GUS genes (data

not shown).

To further investigate the contrasting results observed with the

P19-GUS transgenic line 3 (expressing high P19, but low GUS

levels), we checked for the presence of any possible mutation in the

P19 gene as well as for the methylation status of the coding region

of P19 and GUS and of the Ubi promoter driving the expression of

both genes. The P19 gene, derived from cDNA synthesized from

RNA of each of the three plants of P19-GUS line 3, did not have

any mutations (data not shown). The methylation of the GUS gene

(driven by the Ubi promoter) and the Ubi promoter (driving P19

or GUS) was assessed by Southern blot hybridization, using

genomic DNA from two representative plants of P19-GUS line 3

digested with methylation-sensitive HpaII (H), and methylation-

insensitive MspI (M), restriction endonucleases, and probes for the

GUS coding region and the Ubi promoter, respectively. As shown

in Figure 4b, the P19-GUS line 3 plants exhibited a high level of

methylation of the GUS gene and the Ubi promoter, compared to

their unmethylation status in the P19-GUS line 1 plants (expressing

high GUS and low P19 levels); the majority of the hybridizing

HpaII fragments in line 3 were of higher molecular weight.

Methylation of the P19 gene was also revealed in the P19-GUS line

3 plants when Southern blot hybridization was performed using

the P19 gene as a probe (data not shown).

Discussion

Reproducible Transient Expression Systems for the Rapid
Screening for Functional RNA Silencing Suppressors in
Sugarcane

Transient gene expression is influenced by several factors

including species and physiological status of the explant [52],

transformation parameters [53,54], timing of gene integration

[55], cell death and loss of DNA [56,57], and gene structure [58].

PTGS also plays an important role in the post-introduction gene

expression decline, so-called transient expression [39,59].

In the present study, we have established two simple and

reproducible transient expression systems for screening for

functional viral RNA silencing suppressors in sugarcane. The first

transient system is based on the co-expression of the suppressor

and the target gene in vivo in young leaf segments via particle

bombardment. It provides an easy and rapid evaluation of the

suppressor activity due to the simplicity of the transformation

method and the type of target tissue that offers a large and

homogeneous surface for detection of the EYFP reporter gene. The

use of image analysis was important to asses the EYFP expression

level over time by determining indexes such as foci count, EYFP

Table 1. Dosage effect of the TBSV-encoded P19 RNA
silencing suppressor on transient expression of the GUS
reporter gene in sugarcane protoplasts.

P19 DNA
(mg)

GUS activity
(pmoles of 4-methylumbelliferone/min/mg
protein)

Vector-no P19 37.6063.20 c

0.0- sterile water 31.6061.80 c

2.5 61.8063.50 b

5.0 89.2065.60 a

10.0 96.8065.00 a

DNA (5 mg) from pUbi:GUS:Tnos (Figure S3) was co-transfected into a protoplast
suspension (100 mL; 16105 protoplasts) with three concentrations of P19 DNA
(pUbi:P19:Tnos) (Figure S3), respectively, and GUS activity of protoplasts was
measured at 24 h post-transfection. Vector with no P19 suppressor (pUbi:Tnos;
Figure S3) and sterile water were used as controls. Values represent three
biological samples and six technical repeats, and are reported with the standard
error. Means with the same letter are not significantly different (p.0.05).
doi:10.1371/journal.pone.0066046.t001

Enhanced Gene Expression and Silencing Suppressors

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e66046



expression (gray values6pixel number) and total expression levels

(combination of gray values6pixel number in green and red

channels) (ImageJ software), and to correlate them with the levels

of transgene protection by viral suppressors. This assay system is

non-destructive and has been previously shown to be useful in

sugarcane for studying efficiencies of terminators [58], and in lima

bean for analyzing the effect of RNA silencing suppressors [39,59]

and the activity of a soybean promoter [60].

Our establishment of a second transient expression system,

based on sugarcane protoplasts transfected via PEG and using the

GUS reporter gene, has allowed us to study the efficiency of RNA

silencing suppressors in a single cell and over time. Although the

isolation of sugarcane protoplasts was first achieved in the 1970s

[61], and several scientists have reported their subsequent use in

plant regeneration [62,63] and stable transformation by electro-

poration or by PEG [64–66], this is considered to be the first

established sugarcane protoplast-based RNA silencing assay.

