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Abstract
Geographic patterns of genetic variation within modern populations, produced by complex

histories of migration, can be difficult to infer and visually summarize. A general conse-

quence of geographically limited dispersal is that samples from nearby locations tend to be

more closely related than samples from distant locations, and so genetic covariance often

recapitulates geographic proximity. We use genome-wide polymorphism data to build “geo-

genetic maps,” which, when applied to stationary populations, produces a map of the geo-

graphic positions of the populations, but with distances distorted to reflect historical rates of

gene flow. In the underlying model, allele frequency covariance is a decreasing function of

geogenetic distance, and nonlocal gene flow such as admixture can be identified as anoma-

lously strong covariance over long distances. This admixture is explicitly co-estimated and

depicted as arrows, from the source of admixture to the recipient, on the geogenetic map.

We demonstrate the utility of this method on a circum-Tibetan sampling of the greenish war-

bler (Phylloscopus trochiloides), in which we find evidence for gene flow between the adja-

cent, terminal populations of the ring species. We also analyze a global sampling of human

populations, for which we largely recover the geography of the sampling, with support for

significant histories of admixture in many samples. This new tool for understanding and

visualizing patterns of population structure is implemented in a Bayesian framework in the

program SpaceMix.

Author Summary

In this paper, we introduce a statistical method for inferring, for a set of sequenced sam-
ples, a map in which the distances between population locations reflect genetic, rather
than geographic, proximity. Two populations that are sampled at distant locations but that
are genetically similar (perhaps one was recently founded by a colonization event from the
other) may have inferred locations that are nearby, while two populations that are sampled
close together, but that are genetically dissimilar (e.g., are separated by a barrier), may
have inferred locations that are farther apart. The result is a “geogenetic”map in which
the distances between populations are effective distances, indicative of the way that
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populations perceive the distances between themselves: the “organism’s-eye view” of the
world. Added to this, “admixture” can be thought of as the outcome of unusually long-dis-
tance gene flow; it results in relatedness between populations that is anomalously high
given the distance that separates them. We depict the effect of admixture using arrows,
from a source of admixture to its target, on the inferred map. The inferred geogenetic map
is an intuitive and information-rich visual summary of patterns of population structure.

Introduction
There are many different methods to learn how population structure and demographic pro-
cesses have left their mark on patterns of genetic variation within and between populations.
Model-based approaches focus on developing a detailed view of the migrational history of a
small number of populations, often assuming one or a small number of large, randomly mating
populations (i.e. little or no geographic structure). There has been considerable recent progress
in this area, using a variety of summaries such as the allele frequency spectrum [1–3], or
approximations to the coalescent applied to sequence data [4–6].

Other approaches are designed only to visualize patterns of genetic relatedness and popula-
tion structure, without using a particular population genetic model. Such methods can deal
with many populations or individuals as the unit of analysis. Examples of this second set of
methods include clustering methods [7–9] and reduced dimensionality representations of the
data (e.g. [10–12]).

A third set of methods that describe relatedness between populations by constructing a
“population phylogeny” was pioneered by Cavalli-Sforza and Edwards [13], as were methods
to test whether a tree is a good model of population history [14] (see [15] for a review). Tree-
based approaches are appealing because trees are easy to visualize and explain, but the underly-
ing assumptions (unstructured populations that split at discrete points in time) rarely hold
true.

Recently, there has been a resurgence of interest in these tree-based methods. Some use pop-
ulation trees as a null model to test and quantify the signal of admixture between samples [16].
Others, such as TreeMix [17] and MixMapper [18], visualize population relationships using a
directed acyclic graph; for instance, TreeMix connects branches in a population tree with addi-
tional edges to explain excess covariance between groups of populations.

There has also been renewed interest in methods for dimensionality reduction for the visu-
alization of patterns of genetic variation [11], especially Principal Components Analysis (PCA;
also pioneered by Cavalli-Sforza [19]). Examining such low-dimensional visual summaries has
become an indispensable step in the analysis of modern genomic datasets of thousands of loci
typed in tens or hundreds of samples. Generally, these visualizations are constructed by plot-
ting the first few eigenvectors of the covariance matrix of normalized allele frequencies against
each other.

Both PCA and tree-based methods are valuable as genetic inference and visualization tools,
but both also suffer from serious limitations. Because gene flow is frequently pervasive, patterns
of relatedness between samples may often be only poorly represented by a tree-based model.
PCA is more flexible, as it assumes no explicit model of population-genetic processes, simply
describing the axes of greatest variance in the average coalescent times between pairs of sam-
ples [20]. This allows PCA to describe more geographically continuous relationships: applied
to human populations within continents, it often shows a close correspondence to geographic
locations [21, 22]. However, the interpretation of PCA is more difficult, as the results can be
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strongly affected by the size and design of sampling, and the linearity and orthogonality
requirements of the PC axes can lead to counterintuitive results [23–25].

What is desired, then, is a method for inferring and visualizing patterns of population differ-
entiation that can recapitulate complex, non-hierarchical structures, while also admitting
simple and intuitive interpretation. Since gene flow and population movements are often con-
strained by geography, it is natural to base such a method in a geographic framework. There is
a rich history of population genetics theory for populations distributed in continuous space
[26–29], as well as exciting new developments in the field [30]. The pattern of increasing
genetic differentiation with geographic distance was termed “Isolation by Distance” by Wright
[31], and is ubiquitous in natural populations [32]. Descriptive models of such patterns rely
only on the weak assumption that an individual’s mating opportunities are spatially limited by
dispersal; a large set of models, ranging from equilibrium migration-drift models to non-equi-
librium models, such as recent spatial expansions of populations, give rise to the empirical pat-
tern of isolation by distance.

In this paper, we present a statistical framework for studying the spatial distribution of
genetic variation and genetic admixture based on a flexible parameterization of the relationship
between genetic and geographic distances. Within this framework, the pattern of genetic relat-
edness between the samples is represented by a map, in which inferred distances between sam-
ples are proportional to their genetic differentiation, and long distance relatedness (in excess of
that predicted by the map) is modeled as genetic admixture. These ‘geogenetic’maps are sim-
ple, intuitive, low-dimensional summaries of population structure, and provide a natural
framework for the inference and visualization of spatial patterns of genetic variation and the
signature of genetic admixture. The implementation of this method, SpaceMix, is available at
https://github.com/gbradburd/SpaceMix.

Results

Data
The genetic data we model consist of allele counts at L unlinked, bi-allelic single nucleotide
polymorphisms (SNPs), sampled across K populations. After arbitrarily choosing an allele to
count at each locus, denote the number of counted alleles at locus ℓ in population k as Ck,ℓ, and
the total number of alleles observed as Sk,ℓ. The sample frequency at locus ℓ in population k is

f̂ k;‘ ¼ Ck;‘=Sk;‘. Although we will refer to “populations”, each could consist of a single individual

(Sk,ℓ = 2 for a diploid). We will depict results as coordinates on a map; however, the method
does not require user-specified sampling locations.

We first compute standardized sample allele frequencies at locus ℓ in population k, by

X̂ k;‘ ¼ ðf̂ k;‘ � �f ‘Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f ‘ð1� �f ‘Þ

q
; ð1Þ

where f̂ k;‘ is the sample allele frequency at locus ℓ in population k, and �f ‘ is the average of the K

sample allele frequencies, weighted by mean population size. This normalization is widely used
[11, 33]; mean-centering makes the result invariant to choice of which allele to count at each

locus, and dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f ‘ð1� �f ‘Þ

q
makes each locus have roughly unit variance if the amount

of drift since a common ancestor is small.
We work with the empirical covariance matrix of these standardized sample allele frequen-

cies, calculated across loci, namely, bO ¼ ð1=LÞX̂ X̂ T . Using the sample mean to mean-center X̂
has implications on their covariance structure, discussed in the Methods (“The standardized
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sample covariance”). For clarity, here we proceed as if �f ‘ were instead an unobserved, global
mean allele frequency at locus ℓ.

Spatial Covariance Model
We wish to model the distribution of alleles among populations as the result of a spatial pro-
cess, in which migration moves genes locally on an unobserved landscape. Migration homoge-
nizes those differences between populations that arise through genetic drift; populations with
higher levels of historical or ongoing migration share more of their demographic history, and
so have more strongly correlated allele frequencies.

We assume that the standardized sample frequencies are generated independently at each
locus by a spatial process, and so have mean zero and a covariance matrix determined by the
pairwise geographic distances between samples. To build the geogenetic map, we arbitrarily
choose a simple and flexible parametric form for the covariance matrix in which covariance
between allele frequencies decays exponentially with a power of their distance [34–36]: the

covariance between standardized population allele frequencies (i.e. X̂ values) between popula-
tions i and j is assumed to be, for i 6¼ j,

FðDi;jÞ ¼
1

a0
exp �ða1Di;jÞa2
� �

; ð2Þ

where Di,j is the geogenetic distance between populations i and j, α0 controls the within-popu-
lation variance (or the covariance when distance between points is 0, known as a “sill” in the
geospatial literature), α1 controls the rate of the decay of covariance per unit pairwise distance,
and α2 determines the shape of that decay. Within-population variance may vary across sam-
ples due to either noise from a finite sample size or demographic history unique to that sample
(e.g., bottlenecks or endogamy). To accommodate this heterogeneity we introduce population-
specific variance terms, resulting in the covariance matrix for standardized sample frequencies

Oi;j ¼ FðDi;jÞ þ di;j
1
�Si
þ Zi

� �
; ð3Þ

where δi,j = 1 if i = j and is 0 otherwise, ηk is a nonnegative sample-specific variance term (nug-
get) to account for variance specific to population k that is not accounted for by the spatial
model, and �Sk is the mean sample size across all loci in population k, so that 1= �Sk accounts for
the variance introduced by sampling within the population.