Figure 2. Quantitative assessment of the effect of viral RNA silencing suppressors on transient expression of the EYFP reporter gene
in sugarcane young leaf segments. EYFP expression as measured by foci count (a) and expression level (b) was monitored in 3 day-pre-cultured
young leaf segments for 240 h after co-bombardment with 0.25 mg (per shot) of EYFP (pUbi:EYFP:Tnos; Figure S3) and 0.5 mg (per shot) each of RNA
silencing suppressors (under the control of the Ubi promoter and nos terminator; Figure S3), P1/HC-Pro, cb, P19, P19/R43W and SCBV OrfI. Vector with
no suppressor (pUbi:Tnos; Figure S3) was used as a negative control. Values represent means with standard error from three independent
experiments and 8–10 replicates per experiment. Quantitation of EYFP foci counts and expression levels is provided in Materials and Methods.
gamma-b: cb.
doi:10.1371/journal.pone.0066046.g002
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Quantitative analysis of GUS made it possible to correlate the

suppressor activity with the efficiency of silencing suppression at

the cellular level over time. The protoplast cells are considered to

be more homogeneous than the cells within a plant and allow the

collection of consistent data for a detailed time course analysis of

the suppressor activity. The high yield of viable isolated protoplasts

as well as the improved transfection efficiency played key roles in

the establishment of the sugarcane protoplast system for transient

monitoring of the efficiency of silencing suppressors. The 30%

transfection efficiency of sugarcane protoplasts achieved in this

study is very acceptable as compared to the 50–70% protoplast

transfection efficiency in rice [67].

The protoplast-based RNA silencing assay offers unique

advantages to study the mechanisms of RNA silencing in

protoplast cells. However, some of the differing results between

protoplasts and in planta studies, which are caused by protoplasts as

single cells or by the cells within a plant body, may have biological

differences that affect the RNA silencing pathway [36]. Therefore,

it is necessary to have a combination of single cell and in planta

studies to generate information on the kinetic features of the RNA

silencing suppressors.

Enhancement of Transgene Expression in Sugarcane by
the use of the P19 Viral RNA Silencing Suppressor

In the present study, five viral RNA silencing suppressors, P19,

P19/R43W, cb, P1/HC-Pro and SCBV OrfI, were co-expressed

transiently with the EYFP or GUS reporter gene in sugarcane leaf

segment tissues and protoplasts in order to investigate their activity

as suppressors of post-transcriptional transgene silencing. Although

these suppressors have been well studied previously, the primary

transient expression assay system used relied on Agrobacterium-

infiltration of GFP into model plant systems like N. benthamiana

leaves [16], as verified in the present study (Figure S1). However,

several monocot species, including sugarcane, are not amenable to

Agrobacterium-infiltration, thus requiring alternative approaches for

transient studies. We demonstrated that the viral RNA silencing

suppressors operate in sugarcane leaf segments and protoplasts by

co-bombardment or co-transfection with the target reporter genes,

EYFP and GUS. Our findings indicated that P19, P19/R43W and

cb suppressors contributed to increased and extended EYFP or

GUS expression, and this increase was highly dependent on the

system used. In young leaf segments, P19 and cb significantly

enhanced EYFP expression and extended its peak to over 240 h

Figure 3. Quantitative assessment of the effect of viral RNA silencing suppressors on transient expression the GUS reporter gene in
sugarcane protoplasts. The GUS activity of protoplasts was monitored for 24 h after co-transfection of protoplasts (16105 protoplasts; 100 mL)
with 5 mg of GUS (pUbi:GUS:Tnos; Figure S3) and 10 mg each of RNA silencing suppressors (under the control of the Ubi promoter and nos terminator;
Figure S3), P1/HC-Pro, cb, P19, P19/R43W and SCBV OrfI. Vector with no suppressor (pUbi:Tnos; Figure S3) was used as a negative control. Values
represent means with standard error from three independent experiments and six replicates per experiment. Means with the same letter are not
significantly different (p.0.05).
doi:10.1371/journal.pone.0066046.g003

Table 2. Effect of the TBSV-encoded P19 RNA silencing suppressors on the expression of the GUS reporter transgene in transgenic
sugarcane.

Transgenic GUS activity (pmoles of 4-methylumbelliferone/min/mg protein)

P19-GUS

20% 129.9065.90 a (119.60–146.00)

39% 70.1065.00 b (53.80–98.90)

GUS 37.0064.10 c (18.60–63.30)

Non-transgenic 5.7060.90 d (3.80–6.70)

Average GUS activity was measured in leaves of 4-month-old sugarcane transgenic lines co-expressing pUbi:GUS and pUbi:P19 (7 lines; 41 plants analyzed). pUbi:GUS
transgenic (3 lines; 5 plants analyzed) and non-transgenic sugarcane (3 plants) were included as controls. For each set of experiments, the range of GUS activity values is
indicated in parenthesis. Values represent three biological samples and three technical repeats, and are reported with the standard error. Values with the same letter are
not significantly different (p.0.05). 20% and 39% represent the percentage of plants that are transgenic for the P19 and GUS genes.
doi:10.1371/journal.pone.0066046.t002
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post-bombardment (Figure 2). In protoplasts, P19, P19/R43W

and cb resulted in a significant increase in GUS activity until 24 h

post-transfection (Figure 3). The fact that P19 and cb worked well

in our systems indicate that siRNA sequestration is probably more

effective for suppression than inhibiting the RISC complex, as is

the case with P1/HC-Pro that did not have any effect [1,20,68].