The distribution of the sample covariance matrix Ô is not known in general, but the central
limit theorem implies that if the number of loci is large, it will be close to Wishart. Therefore,

we assume that Ô is Wishart distributed with degrees of freedom equal to the number of loci
(L) used and mean equal to the parametric form O given in Eq (3). We denote this by

PðbO j OÞ ¼ WðLbO j O; LÞ: ð4Þ

Note that if the standardized sample frequencies are Gaussian, then the sample covariance

matrix is a sufficient statistic, so that calculating the likelihood of bO is the same as calculating
the probability of the data up to a constant. Handily, it also means that once the sample covari-
ance matrix has been calculated, all other computations do not scale with the number of loci,
making the method scalable to genome size datasets. This modeling approach rests on the
assumption that the loci in the dataset are independent, that is, not in linkage disequilibrium
(LD). Linkage disequilibrium between loci included in the dataset will have the effect of
decreasing the true number of degrees of freedom, effectively making this likelihood calculation
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a composite likelihood and artificially increasing confidence in parameter estimation. We dis-
cuss possible ways to accommodate linkage disequilibrium further in the Discussion.

Location Inference
Non-equilibrium processes like long distance admixture, colonization, or population expan-
sion events will distort the relationship between covariance and distance across the range, as
will barriers to dispersal on the landscape. To accommodate these heterogeneous processes we
infer the locations of populations on a map that reflects genetic, rather than geographic, prox-
imity. To generate this map, we treat populations’ locations (i.e. coordinates in the geogenetic
map) as parameters that we estimate with a Bayesian inference procedure (described in the
Methods). These location parameters for each population are denoted by G, and determine the
matrix of pairwise geogenetic distances between populations, D(G), which together with the
parameters~a and η determine the parametric covariance matrix O (given by Eq (3)). We
acknowledge this dependence by writing Oð~a;DðGÞ; ZÞ.

The prior distributions on the parameters that control the shape and scale of the decay of
covariance with distance (~a and η) are given in the Methods. The priors on the geogenetic loca-
tions, G, are independent across populations; because the observed locations naturally inform
the prior for populations locations, we use a very weak prior on population k’s location param-
eter (Gk) that is centered around the observed location. This prior on geogenetic locations also
encourages the resulting inferred geogenetic map to be anchored in the observed locations and
to represent (informally) the minimum distortion to geographic space necessary to satisfy the
constraints placed by genetic similarities of populations. In practice, we also compare results to
those produced using random locations as the “observed” locations, and can change the vari-
ance on the spatial priors to ascertain the effect of the prior on inference.

We then write the posterior probability of the parameters as

PðG;~a; Z j bO; LÞ / PðbO j Oð~a;DðGÞ; ZÞÞPð~aÞPðGÞPðZÞ; ð5Þ

where P() denotes the various priors, and the constant of proportionality is the normalization
constant.

We then use a Markov chain Monte Carlo algorithm to estimate the posterior distribution
on the parameters as described in more detail in the Methods.

Simulations
We first apply the method to several scenarios simulated using the coalescent simulator ms
[37]. Each scenario is simulated using a stepping stone model in which populations are
arranged on a grid with symmetric migration to nearest neighbors (eight neighbors, including
diagonals) with 10 haploid individuals sampled from every other population at 10,000 unlinked
loci (for details on all simulations, see Methods and Supplementary Materials). The basic sce-
nario is shown in Fig 1a, which is then embellished in various ways. In the SpaceMix analysis
of each simulated dataset, we treat population locations as unknown parameters to be esti-
mated as part of the model, and center the priors on each population’s location at a random
point. The resulting geogenetic maps are generated using the parameters that have maximum
posterior probability. Since overall translation, rotation, and scale are nuisance parameters, we
present inferred locations after a Procrustes transformation (best-fit rotation, translation, and
dilation) to match the coordinates used to simulate the data. The axes of the resultant maps are
presented as Northings and Eastings, as population locations in this geogenetic space no longer
conform to the latitude or longitude of the original sampling locations. In S1 Fig, we show the
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relationship between genetic covariance, geographic distance, and inferred geogenetic distance
for these simulations.

The lattice scenarios, illustrated in Figs 1 and 2, are: homogeneous migration rates across
the grid; a longitudinal barrier across the center of the grid; a series of recent expansion events;
and an admixture event between opposite corners of the lattice. In the simple lattice scenario
with homogeneous migration rates (Fig 1a and 1d), SpaceMix recovers the lattice structure
used to simulate the data (i.e., populations correctly find their nearest neighbors). After adding
a longitudinal barrier to dispersal across which migration rates are reduced by a factor of 5
(Fig 1b), the two halves of the map are pushed farther away from one another, reflecting the
decreased gene flow between them.

In the expansion scenario, in which all populations in the last five columns of the grid have
expanded simultaneously in the immediate past from the nearest population in their row (Fig
1c), the daughter populations of the expansion event cluster with their parent populations,
reflecting the higher relatedness (per unit of geographic separation) between them.

In all scenarios, populations at the corners of the lattice are pulled in somewhat because
these have the least amount of data informing their relative placements, and because, without
nearest-neighbor migration from farther outside the lattice, they are in fact more closely related
to their neighbors.

We also examined the effects of uneven sampling on inference by subsampling a 9 × 9 grid
into a variety of subsets that had successfully greater ‘uneven-ness’ of sampling, and comparing
PCA and SpaceMix on these unevenly subsampled datasets. The results of these analyses are
shown in S3–S9 Figs. As sampling becomes more uneven, the maps produced by plotting

Fig 1. Simulation scenarios and their corresponding geogenetic maps estimated with SpaceMix. The smaller circles in the simulation scenarios
represent unsampled populations. a) the configuration of simulated populations on a simple lattice with spatially homogeneous migration rates (a plot
showing the first two Principal Component axes for this simulation is given in a); b) a lattice with a barrier along the center line of longitude, across which
migration rates are reduced by a factor of 5; c) a lattice with recent expansion on the eastern margin; d) the maximum a posteriori (MAP) estimate from the
posterior distribution of population locations under the scenario in 1a; e)MAP estimate of population locations under the scenario in 1b; f)MAP estimate of
population locations under the scenario in 1c.

doi:10.1371/journal.pgen.1005703.g001
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Principal Component axis 1 (PC1) against PC2 diverge more and more from the true geo-
graphic configuration of the samples (S10 Fig), quickly resembling the triangular shape com-
monly seen in PCA plots of real datasets. SpaceMix also becomes less certain about placement
of some samples, but to a much smaller extent, and in all scenarios SpaceMix produces geoge-
netic maps that are more faithful to the true geographic configuration of the samples than
those generated using PCA.

We next simulated a long-distance admixture event on the same grid, by sampling half of
the alleles of each individual in the northeast corner population from the southwest corner
population (Fig 2a). We then ran a SpaceMix analysis in which the locations of these popula-
tions were estimated (Fig 2b). The admixture creates excess covariance over anomalously long
distances, which is clearly difficult to accommodate with a two-dimensional geogenetic map.
Fig 2b shows the torturous lengths to which the method goes to fit a good geogenetic map: the

Fig 2. Simulation scenarios and SpaceMix inference. a) a lattice with a recent admixture event between population 1 in the southwest corner and
population 30 in the northeast corner, so that population 30 is drawing half of its ancestry from population 1 (a plot showing the first two Principal Component
axes for this simulation is given in S2 Fig panel b); b) the estimate of population locations under this scenario; c) the estimate of population locations and their
sources of admixture under this scenario. The 95% credible interval onw30 is 0.36–0.40. In panel (c), the width and opacity of the admixture arrows are drawn
proportional the admixture proportions.

doi:10.1371/journal.pgen.1005703.g002
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admixed population 30 is between population 1, the source of its admixture, and populations
24, 25, and 29, the nearest neighbors to the location of its non-admixed portion. However, this
warping of space is difficult to interpret, and would be even more so in empirical data for
which a researcher does not know the true demographic history.

Inference of Spatial Admixture
To incorporate recent admixture, we allow each allele sampled in population k to have a proba-
bility wk (0� wk � 0.5) of being sampled from location G�

k , which we refer to as population k’s
source of admixture, and a probability 1 − wk of being sampled from location Gk. With no nug-
get, each allele would be sampled independently, but the nugget introduces correlations
between the alleles sampled in each population.