The ability of P19, P19/R43W and cb to enhance transgene

expression in transient assays has been well documented in N.

tabacum and N. benthamiana [20,36,46], but using Agrobacterium-

mediated delivery of these suppressors.

The effect of a viral suppressor on the expression of the co-

introduced EYFP or GUS was found to be dependent on the dose

of the co-delivered suppressor in our sugarcane transient

expression system. Co-expression of EYFP with increasing doses

of the P19 suppressor was noted to enhance EYFP expression and

prolong the EYFP expression peak by at least 120 h in young leaf

segments (Figure 1). Similarly, an increase in GUS activity was

achieved in protoplasts by increasing the amount of co-transfected

P19 (Table 1). These results confirm a previous report where the

suppression activity of P19 was dosage dependent in N. benthamiana

[69].

The sugarcane transgenic independent lines co-expressing the

GUS reporter and the suppressor P19 generated in the present

study showed a significant (p,0.05) enhancement in their GUS

activity levels by 1.9-fold to 3.5-fold more than those expressing

GUS alone (Table 2). The P19-GUS transgenic plants were noted

to develop normally, with no detrimental phenotypic effects,

indicating that P19 was tolerated within the stably transformed

sugarcane plants. This is an improvement to the transgenic

expression of P19 in A. thaliana, N. tabacum and N. benthamiana that

often yielded plants with deformed phenotypes [31,46,51]. While

we can not rule out other possibilities, the normal development

and growth in the P19-GUS transgenic lines is consistent with the

low expression levels of P19 (Figure 4a).

The majority of the P19-GUS transgenic sugarcane plants

exhibited high GUS levels with a low detectable P19 expression

level (Figure 4a) to avoid plant toxicity, possibly due to the use of

the strong constitutive Ubi promoter. The methylation status of

the Ubi promoter as well as that of GUS and P19 genes in one

silenced line certainly adds to the understanding of this

phenomenon. Among the seven P19-GUS transgenic lines

characterized in this study, line 3 (silenced line), represented by

three plants, exhibited low GUS transcript level and activity

(Figure 4a). We envision at least two possible reasons for the lower

GUS expression levels. One is that P19 is defective or less efficient.

Alternatively, GUS expression is silenced at the step(s) that can not

be overcome by P19. We cloned the P19 cDNAs derived from

RNA of each of the three plants of line 3. Among 5 of the cDNA

clones, we did not find any mutations, indicating that the P19

transcript was not altered. Conversely, the P19-GUS line 3

exhibited a high level of methylation in both the GUS gene and

the Ubi promoter, compared to their unmethylation status in the

non-silenced P19-GUS line 1 expressing high GUS levels

(Figure 4b).

Two types of transgene-induced gene silencing are known to

exist in plants [70,71]. One type acts at the transcriptional level

(TGS), through repression of transcription, where the transgene

possesses sequence homology to the promoter of the silenced gene,

Figure 4. Enhanced expression of the GUS reporter gene by stable co-expression of the TBSV-encoded P19 suppressor in transgenic
sugarcane. (a) Relative abundance of P19 and GUS transcripts was determined by northern blot and quantitative RT-PCR (qRT-PCR) analyses in two
representative P19-GUS transgenic sugarcane lines co-expressing GUS and P19 (two plants per line). Lines expressing GUS with no suppressor were
used as a control. Blots of RNA (15 mg per sample) were probed with radioactively labeled P19 DNA, stripped and then reprobed with GUS DNA.
Normalized qRT-PCR P19 expression levels of the P19-GUS lines are reported as a percentage, relative to that of the highest expressing plant. GUS
activity (pmoles of 4-methylumbelliferone/min/mg protein) of the P19-GUS lines is also indicated. Values represent three biological samples and three
technical repeats, and are reported with the standard error. (b) Methylation status of the coding region and promoter of the GUS reporter gene in the
P19-GUS transgenic sugarcane lines. Southern blot of genomic DNA (10 mg per sample) of two representative P19-GUS lines, one non-silenced (Line 1,
plants 4 and 5) and one silenced (Line 3, plants 12 and 16), digested with methylation-sensitive HpaII (H), and methylation-insensitive MspI (M),
restriction endonucleases, were probed with the GUS gene or the Ubi promoter. Shifts in DNA hybridization fragments indicate methylation.
doi:10.1371/journal.pone.0066046.g004
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and the other type works at the PTGS level, through mRNA

degradation, requiring homology in the transcript. The TGS is

often associated with increased DNA methylation, while PTGS

involves sequence-specific RNA degradation, although methyla-

tion in either coding or transcribed regions of silenced transgenes

has been detected in many cases of PTGS [72–74]. The

methylation of the coding region of the GUS gene in the P19-

GUS line 3 (Figure 4b) is more likely to be associated with PTGS,

while the Ubi promoter methylation (Figure 4b) is related to TGS.

The P19 suppressor is probably not functional due to its silencing

at the PTGS level, while GUS is silenced at the TGS and PTGS

levels. This data is consistent with the methylation of the zein gene

and the phaseolin promoter in silenced transgenic soybean lines

[75].

Conclusion
Two transient transgene expression assays based on young leaf

segments and protoplasts, and confirmed by stable transgene

expression, were successfully established in the present study to

provide a rapid and reproducible versatile system to screen for

functional RNA silencing suppressors in sugarcane and other plant

species. This system is the first to be developed in sugarcane, and it

combines in vivo, single cell and in planta studies to generate more

information on the kinetics of the suppressor activities.

The use of RNA silencing suppressors, specifically the TBSV-

encoded P19 suppressor, proved to be an efficient strategy in

allowing for high levels of foreign protein production, whether by

transient or stable transgene expression, to counteract the

deleterious effects of RNA silencing in sugarcane. This approach

provides a suitable platform for the cost-effective production of

high-value recombinant proteins for the exploitation of a variety of

biotechnologically attractive plant species, such as sugarcane and

other high biomass producers, as biofactories. Researchers have

previously used the Artichoke mottled crinkle virus-encoded P19

suppressor in Agrobacterium infiltration transient gene expression

systems to produce high yields of biopharmaceuticals, namely a

human antibody against the tumour-associated antigen tenascin-C

[76] and the HIV-1 Nef protein [77] in N. tabacum and N.

benthamiana, respectively.

Materials and Methods

DNA Constructs
The four RNA silencing suppressors, the Tobacco etch virus-

encoded P1/HC-Pro, the Barley stripe mosaic virus-encoded encoded

cb, and the Tomato bushy stunt virus-encoded P19 and its mutant

P19/R43W were kindly provided by colleagues (Legend, Figure

S1). The putative suppressor OrfI was cloned from Sugarcane

bacilliform virus (SCBV) isolates in our laboratory at Texas A&M

AgriLife Research (Weslaco, Texas). All the suppressor genes were

cloned into the vector pAHC20 [78] with no BAR gene, named

pUbi-ALS, under the control of the maize ubiquitin 1 (Ubi)

promoter and the Agrobacterium tumefaciens nopaline synthase

terminator (Tnos) (Figure S3). The P1/HC-Pro fragment was

obtained from pGD-TEV [26] by digestion with XhoI and BamHI

restriction endonucleases; it included 133 bp of 59UTR, P1/HC-

Pro (2289 bp) and partial P3 (248 bp). The cb fragment (527 bp)

was released from pGD-cb [26] with XhoI and PstI. The P19 and

P19/R43W fragments (617 bp each) were excised with NcoI and

SalI from pUC19-wt TBSV P19 and pUC19-P19/R43W [68],

respectively. P19/R43W contains one point mutation at nucleo-

tide 127 where C has been replaced with T [46,68]. The OrfI

fragment (593 bp) of SCBV was amplified by PCR using the

primers SCBVOrfIXhoIHis-F (59-ccgctcgagatgcatcaccatcaccatca-

caaaaccgaatctgagtgg-39) and SCBVOrfIBamHI-R (59-cgggatcct-

tagctgatacgtttcaccatgtg-39) and cloned into pGEM-T Easy (Pro-

mega, Madison, WI) to yield the pGEM/SCBVOrfI plasmid. The

pUbi-ALS plasmid was linearized by SalI to generate the

pUbi:Tnos cassette, which consists of pUC8 with the Ubi

promoter and Tnos terminator. Subsequently, the five suppressor

fragments were blunt ended using DNA Polymerase I, Large

(Klenow) Fragment (New England BioLabs Inc., MA), and cloned

into the linearized pUbi:Tnos cassette. Identity of all assembled

constructs was verified by sequencing. The pUbi:GUS (pAHC27)

[78] and pUbi:EYFP:Tnos [58] constructs (Figure S3) were used

for the expression of the GUS and EYFP reporter genes,

respectively.

Target Tissue, DNA Particle Bombardment and
Transgenic Plants

Stalk tops of field-grown sugarcane (Saccharum spp. hybrid,

commercial variety CP72-1210) were collected during the growing

season at the Texas A&M AgriLife Research Annex Farm

(Weslaco, Texas). No specific permits were required for the

described field study and the location, and the location is not

privately owned or protected in any way. The field study did not

involve endangered or protected species. Young leaf segments

were prepared from the sugarcane stalk tops for transient gene

expression assays as described by Beyene et al [58]. Briefly, leaf

blades and sheaths were removed down to leaf 1 (the top visible

dewlap leaf), and the upper 20–30 cm portion of shoot (leaf roll

stalk) was surface sterilized in 70% (v/v) ethanol for about 20 min.