With this addition, the parametric covariance matrix before given by Eq (3) becomes a func-
tion of all the pairwise spatial covariances between the locations of populations i and j and the
points from which they draw admixture (illustrated in Fig 3); now, we model the covariance

between X̂ i;‘ and X̂ j;‘, for each ℓ, as

O�
i;j ¼ ð1� wiÞð1� wjÞFðDi ; j Þ

þ wið1� wjÞFðDi� ; j Þ
þ wjð1� wiÞFðDi ; j� Þ
þ wiwjFðDi� ; j� Þ
þ di;jðZi þ 1=�SiÞ

ð6Þ

where D is the 2k × 2kmatrix of pairwise distances between all inferred locations and sources
of admixture, and for readability, we denote, e.g., FðDðGi;G

�
j ÞÞ, as F(Di,j�). The spatial covari-

ance, F(D), is as given in Eq (2), and we reintroduce the nugget, ηk, and the sample size effect,
1= �Sk , for each population as above in Eq (3).

We proceed in our inference procedure as before, but now with the locations of the sources
of admixture and the admixture proportions to infer. The likelihood of the sample covariance
matrix is exactly as before in Eq (4), except with O replaced by O�. The posterior probability of
these parameters can be expressed as a function of this parametric admixed covariance, O�,

PðG;G�;w;~a; Z j bO; LÞ / PðbO j O�ÞPð~aÞPðGÞPðG�ÞPðwÞPðZÞ ð7Þ

as specified by the parameters w, G�,~a, and η, and the inferred locations, G. We place a weak
spatial prior on the sources of admixture, G� around the centroid of the observed locations.
The admixture proportions, w, are capped at 0.5, to ensure identifiability, and are heavily
weighted towards small values to be conservative with respect to admixture inference. These
priors are detailed in the Methods.

The models described above may be used in various combinations. In the simplest model,
locations are not estimated for populations, nor do they draw admixture; the only parameters
to be estimated are those of the spatial covariance function given in Eq (2), and the population-
specific variance terms (ηi). In the most complex model, population locations, the locations of
their sources of admixture, and the proportions of admixture are all estimated jointly in addi-
tion to the parameters of the spatial covariance function and the population specific variances.
We discuss the utility of these different models in the Methods.

Allowing admixture gives sensible results for the scenario of Fig 2a; in the resulting map, the
only population that draws substantial admixture is the one that is actually admixed, and it
draws admixture (95% CI: 0.36—0.40) from the correct location (Fig 2c).
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A more subtle simulated admixture scenario, with admixture proportion of 10% across a
geographic barrier, is shown Fig 4a. The resulting SpaceMix map (Fig 4b), separates the east
and west sides of the grid to accommodate the effect of the barrier, and the admixed population
(population 23) draws admixture from very close to its true source (population 13), and in
close to the correct amount (�wð23Þ ¼ 0:05; 95% CI = 0.02–0.08).

Another difficult scenario is shown in Fig 4c, where 40% admixture has occurred between
two populations immediately adjacent to each other on either side of a barrier. Here, the
admixed population 18 is correctly identified as admixed (Fig 4d); however, its intermediate
genetic relationships are explained through an estimated location close to its true admixture
source (population 13) and source of admixture (95% CI: 0.04–0.14) on the far margin of the
half of the grid on its own side of the barrier. Because there is no sampled intervening popula-
tion between admixed population 18 and its source of admixture 13, the model is able to
explain population 18’s higher covariance with population 13 via its estimated location G(18),
rather than via that of its source of admixture G�

ð18Þ. In each of these scenarios, the estimated

admixture proportion is less than that used to simulate the data. This is due to the stringent
prior we place against admixture. We discuss these examples further in the Methods.

Empirical Applications
To demonstrate the applications of this novel method, we analyzed population genomic data
from two systems: the greenish warbler ring species complex, and a global sampling of contem-
porary human populations. Maps showing our sampling in these two systems are given in
Fig 5, and information on the specific samples included is given in the Supplementary Materi-
als, S1 and S2 Tables. For all analyses presented below, we centered the priors on location

Fig 3. An illustration of the form of the admixed covariance. Following Eq (6), populations i and j are
drawing admixture in proportionswi andwj from their respective sources of admixture, i* and j*, and all
pairwise spatial covariances (the F’s) are shown. In this cartoon example, population j is drawing more
admixture from its source j* than i is from its source i* (i.e.,wj >wi).

doi:10.1371/journal.pgen.1005703.g003
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parameters at randomly chosen locations rather than at the observed geographical locations.
Each geogenetic map shown here is the maximum a posteriori estimate (over all parameters),
transformed by rotation, translation, and scaling to best fit inferred locations (G) to the
observed latitude and longitudes (a full Procrustes transformation). As with the simulations
described above, the axes of the geogenetic maps are presented in Eastings and Northings.

Greenish Warblers
The greenish warbler (Phylloscopus trochiloides) species complex is broadly distributed in their
breeding habitat around the Tibetan plateau, and exhibits gradients around the ring in a range
of phenotypes including song, as well as in allele frequencies [38–40]. At the northern end of
the ring in central Siberia, where the eastern and western arms of population expansion meet,
there are discontinuities in call and morphology, as well as reproductive isolation and a genetic
discontinuity [39, 41]. It is proposed that the species complex represents a ring species, in
which selection and/or drift, acting in the populations as they spread northward on either side
of the Tibetan plateau, have led to the evolution of reproductive isolation between the terminal
forms.

The question of whether it fits the most strict definition of a ring species focuses on whether
gene flow around the plateau has truly been continuous throughout the history of the expan-
sion or if, alternatively, discontinuities in migration around the species complex’s range have

Fig 4. Simulation scenarios and inferred population maps for two different admixture scenarios.
Green arrows denote admixture from a source to a target population in the simulation. a) lattice with a barrier
and an admixture event (10%) across the barrier to an ‘inland’ population; b) the inferred population map for
the scenario in (a), where the admixed population 23 is the only population drawing non-negligible admixture
(95%CI: 0.02-0.08); c) lattice with a barrier and an admixture event (40%) across the barrier to a ‘neighbor’
population on the border of the barrier; (d) the inferred population map for the scenario in (c), where the
admixed population 18 is the only population drawing non-negligible admixture (95%CI: 0.04–0.14).

doi:10.1371/journal.pgen.1005703.g004
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facilitated periods of differentiation in genotype or phenotype without gene flow [42–44] (see
Wake and Schneider [45] for discussion). Alcaide et. al [46] have suggested that the greenish
warbler species complex constitutes a ‘broken’ ring species, in which historical discontinuities
in gene flow have facilitated the evolution of reproductive isolation between adjacent forms.

To investigate this question, we applied SpaceMix to the dataset from Alcaide et. al [46],
consisting of 95 individuals sampled at 22 distinct locations and sequenced at 2,334 SNPs,
of which 2,247 were bi-allelic and retained for SpaceMix runs. These loci were treated as

Fig 5. Sampling maps of both empirical systems analyzed. (a) greenish warbler subspecies distributions
of all 22 sampled populations (breeding grounds), consisting of 95 individuals and colored by subspecies
[46]; (b) sampling map for human dataset, consisting of 1,490 individuals from 95 population samples [50].

doi:10.1371/journal.pgen.1005703.g005
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independent (i.e., un-linked). We discuss ways to accommodate linkage disequilibrium further
in the Discussion.

We first ran SpaceMix on the population dataset, with no admixture. The resulting inferred
map (Fig 6a) largely recapitulates the geography of the sampled populations around the ring.
The Turkish population (TU, Phylloscopus trochiloides ssp. nitidus) clusters with the popula-
tions in the subspecies ludlowi, due to its recent expansion, but also has a relatively high nugget
parameter (see S11 Fig panel a), reflecting the population history it does not share with its
ludlowi neighbors. In the north, where the twin waves of expansion around the Tibetan Plateau
are hypothesized to meet, the inferred geogenetic distance between populations from opposite
sides of the ring was much greater than their observed geographic separation, reflecting the
reproductive isolation between these adjacent forms (see S12 Fig).

We then ran the method allowing admixture (Fig 6b). The only population sample with
appreciable admixture is the Stolby sample (ST; w = 0.19, 95% credible interval: 0.146-0.238;
S13 Fig). This sample is known to be composed of an equal mixture of eastern plumbeitarsus
and western viridanus individuals [46]. Multiple runs agreed well on the level of admixture of
the Stolby sample (see S14 Fig). What does vary across runs is whether the Stolby sample has
an estimated location by the viridanus cluster while drawing admixture from near the plumbei-
tarsus cluster, or vise versa; however, this is to be expected given the 50/50 nature of the sam-
ple’s makeup (S14 Fig). The somewhat intermediate position of the Stolby sample, and its non-
50/50 admixture proportion, likely partially reflect the influence of the priors (S15 Fig).

We repeated these analyses (with and without admixture) with a dataset in which we treated
each individual as the unit of analysis (Fig 7). No individual drew appreciable admixture (see
S16 Fig for admixture proportions), and so we discuss the results with admixture (those with-
out admixture are nearly identical, see S17–S19 Figs). As with the analysis on multi-sample
populations, the results approximately mirror the geography of the individuals.

There are, however, a number of obvious departures in the individual geogenetic map from
the population map. The most obvious is that the location of a pair of nitidus samples (in pur-
ple) is very far from the rest of the samples. These individuals appear to be closely related, and
in the population-level analysis, this increase in shared ancestry was accounted for by a large
nugget for the nitidus population (S11 Fig panel a). However, in the individual-level analysis, a
nugget is estimated separately for each sample, so, the model must accommodate the much
higher relatedness between this pair of individuals through estimated locations that are close to
each other and far from the rest of the samples. The same phenomenon seems to be at work in
determining the locations of a pair of individuals, one identified as P. t. ludlowi (Lud-MN3),
one as P. t. trochiloides (Tro-LN11), as they also show an unusually low pairwise sequence
divergence (see S20 Fig).

The split between viridanus and plumbeitarsus individuals (blue and red, respectively), in
the north at the contact zone of the two waves of expansion, is clearer now than in the popula-
tion-based analysis, as the estimated locations of individuals from the Stolby population are
near their respective clusters. Although the geogenetic separation between the viridanus and
plumbeitarsus individuals is greater than their geographic separation, they are still closer to
each other than we would expect if all gene flow between the two was mediated by the southern
populations, in which case we would expect the populations to form a line, with viridanus at
one end and plumbeitarsus at the other. This horseshoe configuration, with viridanus and
plumbeitarsus at its tips, is steady within and among runs of the MCMC and choice of position
priors (see S18 Fig).

Is this biologically meaningful? A similar horseshoe shape appears when a principal compo-
nents (PC) analysis is conducted and individuals are plotted on the first two PCs (see S21 Fig
and [46]). However, as discussed by Novembre and Stephens [23], such patterns in PC analysis
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Fig 6. Inferredmaps for warbler populations. Population labels are colored as in Fig 5a. a) the map
inferred with no admixture inference; b) the map inferred with admixture inference.

doi:10.1371/journal.pgen.1005703.g006
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Fig 7. Inferredmaps for warbler individuals with admixture inference. Individual labels are colored by
subspecies as in Fig 5a. a)map inferred with admixture; b) close-up of all non-nitidus samples in the
admixture map.

doi:10.1371/journal.pgen.1005703.g007
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can arise for somewhat unintuitive reasons. If populations are simulated under a one dimen-
sional stepping stone model, then plotting individuals on the first two PCs results in a horse-
shoe (e.g. see S22 Fig panel b) not because of gene flow connecting the tips, but rather because
of the orthogonality requirement of PCs (see [23] for more discussion). In contrast, when
SpaceMix is applied to data simulated on a one dimensional array of populations, the place-
ment of samples is consistent with a line (see S22 Fig panels c and d). The proximity of virida-
nus and plumbeitarsus in geogenetic space may be due to gene flow between the tips of the
horseshoe north of the Tibetan Plateau. This conclusion is in agreement with that of Alcaide
et al. [46], who observed evidence of hybridization between viridanus and plumbeitarsus using
assignment methods.

The SpaceMix map also diverges from the observed map in the distribution of individuals
from the subspecies ludlowi (in green). These samples were taken from seven sampling loca-
tions along the southwest margin of the Tibetan Plateau, but, in the SpaceMix analysis, they
partition into two main clusters, one near the trochiloides cluster, and one near the viridanus
cluster. This break between samples from the same subspecies, which is concordant with the
findings of Alcaide et al. [46], makes the ludlowi cluster unusual compared to the estimated
spatial distributions of the other subspecies (see S23 Fig), and suggests a break in historic or
current gene flow.

Human Populations
Human population structure is a complex product of the forces of migration and drift acting
on both local and global scales, patterned by geography [21, 47], time [48, 49], admixture [50],
landscape and environment [36, 51, 52], and shaped by culture [16, 53, 54]. To visualize the
patterns these processes have induced, we create a geogenetic map for a worldwide sample of
modern human populations. Of course, human history at these geographic scales has many
aspects that are not well captured by static maps with discrete “arrows” of admixture. Nonethe-
less, we talk about the locations of samples and their sources of admixture as if these are fixed,
even though both reflect the compounding of drift and gene flow over many historical pro-
cesses. We therefore urge caution in the interpretation of our results, and view them as a sim-
plistic but rich visualization of patterns of population structure.

We used the dataset of Hellenthal et al. [50], comprised of 1,490 individuals from 95 popu-
lation samples (see Fig 5b for map of sampling), as well as the latitude and longitude attributed
to each sample. In the analyses presented on human genotype data below, we have thinned the
total dataset for LD in windows of 50 base-pairs, with a step-size of 5 base-pairs, and an upper
limit of 0.2 on pairwise r2 [55, 56]. We then used a random subset of 10,000 SNPs to estimate
the sample covariance.

We ran two sets of SpaceMix analyses: in the first, we estimated population sample locations,
and in the second, we also allowed admixture. We note that few of the putative admixture events
that we report have escaped the notice of previous investigators, which is unsurprising given the
depth of recent attention on human admixture studies, particularly on the subset of these sam-
ples that are in the HGDP dataset [50, 57–60]. Below, when discussing a pattern we see in our
analyses, we often cite other authors who have seen or suggested similar patterns. However,
what is novel here is the ability to visualize these admixture events in a geographic context, and
that these admixture signals stand out against a null model of migration in continuous space
(rather than tree-based models).

When we only infer the location of each sample, the map roughly recapitulates the geogra-
phy of the samples (Fig 8a), a result that holds nicely when we zoom in on the more heavily
sampled area of Eurasia (Fig 8b). We see that samples both in the Americas and in Oceania lie
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Fig 8. Geogenetic map of human samples, inferred without admixture. a) complete map; b) close-up of
Eurasian samples.

doi:10.1371/journal.pgen.1005703.g008
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close to the East Asian samples, but that they form two clusters on opposite sides. The proxim-
ity of these groups to the East Asians represents the fact that both groups share an ancestral
population in the relatively recent past with East Eurasian populations, but the two expansions
occurred independently. As in our simulations (Fig 1f) population expansions/bottlenecks
have distorted the relationship between geographic and geogenetic distance. Geogenetic dis-
tances between samples within Africa are much greater than those between any other group
(see S24 Fig), and the slope of the relationship between geographic and geogenetic distances
between populations on each continent decays with distance from Africa. This pattern is con-
sistent with a history of human colonization events characterized by serial bottlenecks [61–63]
following an out-of-Africa expansion, and subsequent expansions into Western Eurasia, East
Asia, the Americas, and Oceania (although see Pickrell and Reich [64] for a discussion of other
models).

To investigate possible patterns of admixture further, we ran a SpaceMix analysis with
admixture (results shown in Figs 9 and 10). The biggest change between the geogenetic map of
human populations inferred with admixture and that without is the positioning of African
samples with respect to the rest of the world. The relatively large geogenetic distances between
these groups reflects the fact that Eurasian, North African, Oceanian, and American popula-
tions all share relatively large amounts of population history (and hence genetic drift) not
shared with the Sub-Saharan African samples. Relative to the geogenetic map inferred without
admixture, the inclusion of admixture shifts the estimated locations of admixed samples inter-
mediate between Sub-Saharan Africa and North Africa/the Middle East toward one cluster or
the other, which, in turn, pushes each of those major clusters to move relatively farther apart.
The Ethiopian and Ethiopian Jewish samples have estimated locations closer to the Sub-Saha-
ran samples than those of the North African samples, but draw substantial amounts of admix-
ture (*40%) from close to where the Egyptian sample has positioned itself in the the Middle
East cluster, as do the Sandawe [65, 66]. The SanKhomani draw admixture from near Syria,
which may reflect multiple distinct geographic sources of admixture [50, 67]. Interestingly the
Bantu South African sample, though it has an estimated location near the other Bantu samples,
draws admixture from close to the San populations. This is consistent with previous signals of
the expansion of Bantu-speaking peoples into southern Africa [50, 66–68]. The inferred sam-
ple-specific drift parameters (the nuggets) are similar between runs with and without admix-
ture (S25 Fig).

The majority of North African samples (Egyptian, Tunisian, Moroccan, Mozabite) join the
Middle Eastern samples (positioned in rough accord with their sampling location along North
Africa), and draw admixture from near the Ethiopian samples. All of the Middle Eastern sam-
ples draw admixture from close to the geogenetic location of the Ethiopian samples and where
most of the North African samples draw admixture from, representing the complex history of
North African–Middle Eastern gene flow [50, 69].

A number of other population samples draw admixture from Africa. The Sindhi, Makrani,
and Brahui draw admixture from close to the location of the Bantu samples [50], and the Balo-
chi and Kalash draw admixture from some distance away from African population samples.
Of the European samples, the Spanish and both East and West Sicilian samples draw small
amounts of admixture from close to the Ethiopian samples, presumably reflecting a North
African ancestry component [54, 70].

The other significant signal of admixture is between East and West Eurasia, a signal docu-
mented by many authors [50, 57, 58, 71]. The majority of samples maintain their relative posi-
tions within each of these groups; however, there are several samples that show admixture
between eastern and western Eurasia. The Uzbekistani and Hazara samples have estimated
locations close to the East Asian samples and draw a substantial admixture proportion from
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Fig 9. Geogenetic map of human samples, inferred with admixture. Labels are colored as in as in Fig 5b.
Italicized labels denote locations of admixture sources, with opacity proportional to the amount of admixture
drawn by the sample. a) complete map; b) close-up of Eurasian samples.

doi:10.1371/journal.pgen.1005703.g009
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close to the Georgian and Armenian estimated locations. Conversely, the Uygur sample has an
estimated location close to the Burusho, Kalash, and Pathan samples, and draws admixture
from near the Mongola and Hezhen samples. The Tu sample (with a geogenetic location in
East Asia) draws a small amount of ancestry from close to the estimated location of the Uygur.
The estimated location of the Chuvash sample is near the Russian and Lithuanian samples, and
the Chuvash draw admixture from close to the Yakut (as do the Turkish, to a smaller extent).
There are several other East-West connections: the Russian and Adygei samples have admix-
ture from a location “north” of the East Asian samples, and the Cambodia sample draws
admixture from close to the Egyptian sample [17, 50].