The two outermost leaf sheathes were discarded, and leaves at

position -3 were unfolded, their midribs removed and their blade

cut into about 2.5 cm2 leaf segments. For transient gene

expression, segments were pre-cultured adaxial side down onto

MS medium [79] with 2,4-dichlorophenoxyacetic acid (2,4-D) at

0.6 mg/L (MS0.6 medium) [80] and casein hydrolysate (500 mg/

L) for 3 days in the dark at 28uC before DNA particle

bombardment.

For stable transgene expression, sugarcane leaf roll discs were

obtained from the stalk tops as described for leaf segments, and

used as explants for DNA particle bombardment. Immature leaf

rolls close to the apical meristem were sliced transversely into

1 mm thick sections and cultured on MS0.6 medium for 10–28

days. Leaf roll discs were preconditioned on MS0.6 osmoticum

(MS0.6 with 36.44 g/L of D-mannitol and 36.44 g/L of D-

sorbitol) for 4 h prior to and after DNA particle bombardment.

Bombarded leaf roll discs were maintained on MS0.6 medium for

7 days in the dark at 28uC for recovery. They were later broken

into small pieces and incubated in the dark at 28uC on callus

induction medium, MS0.6 with Bialaphos (4 mg/L) selection, for

a total of 4 weeks, with sub-culturing every two weeks. For shoot

regeneration, calli from leaf roll discs were grown on MS

supplemented with kinetin (2 mg/L), naphthalene acetic acid

(2 mg/L) and Bialaphos (4 mg/L) for 6–8 weeks under a light

(16 h)/dark (8 h) photoperiod. Green shoots of approximately

2 cm in height were transferred into MS rooting medium

containing indole-3-butyric acid (4 mg/L) and Bialaphos (4 mg/

L). Rooted plantlets were transferred to potting soil (Metromix,

Scotts, Hope, AR) in pots and maintained in the greenhouse.

DNA coating for particle gun bombardment was performed

according to Beyene et al [58]. Briefly, tungsten particles (M17, 1.1

micron; Bio-Rad Laboratories, Hercules, CA) were sterilized in

absolute ethanol and resuspended in nuclease-free water to a final

concentration of 60 ng/mL following the manufacturer’s instruc-

tions. Plasmid DNA was precipitated onto tungsten particles at a

concentration of 2.0 mg (GUS; for stable expression) or 0.5 mg
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(EYFP; for transient expression) DNA per mg of tungsten using

calcium chloride (CaCl2) (2.5 M) and spermidine (0.1 M). The

molecular ratio of the GUS or EYFP plasmid to the suppressor

plasmid was 1:2. The DNA-coated tungsten particles were

resuspended in 40 mL of absolute ethanol, and 4 mL of this

suspension was used per bombardment of the target tissue (leaf

segment or leaf roll). For DNA particle discharging, a modified

particle inflow gun [81] with helium gas (110 psi) was used, as

described previously [52].

Protoplast Isolation and Transfection
Protoplasts were isolated from suspension cell cultures of callus

originating from sugarcane immature leaf roll discs using the

modified methods of Chen et al [64] and Yoo et al [33]. Briefly,

suspension cell cultures (100 mL) were maintained on a rotary

shaker (250 mL flasks; 100 rpm) by weekly subculturing (1:5

dilution) in MS liquid medium with 2,4-D (3.0 mg/L). The freshly

harvested suspension cells (subcultured for 2–3 days) were

incubated overnight at room temperature in enzyme solution

[20 mM MES (pH 5.7), 2.0% (w/v) CellulysinH cellulase (EMD

Biosciences, San Diego, CA), 0.1% (w/v) pectolyase Y-23

(Duchefa Biochemie, St. Louis, MO), 0.4 M D-mannitol,

20 mM potassium chloride (KCl), 10 mM CaCl2 and 0.1% (w/

v) bovine serum albumin]. Protoplasts were washed twice in W5

solution (2 mM MES, 154 mM sodium chloride, 125 mM CaCl2
and 5 mM KCl), pelleted at 1006g for 2 min, and suspended in

4 mM MES-KOH (pH 5.7), 0.4 M D-mannitol and 15 mM

magnesium chloride at a final concentration of 16106 protoplasts

per mL.

Transfection of protoplasts with plasmid DNA was performed

according to Yoo et al [33]. Briefly, protoplasts (16105; 100 mL)

were transferred into a 2-mL microcentrifuge tube (round-bottom)

and mixed gently with plasmid DNA (5 mg of GUS reporter

plasmid and 10 mg of suppressor plasmid in 10 mL volume).

Equivalent volumes of sterile water (mock-transfection) and empty

vector (pUbi-Tnos) were used as controls for transfection.