There are also a number of samples that draw admixture from locations that are not imme-
diately interpretable. For example, the Hadza and Bantu Kenyan samples draw admixture from
somewhat close to India, and the Xibo and Yakut from close to “northwest” of Europe. The
Pathan samples draw admixture from a location far from any other samples’ locations, but
close to where the India samples also draws admixture from. The Myanmar and the Burusho
samples both draw admixture far from the locations estimated for other samples as well.

There are a number of possible explanations for these results. As we only allow a single
admixture arrow for each sample, populations with multiple, geographically distinct sources of
admixture may have estimated admixture locations that average over those sources. This may
be the case for the Hadza and Bantu Keynan samples [50]. A second possibility is that the rela-
tively steep prior on admixture proportion forces samples to draw lower proportions of admix-
ture from locations that overshoot their true sources; this may explain the Xibo and Yakut
admixture locations. A final explanation is that good proxies for the sources of admixture may
not be included in our sampling, either because of of the limited geographic sampling of cur-
rent day populations, or because of old admixture events from populations for which there are
not other more direct modern descendant populations. The admixture into the Indian and
Pathan samples (whose admixture source also clusters with the Indian Jew samples in some
MCMC runs) may be an example of this; Reich et al. [16] and Moorjani et al. [72] have hypoth-
esized that many populations from the Indian subcontinent may be descended from an admix-
ture event involving an ancestral Southern Indian population not otherwise represented in this
dataset.

In S26 and S27 Figs, we show the results of other independent MCMC analyses on these
data. The broad-scale patterns and results discussed above are consistent across these runs.

Fig 10. Admixture proportions (95%CIs) for each human population sample. Labels are colored as in as in Fig 5b.

doi:10.1371/journal.pgen.1005703.g010
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However, as is to be expected, there is significant heterogeneity in the exact layout of sample
and admixture locations. For example, there is some play, among MCMC runs, in the internal
orientation of the African locations with respect to the east-west axis within the Eurasian clus-
ter. For some samples that draw a significant amount of admixture, such as the central Asian
populations (Uygur, Hazara and Uzbekistani), the estimated location switches with that of
their source of admixture (as was also seen across MCMC runs in the warbler data analysis).
Similarly the Ethiopian and Ethiopian Jew samples have estimated locations, in some MCMC
runs, close to the other North African samples, and draw admixture from near the Sub-Saharan
samples (as do the other North African samples).

Discussion
In this paper we have presented a statistical framework for modeling the geography of popula-
tion structure from genomic sequencing data. We have demonstrated that the method, Space-
Mix, is able to accurately present patterns of population structure in a variety of simulated
scenarios, which included the effects of uneven sampling, spatially heterogeneous migration,
population expansion, and population admixture. In empirical applications of SpaceMix, we
have largely recovered previously estimated population relationships in a circum-Tibetan sam-
ple of greenish warblers and in a global sample of human populations, while also providing a
novel way to depict these relationships. The geogenetic maps SpaceMix generates serve as sim-
ple, intuitive, and information-rich summaries of patterns of population structure. SpaceMix
combines the advantages of other methods for inferring and illustrating patterns of population
structure, using model-based inference to infer population relationships (like TreeMix [17],
and MixMapper [18]), and producing powerful visualizations of genetic structure on a map
(like PCA [11] and SPA [73]).

The patterns of genetic variation observed in modern populations are the product of a com-
plex history of demographic processes. We choose to model those patterns as the outcome of a
spatial process with geographically determined migration, and we have included statistical ele-
ments to accommodate deviations from spatial expectations. However, the true history of a
sample of real individuals is vastly more complex than any low-dimensional summary, and, as
with any summary of population genetic data, SpaceMix results should be interpreted with this
in mind. Furthermore, our “admixture” events are shorthands for demographic relationships
that occurred over possibly substantial lengths of time and regions of the globe; approximating
this by a single arrow between two points on a map is certainly an oversimplification. Aspects
of population history that are better described as a population phylogeny may be difficult to
interpret using SpaceMix, and may be better suited to visualization with model-based cluster-
ing-based methods [7] or TreeMix/MixMapper-like methods [17, 18]. There is obviously no
one best approach to studying and visualizing population structure; investigators should
employ a range of appropriate methods to identify those that provide useful insight.

Comparison to PCA
SpaceMix, like PCA, is well suited to describing population structure in a continuous fashion–
but it also has a number of advantages over PCA. PCA is a general-purpose tool for exploratory
visualization of high-dimensional data; in application to genetic data, PCA can quickly identify
problematic samples and major axes of variation. Since geography is a major cause of differen-
tiation, the first one or two PC axes often correspond to geography [23]. However, because PCs
are linear functions of the genotypes, sometimes many PCs must be used to depict patterns
produced by simple isolation by distance [23].
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These higher order PCs can be hard to interpret in empirical data (see discussion in the war-
bler section). The recently introduced SPA approach [74], which also assumes allele frequen-
cies are monotonically increasing in a given direction, may suffer from the same problem,
which SpaceMix avoids (although PCA and SPA are both significantly faster than SpaceMix).
Similarly, unevenness of sampling can greatly distort PC maps, as illustrated in the comparison
of the uneven subsampling simulation scenarios shown in S8 and S9 Figs.

The generality of PCA is also its weakness: it displays any structure, not necessarily geo-
graphical structure. SpaceMix, since it works explicitly with local correlations on maps, is
designed to visualize the relationships between samples induced by geographically limited
dispersal, and so is less easily misled by other types of structure. Our explicit modeling of
admixture is also helpful; in PCA, admixed individuals appear in intermediate locations in PC
biplots, but are not distinguished from individuals in intermediate populations.

The application of SpaceMix to humans illustrates the utility of our approach: the first two
PCs of this dataset resemble a triangle (S28 Fig), with its arms corresponding to the Africa/
Non-Africa split and the spread of populations across Eurasia. In contrast, while the SpaceMix
geogenetic map is dominated by the genetic drift induced by migration out of Africa, it also
captures much more detail than is contained in the first two PCs (e.g., Fig 9b). SpaceMix’s
explicitly geographic model avoids the tendency of PC biplots towards triangular plots, as was
also seen when applied to unevenly sampled datasets (S3–S9 Figs).

An advantage of PCA is that it can explain more complex patterns of population structure
by allowing up to K different axes. Although SpaceMix can easily be extended to more than
two dimensions, simply by allowing Gi to describe the location of a sample in d dimensions,
interpretation and visualization of these higher dimensions is more difficult, and so we have
stuck to two dimensions. On the other hand, SpaceMix can describe in two dimensions pat-
terns that PCA, due to the constraints of linearity, would need more to describe.

Our method shows the utility of representing both isolation by distance and long-distance
admixture on a 2-D geogenetic map. While we generate this map using likelihood-based infer-
ence relating a parametric covariance matrix to the observed empirical matrix, it would be
interesting to explore other methods of creating this geogenetic map (e.g., [30, 74–76]). Such
methods may offer computational speedups and also potentially help place SpaceMix within a
broader statistical framework.

Admixture Arrows
One of the greatest strengths of SpaceMix is the introduction of admixture arrows. Although
PCA can be interpreted in light of simple admixture events [20], and new methods can locate
the recent, spatially admixed ancestry of out-of-sample individuals [73, 74], neither approach
explicitly models admixture between multiple geographically distant locations, as SpaceMix
does. Assignment methods are designed to deal with many admixed samples [7], but they have
no null spatial model for testing admixture. We feel that an isolation by distance null model is
often more appropriate for testing for admixture, especially when there is geographically dense
sampling. SpaceMix offers a useful tool to understand and visualize spatial patterns of genetic
relatedness when many samples are admixed.

As currently implemented, SpaceMix allows each population to have only a single source of
admixture, but some modern populations draw substantial proportions of their ancestry from
more than two geographically distant regions. In such cases the inferred source of admixture in
a SpaceMix analysis may fall between the true locations of the parental populations. Although it
is statistically and computationally feasible to allow each population to choose more than one
source of admixture, we were concerned about both the identifiability and the interpretability of
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such a model, and have not implemented it. However, there may be empirical datasets in which
such a modeling scheme is required to effectively map patterns of population structure. In addi-
tion, we have assumed that only single populations are admixed, when in fact it is likely that par-
ticular admixture events may affect multiple samples.

One concern is that the multiple admixed samples (from a single admixture event) may sim-
ply have clustered estimated locations, and not need to draw admixture from elsewhere due to
the fact that their frequencies are well described by their proximity to other admixed popula-
tions. Along these lines, it is noticeable that many of our European samples draw little admix-
ture from elsewhere (also noted by [50] using a different approach), despite evidence of
substantial ancient admixture [77]. This may reflect the fact that all of the European samples
are affected by the admixture events, and are relatively over-represented in our sample. How-
ever, this may also simply reflect the fact that the admixture is ancient, and that the ancient
populations that took part in these events are not well represented by our extant sampling.
Reassuringly, we see multiple cases where similarly admixed populations (Central Asians, Mid-
dle Eastern, and North African) populations are separately identified as admixed. This suggests
that geogenetic clustering (in lieu of drawing admixture) of populations that share similar his-
tories of admixture is not a huge concern (at least in some cases). The method could in theory
be modified to allow geogenetically proximal populations to draw from the same admixture
event; however, this may be difficult to make fully automated.

Linkage Between Loci
In this paper, we have treated the loci in the dataset as independent, and, where necessary, we
have thinned empirical datasets to decrease LD between loci. One possible approach that
avoids the necessity of thinning the data would be to calculate the sample covariance in large
(e.g., megabase), non-overlapping windows along the genome, then average those sample
covariances across all windows. Another approach is to use empirical LD between loci to esti-
mate the effective number of independent loci in the dataset, and use this quantity as the num-
ber of degrees of freedom in the Wishart likelihood calculation. Additionally, although we have
focused on the covariance among alleles at the same locus, linkage disequilibrium (covariance
of alleles among loci) holds rich information about the timing and source of admixture events
[50, 72, 78, 79] as well as information about isolation by distance [47]. Just as population graph
approaches have been extended to incorporate information from LD [59], a spatial covariance
approach could be informed by LD. A null model inspired by models of LD under isolation by
distance models [80, 81] could be fitted, allowing the covariance among alleles to decay with
their geographic distance and the recombination distance between the loci. In such a frame-
work, sources and time-scales of admixture could be identified through unusually long-dis-
tance LD between geographically separated populations.

Future Work
The landscape of allele frequencies on which the location of populations that were the source
of population’s admixture are estimated is entirely informed by the placement of other modern
samples, even though the admixture events may have occurred many generations ago. This
immediately leads to the caveat that, instead of “location of the parental population,” we should
refer to the “location of the closest descendants of the parental population.” The increased
sequencing of ancient DNA (see Pickrell and Reich [64] for a recent review) promises an inter-
esting way forward on that front, and it will also be exciting to learn where ancient individuals
fall on modern maps, as well as how the inclusion of ancient individuals changes the configura-
tion of those maps [49]. The inclusion of ancient DNA samples in the analyzed sample offers a
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way to get better representation of the ancestral populations from which the ancestors of mod-
ern samples received their admixture. However, it is also possible to model genetic drift as a
spatiotemporal process, in which covariance in allele frequencies decays with distance in both
space and in time. We are currently exploring using ancient DNA samples as ‘fossil calibra-
tions’ on allele frequency landscapes at points in the past, so that modern day samples may
draw admixture from coordinates estimated in spacetime.

Methods
Here we describe in more detail the algorithm we use to estimate the posterior distribution
defined by Eq (7) of the population locations, G, their sources of admixture, G�, their admix-
ture proportions, w, their independent drift parameters, η, and the parameters of the model of
isolation by distance,~a. First, we give the exact form of the covariance matrix we use, and then
describe the Markov chain Monte Carlo algorithm that samples parameter values from the pos-
terior distribution.

The Standardized Sample Covariance
As motivation, consider several randomly mating (Wright-Fisher) populations that all split
from an ancestral population in which a neutral allele is present at frequency �ℓ, and then sub-
sequently exchange migrants. Since the allele is neutral, the mean change in its frequency in
each population after t generations is zero, and if t is much smaller than the population size (so

the frequencies remain close to �ℓ), the variance is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘ð1� �‘Þ

p
. Conveniently,

additional variance introduced by binomial sampling of alleles is also proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘ð1� �‘Þ

p
. It would then be natural to consider the covariance matrix of

Xk;‘ ¼
f̂ k;‘ � �‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘ð1� �‘Þ

p ; ð8Þ

since these standardized allele frequencies would be independent if the loci are unlinked, and
would have mean zero and variance independent of the sample sizes or allele frequencies. The
central limit theorem would then imply that in the limit of a large number of loci, the sample
covariance matrix XT X is Wishart with degrees of freedom equal to the number of loci and
mean determined by the pattern of migration.

Although the conditions are not strictly met, these theoretical considerations indicate that
such a normalization may be a reasonable thing to do, even after substituting the empirical

mean allele frequency �f ‘ in place of �ℓ, which is what we do to define X̂ k;‘ in Eq (1). Recall that

the sample allele frequency at locus ℓ in population k is given by f̂ k;‘ ¼ Ck;‘=Sk;‘, where Ck,ℓ is

the number of (arbitrarily chosen) counted alleles, and Sk,ℓ is the total number of sampled
alleles. As sample size may vary across loci, we first calculate �Sk, the mean sample size in popu-

lation k, as �Sk ¼ 1
L

PL
‘¼1 Sk;‘. We then compute the global mean allele frequency at locus ℓ as

�f ‘ ¼
1P
KSk;‘

X
K

f̂ k;‘Sk;‘: ð9Þ

If sample size were constant across all loci in each population, this would be equivalent to
defining the variance-normalized sample frequencies

Ŷ k;‘ ¼
f̂ k;‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�f ‘ð1� �f ‘Þ
q ð10Þ
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and writing X̂ ‘ ¼ TY‘ where T is the mean centering matrix whose elements are given by

Tij ¼ di;j �
�SjXK

k¼1

�Sj

; ð11Þ

where δi,j = 1 if i = j and is 0 otherwise. If the covariance matrix of Y is O�, then the covariance

matrix of X̂ ‘ would be T
T O�T. Since allowing T to vary by locus would be computationally

infeasible, we make one final assumption, that the covariance matrix of the standardized fre-

quencies X̂ ‘ at each locus is given by TT O�T. This makes it inadvisable to include loci for
which there are large differences in sample sizes across populations. This mean centering acts

to to reduce the covariance among populations in X̂ ‘ compared to f̂ ‘, and can induce negative
covariance between more unrelated populations (as, across loci, they are often on opposite
sides of the mean).

Additionally, the covariance matrix of the standardized frequencies has rank K − 1 rather
than K, and so the corresponding Wishart distribution is singular. To circumvent this problem
we compute the likelihood of a (K − 1)-dimensional projection of the data. Any projection
would do; we choose a projection matrixC by dropping the last column of the orthogonal
matrix in the QR decomposition of T, and compute the likelihood of the empirical covariance

matrix of allele frequencies Ô ¼ X̂ TX̂ as

PðbO j O�Þ ¼ WðLCTXTXC j CTO�C; LÞ: ð12Þ

Markov Chain Monte Carlo Inference Procedure
The inference algorithm described here may be used to estimate the parameters with any of
these held fixed, for instance: (1) population locations are fixed, and they do not draw any
admixture; (2) population locations are estimated, but not admixture; (3) populations may
draw admixture, but their own locations are fixed; or (4) population locations and admixture
are both estimated. The free parameters for each of options are given in Table 1.

Although we anticipate most empirical researchers will be interested in the joint inference
of a geogenetic map with admixture (Model 4), we have presented these models separately, as
we believe each have their own utility. Model 1 and Model 3 can each be used to infer land-
scapes of allele frequencies, upon which genotyped individuals can be probabilistically placed
(following [35]). This application may be useful to determine the geographic origin of poten-
tially contraband biological samples (e.g., ivory), or the most likely source of museum speci-
mens missing sampling metadata. Model 3 has the potential to improve the performance of
these spatial assignment methods over Model 1, as the inclusion of admixture in the model
may allow for more accurate inference of allele frequency surfaces. Model 2 directly parallels

Table 1. List of models that may be specified using SpaceMix, along with the number and identity of
free parameters in each.

Model # of Free Parameters Parameters

(1) stationary population locations, no admixture K + 3 α0, α1, α2, η

(2) inferred population locations, no admixture 2K + 3 α0, α1, α2, η, G

(3) stationary population locations, inferred admixture 2K + 3 α0, α1, α2, η, G*, w

(4) inferred population locations, inferred admixture 3K + 3 α0, α1, α2, η, G, G*, w

doi:10.1371/journal.pgen.1005703.t001
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Principal Component Analysis. Informally the visual comparison of Models 2 and 4 can allow
investigators to understand how ignoring long distance admixture distorts relationships
among populations. Formally, the fit of these various models could be compared by cross vali-
dation, but we do not implement that here.

Below, we outline the inference procedure for the most parameter-rich model (inference on
both population locations, their sources of admixture, and the proportions in which they draw
admixture, in addition to inference of the parameters of the spatial covariance function). A
table of all parameters, their descriptions, and their priors is given in Table 2.

We now specify in detail the Markov chain Monte Carlo algorithm we use to sample from
the posterior distribution on the parameters, for Bayesian inference.

We assume that the user has specified the following data: the allelic count data, C, from K
population over L variant loci, where Ck,ℓ gives the number of observations of a given allele at
locus ℓ in population k; the sample size data, S, from K population over L variant loci, where
Sk,ℓ gives the total number of alleles typed at locus ℓ in population k.

It is not necessary, but a user may also specify the geographic sampling locations, G(obs),

from each of the K populations, where GðobsÞ
k gives the longitude and latitude of the kth sampled

individual(s).
The geographic location data may be missing, or generated randomly, for some or all of the

samples; if so, the spatial priors on estimated population locations, G, and their sources of
admixture, G� will not be tethered to the true map.