Protoplasts were mixed gently with a PEG-calcium solution

[40% polyethylene glycol-4000 (PEG), 0.2 M D-mannitol and

100 mM CaCl2] (110 mL) and incubated for 10 min at room

temperature. Transfection was terminated by the dilution of the

mixture in W5 solution (440 mL). Transfected protoplasts were

collected by centrifugation for 2 min at 1006g and suspended in

W5 solution (250 mL). GUS expression was analyzed after

incubation of the protoplasts in the dark for 24 h at room

temperature. The number of protoplasts expressing EYFP was

determined manually using a SZX7 fluorescence stereomicroscope

with a DP71 cooled CCD camera (Olympus, Center Valley, PA)

and a YFP filter (85.5x magnification).

Southern Blot, Northern Blot and Quantitative RT-PCR
Analyses

Genomic DNA and total RNA were isolated from liquid

nitrogen-ground leaf tissues (0.5–1 g fresh weight) collected from

young leaves of 3–4 month-old sugarcane transgenic plants

according to Tai and Tanksley [82] and Damaj et al [83],

respectively.

Genomic DNA (10 mg per lane) was digested overnight with

either HindIII, MspI or HpaII, electrophoresed on 0.8% (w/v)

agarose gels and transferred to nylon membranes (Amersham

Hybond-XL, GE Healthcare Bio-Sciences Corp., Piscataway, NJ)

in an alkaline solution (0.4 M sodium hydroxide) [84]. Total RNA

(15 mg per lane) was fractionated on 1.6% formaldehyde agarose

denaturing gels in HEPES buffer and blotted onto nylon

membranes (Amersham Hybond-XL) in 10x SSC [85].

Pre-hybridization, hybridization, washing and detection of

DNA and RNA gel blots were performed as described by

Sambrook et al [86] and Mangwende et al [85], using Church’s

buffer. The GUS-specific probe was obtained from pUbi:GUS

(Figure S3) by BbsI and SacI digestion, and all of the five RNA

silencing suppressor probes were prepared from their respective

constructs (Figure S3) after digestion with PstI. For methylation

analysis, DNA probes were obtained by further digesting the GUS-

specific probe with MspI into 8 fragments, and by releasing the Ubi

promoter from pUbi:EYFP:Tnos (Figure S3) with HindIII and

NcoI. Probes were labeled with [a-32P] dCTP using the Random

Primers DNA Labeling kit (Invitrogen, Carlsbad, CA) [85].

Analysis of b-glucuronidase Activity
Quantitative b-glucuronidase (GUS) assays were performed on

transfected protoplasts and leaf tissue of transgenic plants using 4-

methylumbelliferyl-b-D-glucuronide (MUG) as a fluorescent

substrate [87].

Transfected protoplasts were harvested by centrifugation at

1006g for 2 min, and stored at -80uC until analysis. Frozen

protoplasts were ruptured in GUS extraction buffer (50 mM

sodium phosphate buffer pH 7.0, 10 mM 2-mercaptoethanol,

10 mM EDTA pH 8.0, and 0.1% [v/v] Triton X-100) (100 mL)

by vortexing for 2 s, and incubated on ice for 5 min. Total soluble

protein extracts were collected by centrifugation at 10006g for

2 min at 4uC.

Leaf tissue (500 mg) of transgenic plants (3–4 month-old),

ground into powder in liquid nitrogen, was suspended in GUS

extraction buffer (750 mL) by brief vortexing and incubated on ice

for 1 h. Total soluble protein extracts were collected by

centrifugation at 12,0006g for 10 min at 4uC.

Fluorometric GUS assay was carried out on total soluble protein

extracts from protoplasts (25 mL) and leaf samples (10 mL of

extract and 15 mL of GUS extraction buffer) in 4 mM MUG assay

buffer (25 mL) by incubation for 60 min at 37uC. The reaction was

stopped by the addition of 0.2 M sodium carbonate (950 mL).

Fluorescence was measured at 455 nm (emission) and 365 nm

(excitation) using a VersaFluorTM Fluorometer (Bio-Rad Labora-

tories). Protein concentrations were determined by the Lowry

assay method using the DC protein assay kit (Bio-Rad Labora-

tories). Protein extracts from protoplasts transfected with empty

vector and from leaves of non-transgenic plants were used as a

negative control.

EYFP Imaging and Analysis
Images (4,08063,072 pixels) of sugarcane young leaf segments

expressing EYFP were collected every 6 h post-bombardment for

at least 240 h by a SZX7 fluorescence stereomicroscope with a

DP71 digital camera (Olympus) fitted with YFPHQ filters

(excitation of 490–500 nm and emission of 515–560 nm) under

15x magnification. EYFP expression was quantified using the

ImageJ version 1.42u software according to the revised method of

Chiera et al [59,60] and as described by Beyene et al [58]. Briefly, a

series of images taken over time from each sample were saved in

separate folders and imported into AdobeH ImageReadyTM as

frames. The sequence of images was then resized to 8006600

pixels and exported as ‘‘mov’’ files. For image analysis, ‘‘mov’’ files

were imported into the ImageJ software, and a representative

4006300 pixel area was selected and cropped. This 4006300

pixel area was used as the original image for calculating the EYFP

foci count and EYFP expression level. Subsequently, all image

series were separated into red, green and blue channels and their

background was corrected. For further analysis, only the green

channel was used, since the contribution of the red channel was
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found to be lower than 5% of total EYFP expression. Plugins for