Initiating the MCMC. We then calculate the standardized sample covariance matrix bO
as described in the section “The standardized sample covariance” above, as well as �Sk , the
mean sample size across loci for each population. Armed with the standardized sample covari-
ance, the geographic sampling locations, and the inverse mean sample sizes across samples

(bO, G(obs), 1= �Sk), we embark upon the analysis.
To initiate the chain, we specify starting values for each parameter. We draw initial values

for α0, α1, α2, η, and w randomly from their priors. We initiate G at user-specified geographic
sampling locations and G� at randomly drawn, uniformly distributed values of latitude and
longitude in the observed range of both axes.

Overview of MCMC procedure. We use a Metropolis-Hastings update algorithm. In each
iteration of the MCMC, one of our current set of parameters Θ = {α0, α1, α2, η, w, G, G�} is ran-
domly chosen to be updated by proposing a new value. In the cases of {η, w, G, G�}, where each
population has its own parameter, a single population, k is randomly selected and only its

Table 2. List of parameters used in the SpaceMix models, along with their descriptions and priors.
�DðGðobsÞÞ is the mean of the pairwise distances between observed locationsG(obs).

Parameter Description Prior

α0 controls the sill of the covariance matrix α0 * Exp(λ = 1/100)

α1 controls the rate of the decay of covariance with
distance

α1 * Exp(λ = 1)

α2 controls the shape of the decay of covariance with
distance

α2 * U(0.1,2)

ηk the nugget in population k (population specific drift
parameter)

ηk * Exp(λ = 1)

Gk the geogenetic location of population k Gk � N m ¼ GðobsÞ
k ; s ¼ 1

2
�DðGðobsÞÞ

� �
wk the proportion of admixture in population k 2wk * β(α = 1, β = 100)

G�
k the geogenetic location of the source of admixture in

population k
G�

k � N ðm ¼ �GðobsÞ; s ¼ 2�DðGðobsÞÞÞ

doi:10.1371/journal.pgen.1005703.t002
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parameter value (e.g. ηk) is chosen to be updated. Below we outline the proposal distributions
for each parameter. This gives us a proposed update to our set of parameters Θ0, which differs
from Θ at only one entry.

The set of locations of populations and their sources of admixture specify a pairwise geo-
graphic distance matrix D, which, given the current~a and η parameters, gives the admixed
covariance matrix described in Eq (6), O�. The likelihood of the two sets of parameters Θ and
Θ0, calculated with Eq (12) and the priors of Table 2, combine to give the Metropolis-Hastings
ratio, R, the probability of accepting the proposed parameter values Θ0:

R ¼ min 1;
PðbO j O�ðY0ÞÞ
PðbO j O�ðYÞÞ

PðY0Þ
PðYÞ

 !
; ð13Þ

Note that all of our moves, described below, are symmetric, so the Hastings ratio is always 1. If

we accept our proposed move, Θ is replaced by Θ0 and this is recorded, otherwise Θ0 is dis-
carded and we remain at Θ.

Updates for~a, η, and w. We propose updates to the values of the~a, η, and w parameters
via a symmetric normal density with mean zero and variance given by a tuning parameter spe-
cific to that parameter. For example, a0

0 � a0 þ d, where d � N ð0; s2
a0
Þ and σα0

is the tuning

parameter for α0. For η and w, each of which consists of K parameters, each parameter receives
its own independent tuning parameter. If the proposed move takes the parameter outside the
range of its prior, the proposed move is rejected, in which case the current parameter value is
sampled in that iteration and reused in the next iteration of the MCMC.

Updates for geographic coordinates G and G�. Updates to the location parameters, G
and G�, are somewhat more complicated due to the curvature of the Earth. Implementing
updates via a symmetric normal density on estimated latitude and longitude directly would
have the drawback of a) being naive to the continuity of the spherical manifold and b) vary the
actual distance of the proposed move as a function of the current lat/long parameter values
(e.g., a 1° change in longitude at the equator is a larger distance than at the North Pole).

Instead, we propose a bearing and a distance traveled, and, given these two quantities and a
starting position, calculate the latitude and longitude of the proposed update to the location.
For example, in an update to the location of population i, Gi, we propose a distance traveled
ΔGi

, where, e.g., DGi
� jN ð0; sGi

Þj, and a bearing, γ, where γ* U(0,2π). Then we use the fol-

lowing equations to calculate the latitude and longitude of the proposed location:

proposed latitude ¼ arcsin ð sin ðcurrent latitudeÞ �
cos ðDÞ � cos ðcurrent latitudeÞ �

sin ðDÞ � cos ðgÞÞ
ð14Þ

and

proposed longitude ¼ current longitude

� arctan
sin ðgÞ sin ðDÞ cos ðcurrent latitudeÞ

cos ðDÞ � sin ðcurrent latitudeÞ sin ðproposed latitudeÞ
� �

;
ð15Þ

where latitude and longitude are given in radians and are taken mod 2p. As with η and w,
each population’s location and admixture source location parameters have their own tuning
parameters.

Adaptive Metropolis-within-Gibbs proposal mechanism. We use an adaptive Metropo-
lis-within-Gibbs proposal mechanism on each parameter [82, 83]. This mechanism attempts to
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maintain an acceptance proportion for each parameter as close as possible to 0.44, which is
optimal for one-dimensional proposal mechanisms [84, 85]. We implement this mechanism by
creating, for each variable i, an associated variable zi, which gives the log of the standard devia-
tion of the normal distribution from which parameter value updates are proposed. As outlined
above, in the cases of {η, w, G, G�}, for which each population receives a free parameter, each
population gets its own value of z.

When we start our MCMC, zi for all parameters is initiated at a value of 0, which gives a
proposal distribution variance of 1. We then proceed to track the acceptance rate, ri for each
parameter in windows of 50 MCMC iterations, and, after the nth set of 50 iterations, we adjust
zi by an “adaption amount”, which is added to zi if the acceptance proportion in the nth set of

50 iterations (rðnÞi ) has been above 0.44, and subtracted from zi if not. The magnitude of the
adaption amount is a decreasing function of the index n, so that updates to zi proceed as fol-
lows:

znþ1

i ¼
zni þminðminð0:01; n�

1

2Þ; 20Þ; if   rðnÞi   >   0:44

zni �minð0:01; n�
1

2Þ; if   rðnÞi   <   0:44

ð16Þ

8>>>>><>>>>>:
We choose to cap the maximum adaption amount at 20 (which is the equivalent of capping

the variance of the proposal distribution at 4.85 × 108) to avoid proposal distributions that
offer absurdly large or small updates. This procedure, also referred to as “auto-tuning”, results
in acceptance rate plots like those shown in S29 Fig, and in more efficient mixing and decreased
autocorrelation time of parameter estimates in the MCMC.

Simulations
We ran our simulations using a coalescent framework in the program ms [37]. The full com-
mand line arguments for all simulations are included in the S1 Text. Briefly, we simulated pop-
ulations on a lattice, with nearest neighbor migration ratemi,j, as well as migration on the

diagonal of the unit square at ratemi;j=
ffiffiffi
2

p
. For each locus in the dataset, we used the -s option

to specify a single segregating site, and then we simulated 10,000 loci independently, which
were subsequently conglomerated into a single dataset for each scenario. For all simulations,
except the “Populations on a line” scenario (S22 Fig), we sampled only every other population,
and, from each population, we sampled 10 haplotypes (corresponding to 5 diploid individuals).
In the “Populations on a line” scenario, we simulated no intervening populations, such that
every population was sampled.

To simulate a barrier event, we divided the migration rate between neighbors separated by
the longitudinal barrier by a factor of 5. To simulate an expansion event, we used the -ej option
to move all lineages from each daughter population to its parent population at a very recent
point in the past. For admixture events, we used the -es and -ej options to first (again, going
backward in time) split the admixed population into itself and a new subpopulation of index k
+ 1, and second, to move all lineages in the (kth+1) into the source of admixture. Forward in
time, this procedure corresponds to cloning the population that is the source of admixture,
then merging it, in some admixture proportion, with the (now) admixed population.
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Intuition on Identifiability of Admixture Parameters
A natural concern is whether all of the parameters we infer are separately identifiable, most
notably whether population locations, admixture locations, and proportions can be estimated.
That is, if a population has received some admixture from another population, what is to stop
it from having an estimated location near that population in geogenetic space to satisfy its
increased resemblance to that population, rather than drawing admixture from that location?
We do not provide a formal proof, but here build and illustrate some relevant intuition.

Admixture is identifiable in our model because there are covariance relationships among
populations that cannot simply be satisfied by shifting population locations around (as demon-
strated by the tortured nature of Fig 2b). Consider the simple spatial admixture scenario shown
in Fig 11. Populations A–D are arrayed along a line, but there is recent admixture from D into
B (such that 40% of the alleles assigned to B are sampled from location D). The lines show the
expected covariance under isolation by distance that each population (A, C, or D, as indicated
by line color) has with a putative population at a given distance. The dots show the admixed
covariance between B and the three other populations, as well as B’s variance with itself (B-B)
as specified by Eq (6), with no nugget or sampling effect.

Due to its admixture from D, B has lower covariance with A than expected given its dis-
tance, somewhat higher covariance with C, and much higher covariance with D. In addition,
the variance of B is lower than that of the other three populations, which each have variance
1: the value of the covariance when the distance is zero. This lower variance results from the
fact that the frequencies at B represent a mixture of the frequency at D and the frequency at B
before the admixture.