quantification of EYFP expression and foci count were kindly

provided by J. Chiera and C. Hernandez-Garcia (Department of

Horticulture and Crop Sciences, The Ohio State University,

Columbus, Ohio). EYFP expression was calculated by multiplying

the mean grayscale value per pixel by the number of EYFP

expressing pixels with the resulting EYFP expression values being

unitless. The number of EYFP expressing foci was determined by

counting the number of spots bigger than ten pixels.

Statistical Analysis
Data were collected from 2–3 independent experiments, with 6–

10 replicates per experiment, and subjected to an analysis of

variance (ANOVA) using the General Linear Model procedure of

the Statistical Analysis System 8.1 (SAS Institute Inc., Cary, NC).

Mean separation was performed using the Student-Newman-

Keuls (SNK) test.

Supporting Information

Figure S1 Comparison of suppressors in Nicotiana
benthamiana. The plasmids carrying the silencing suppressors

P1/HC-Pro (HcPro) and cb are pGD binary vectors specifically

generated to be used with Agrobacterium, and modified from the

binary vector pCAMBIA 1303, with a multiple cloning site

downstream of a Cauliflower mosaic virus 35S promoter, and

upstream of an Agrobacterium nopaline synthase poly(A) signal

[88,89]. P19 is expressed from the binary vector pCass4N, a

derivative of a pBin19 binary vector [46]. The plasmid carrying

the Green Fluorescent Protein (GFP) gene is 35S-GFP (provided by

David C. Baulcombe, University of Cambridge, Cambridge, UK)

[90]. All of the silencing suppressors were infiltrated into Nicotiana

benthamiana using the Agrobacterium strain EHA [91], which

exhibited a less virulent host response than others (data not

shown). Three week-old N. benthamiana plants were infiltrated with

35S-GFP and silencing suppressors at an optical density of 0.8,

mixed as indicated. The plants were then photographed at

different days post-infiltration (dpi) under a 488 nm wavelength

UV light with a 4 s exposure and no flash, to monitor the levels of

the fluorescent GFP expressed. The plants in the first column,

labeled EHA, are those infiltrated with untransformed Agrobacter-

ium, as a negative control. When necessary, supplementation with

Agrobacterium EHA was done to ensure that each leaf was

inoculated with 0.5 mL of bacterial culture. For each suppressor,

the expression was verified by immuno-blotting (data not shown).

(TIF)

Figure S2 Suppression of silencing in onion epidermal
cells. (a) Example of the expression of the gene encoding the

Enhanced Yellow Fluorescent Protein (EYFP) in a single onion cell

at two days post-bombardment. At 1–2 h before transformation,

onion epidermal peels were prepared under sterile conditions

using pointed forceps and placed adaxial side up onto Murashige

and Skoog basal salt mixture (MS) media [79] with 0.2 M D-

mannitol and 0.2 M D-sorbitol (MS osmoticum). Two explants

were used per plate, and each plate was replicated 4–5 times.

Genes encoding the suppressors were under control of the maize

ubiquitin 1 promoter, as described in Materials and Methods.

Plasmid DNA of the appropriate construct was introduced into

onion cells using a PDS-1000/He particle delivery system.

Bombardment was performed at 9 cm from targets using gold

particles (1.0 micron; Bio-Rad Laboratories) coated with plasmids

expressing EYFP or viral suppressors under 27 inch Hg and 1100

psi helium pressure. Plasmid DNA was precipitated onto the gold

particles using calcium chloride (2.5 M) and spermidine (0.1 M).

For co-introduction of two and three different plasmids, 4.5 mg

and 3.0 mg of each plasmid was used, respectively. The

bombarded epidermal peels were incubated on MS osmoticum

for 48–72 h at 25uC in the dark. Fluorescence was monitored

using a fluorescence binocular microscope Olympus SZX10 with

an excitation wavelength of 490 nm. (b) Comparison of different

suppressors. Similarly sized onion peel sections were bombarded

as described for (a), and the number of fluorescent cells was

counted.

(TIF)

Figure S3 Map of suppressor and reporter gene con-
structs for stable sugarcane transformation. For genetic

construct assembly, refer to Materials and Methods. P1/HC-Pro is

derived from Tobacco etch virus, cb from Barley stripe mosaic virus, P19

and P19/R43W, a mutant of P19, from Tomato bushy stunt virus, and

SCBV OrfI from Sugarcane bacilliform virus; GUS: b-glucuronidase;

EYFP: Enhanced Yellow Fluorescent Protein; pUbi: Maize

ubiquitin 1 promoter; Tnos: Agrobacterium tumefaciens nopaline

synthase terminator. Boxes are not drawn to scale.

(TIF)

Figure S4 Multicolor fluorescence imaging of cells in
sugarcane young leaf segments expressing the EYFP
reporter gene, under low optical magification. Images of

EYFP expression were collected with a SteReo Lumar.V12

fluorescence stereomicroscope and an AxioCam ICc3 digital

camera (15x magnification) (Carl Zeiss) from young leaf segments

at 48 h after bombardment with EYFP (pUbi:EYFP:Tnos; Figure

S3) (0.5 mg per shot) (bar = 0.5 mm). Vector with no EYFP

(pUbi:Tnos; Figure S3) and water were used as negative controls.

Images were taken under bright light as well as with filters for

rhodamine (filter model FS20) (excitation: 546/12 nm, emission:

575–640 nm), eGFP (filter model FS38) (excitation: 470/40 nm,

emission: 525/50 nm) and YFP (filter model FS46 HE) (excitation:

500/25 nm, emission: 535/30 nm). eGFP and YFP images were

taken under 700 ms exposure, and rhodamine images were taken

under autoexposure.

(TIF)

Figure S5 Multicolor fluorescence imaging of cells in
sugarcane young leaf segments expressing the EYFP
reporter gene, under high optical magnification. Images

of EYFP expression were collected with a SteReo Lumar.V12

fluorescence stereomicroscope and an AxioCam ICc3 digital

camera (150x magnification) (Carl Zeiss) from young leaf segments

at 48 h after bombardment with EYFP (pUbi:EYFP:Tnos; Figure

S3) (0.5 mg per shot) (bar = 0.05 mm). Vector with no EYFP

(pUbi:Tnos; Figure S3) and water were used as negative controls.

Images were taken under bright light as well as with filters for

rhodamine (filter model FS20) (excitation: 546/12 nm, emission:

575–640 nm), eGFP (filter model FS38) (excitation: 470/40 nm,

emission: 525/50 nm) and YFP (filter model FS46 HE) (excitation:

500/25 nm, emission: 535/30 nm). Overlaid images were gener-

ated from merged images of bright light and YFP filter. eGFP and

YFP images were taken under 700 ms exposure, and rhodamine

images were taken under autoexposure.

(TIF)

Figure S6 Quantitative assessment of transient expres-
sion of the EYFP reporter gene in sugarcane young leaf
segments. EYFP expression as measured by foci count (a) and

expression level (b) was monitored in 3 day-pre-cultured young

leaf segments at 48 h after bombardment with EYFP (pUb-

i:EYFP:Tnos; Figure S3) (0.5 mg per shot). Vector with no EYFP

(pUbi:Tnos; Figure S3) and water were used as negative controls.
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Values represent means with standard error from three indepen-

dent experiments and 10 replicates per experiment. Means with

the same letter are not significantly different (p.0.05). Quantita-

tion of EYFP foci counts and expression levels is provided in

Materials and Methods.

(TIF)

Figure S7 Transient expression of the EYFP reporter
gene in sugarcane protoplasts. (a) A seven day-old leaf roll

disc growing on MS shoot regeneration medium (9.5x magnifica-

tion, bar = 1.0 mm); (b) Callus regenerated from leaf roll disc after

subculture on MS medium for 4–6 weeks and grown in MS liquid

medium to obtain suspension cells (12x magnification,

bar = 1.0 mm); (c) Protoplasts isolated from suspension cells under

bright light (400x, bar = 20 mm); (d) and (e) Protoplasts transfected

with the pUbi:EYFP:Tnos vector expressing EYFP under bright

light (100x magnification) and EYFP filter (100x magnification),

respectively (bar = 100 mm); (f) Overlaid image of (d) and (e)

showing transfection efficiency; a transfected protoplast is

indicated by an arrow (bar = 100 mm). Microphotographs of (a)

and (b) were collected using an Olympus SZX7 fluorescence

microscope with a DP71 camera. Microphotographs of (c), (d), (e)

and (f) were obtained with an Olympus BX51 fluorescence

microscope with a DP72 camera.

(TIF)

Figure S8 Effect of viral RNA silencing suppressors on
transient expression of the EYFP reporter gene in
sugarcane young leaf segments. Images of EYFP expression

were collected with a SZX7 fluorescence stereomicroscope and a

DP71 digital camera (15x magnification) (Olympus) from the same

young leaf segments at 24–240 h after co-bombardment with

EYFP (pUbi:EYFP:Tnos; Figure S3) (0.25 mg) and each of the

RNA silencing suppressors (driven by the Ubi promoter, Figure

S3), HC-Pro, cb, P19, P19/R43W and SCBV OrfI (0.5 mg)

(bar = 0.5 mm). Vector with no suppressor (pUbi:Tnos; Figure

S3) was used as a negative control.

(TIF)
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