Now, using this example scenario, let us return to the concern posed above: that admixture
location and population location are not identifiable. For the sake of simplicity, assume that we
hold the locations of A, C, and D constant, as well as the decay of covariance with distance (as
could be the case if A–D are part of a larger analysis). The covariance relationships of B to the
other populations cannot be simply satisfied if B had an estimated location near D, as B would
then have a covariance with C that is higher, and a covariance with A that is lower, than that
we actually observe.

Introducing admixture into the model allows it to satisfy all of these conditions: it can draw
ancestry from D but keep part of its resemblance to A, it avoids B having an estimated location

Fig 11. Illustrated example of spatial covariance and the effects of admixture. Lines show the covariances populations A, C, and D would have with
population B as a function of B’s location with no admixture, under the parametric form of Eq (2). The colored dots above ‘B’ show the covariances observed
with B at that location given that B has 40% admixture from D. There is no spatial configuration that induces unadmixed covariances remotely similar to those
observed.

doi:10.1371/journal.pgen.1005703.g011
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too close to C, and it explains B’s low variance. Even in the absence of a sample from popula-
tion C, B is better described as a linear mixture of a population close to A and D. However,
there are specific scenarios in which a limited sampling scheme (both in size and location), can
lead to tradeoffs in the likelihood between estimated population location and that of its source
of admixture.

The analyses depicted in Fig 2c, Fig 4b and 4c, give examples of these tradeoffs. In each, the
inferred admixture proportions in the admixed populations are less than those used to simulate
the data, and the model is able to explain the high covariance the admixed populations have
with their sources of admixture via their inferred location, rather than just via their inferred
source of admixture and admixture proportion. The reason the model explains these admixed
populations’ anomalous covariance with their inferred location, rather than with their admix-
ture source, is that we place a very harsh prior against admixture inference (Table 2). The prior
is designed to make inference conservative with respect to admixture, but it has the side effect
of skewing the posterior probability toward lower admixture proportions.

Empirical Applications
Below, we describe the specifics of our analyses of the greenish warbler dataset and the global
human dataset. The analysis procedure for each dataset is given here:

For each analysis,

1. Five independent chains were run for 5 × 106 MCMC iterations each in which population
locations were estimated (but no admixture). Population locations were initiated at the ori-
gin (i.e. at iteration 1 of the MCMC, Gi = (0,0)), or at uniformly distributed coordinates
between the minimum and maximum observed range of latitude and longitude, and all
other parameters were drawn randomly from their priors at the start of each chain.

2. The chain with the highest posterior probability at the end of the analysis was selected and
identified as the “Best Short Run”.

3. A chain was initiated from the parameter values in the last iteration of the Best Short Run.
Because inference of admixture proportion and location was not allowed in the five initial
runs, admixture proportions were initiated at 0 and admixture locations, G� were initiated
at the origin. This chain (the “Long Run”) was run for 108 iterations, and sampled every 105

iterations for a total of 1000 draws from the posterior.

For each dataset, we ran two analyses using the observed population locations as the prior
on G. Then, to assess the potential influence of the spatial prior on population locations, we
ran one analysis in which the observed locations were replaced with random, uniformly distrib-
uted locations between the observed minima and maxima of latitude and longitude. For the
warbler dataset, we repeated this analysis procedure, treating each sequenced individual as its
own population. For clarity and ease of interpretation, we present a full Procrustes superimpo-
sition of the inferred population locations (G) and their sources of admixture (G�), using the
observed latitude and longitude of the populations/individuals (G) to give a reference position
and orientation. As results were generally consistent across multiple runs for each dataset
regardless of the prior employed, we (unless stated otherwise) present only the results from the
‘random’ prior analyses.

Finally, we compared the SpaceMix map to a map derived from a Principal Components
Analysis [11]. For this analysis, we calculated the eigendecomposition of the mean-centered
allelic covariance matrix, then plotted individuals’ coordinates on the first two eigenvectors
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(e.g., [21]). For consistency of presentation, we show the full Procrustes superimposition of the
PC coordinate space around the geographic sampling locations.

Treemix Comparisons
To contrast our approach to tree-based approaches to admixture we applied TreeMix [17] to
our spatial simulations. We took the ms output on which we had also run Spacemix (Figs 1, 2
and 4), and converted it into TreeMix format. We also included an outgroup sequence for
each dataset, which consisted of a single haploid individual who carried the 0 (ancestral allele)
at every locus. We ran TreeMix without migration edges on the processed ms.treemix.
file.gz file to construct the initial tree, which was rooted using the myoutgroup sequence
using the following command:

treemix -i ms.treemix.file.gz -root myoutgroup -o treemix_output
We then sequentially added admixture migration edges, using the following command to

add another edge to the existing tree (“prev.treemix”):
treemix -i ms.treemix.file.gz -root myoutgroup -g prev.treemix.

vertices.gz prev.treemix.edges.gz -m 1 -o treemix_output
The TreeMix graphs and residual covariance matrices were visualized using the scripts

provided with TreeMix.
In S30 Fig we show the tree and admixture graphs produced when TreeMix is run on a lat-

tice stepping stone model (a smaller scale version of this exercise was previously done by Pick-
rell and Pritchard [17]). The tree produced by running TreeMix is rake-like, showing the lack
of deep shared sub-division. However, while the tree captures some features of isolation by dis-
tance (e.g., neighboring samples are often sister to each other), the tree structure forces many
unnatural splits of geographically neighboring populations (as was previously found [17]; see
their S14 Fig). The admixture migration arrows act to mitigate the strongest departures from
the tree, such as geographically neighboring samples that were forced into separate places on
the tree, but are unable to fully accommodate the spatial relationships between samples. Differ-
ent runs of TreeMix on the same dataset result in quite different trees and orders of migration
events, reflecting both the high degree of symmetry in our simulated samples on a grid, and
also the poor fit of the tree model to spatial data. In S31 and S32 Figs, we also present the results
of TreeMix run on our expansion and barrier simulations.

In S33, S34 and S35 Figs, we show the application of TreeMix to the scenarios simulated
with admixture events. For none of our scenarios was the true admixture the first migration
edge added; in fact, only for the corner admixture scenario was the true admixture event in the
first three edges added. This reflects the fact that TreeMix has to add migration edges to cope
with the residual covariance induced by the poor fit of a tree to spatially simulated data, and so
misses more subtle (but real) admixture events. The poor performance of TreeMix here is the
result of the spatially simulated data not conforming to the underlying assumption of the
TreeMix tree-like model.

Supporting Information
S1 Fig. Decays in covariance for four different simulation scenarios (from top to bottom:
simple lattice; lattice with barrier; lattice with expansion; lattice with admixture). Left col-
umn: sample covariance plotted against observed pairwise distance. Right column: sample
covariance plotted against inferred geogenetic distance.
(TIF)
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S2 Fig. Plots of the first two Principal Component axes (with variance explained labeled on
the relevant axes) of the mean-centered covariance matrix from simulated spatial scenarios.
a) the basic lattice scenario shown in Fig 1a. b) the lattice scenario with admixture from Popu-
lation 1 into Population 30, shown in Fig 2a.
(TIF)

S3 Fig. The effect of uneven sampling on inference of geogenetic maps. This figure shows
the complete grid with corresponding PC map and SpaceMix geogenetic map (ellipses denote
95% credible intervals after a 50% burn-in). This grid is successively subsampled with greater
unevenness of sampling across six subsampled scenarios.
(TIF)

S4 Fig. The effect of uneven sampling on inference of geogenetic maps. This figure shows
the subsampling Scenario 1, in which the lower left, top left, and top right squares are ‘pro-
tected,’ and 2 samples are randomly removed from all other squares. Also shown are the corre-
sponding PC map and SpaceMix geogenetic map (ellipses denote 95% credible intervals after a
50% burn-in).
(TIF)

S5 Fig. The effect of uneven sampling on inference of geogenetic maps. This figure shows
the subsampling Scenario 2, in which the lower left, top left, and top right squares are ‘pro-
tected,’ and 4 samples are randomly removed from all other squares. Also shown are the corre-
sponding PC map and SpaceMix geogenetic map (ellipses denote 95% credible intervals after a
50% burn-in).
(TIF)

S6 Fig. The effect of uneven sampling on inference of geogenetic maps. The effect of uneven
sampling on inference of geogenetic maps. This figure shows the subsampling Scenario 3, in
which the lower left, top left, and top right squares are ‘protected,’ and 6 samples are randomly
removed from all other squares. Also shown are the corresponding PC map and SpaceMix geo-
genetic map (ellipses denote 95% credible intervals after a 50% burn-in).
(TIF)

S7 Fig. The effect of uneven sampling on inference of geogenetic maps. The effect of uneven
sampling on inference of geogenetic maps. This figure shows the subsampling Scenario 4, in
which the lower left, top left, and top right squares are ‘protected,’ and 8 samples are randomly
removed from all other squares. Also shown are the corresponding PC map and SpaceMix geo-
genetic map (ellipses denote 95% credible intervals after a 50% burn-in).
(TIF)

S8 Fig. The effect of uneven sampling on inference of geogenetic maps. The effect of uneven
sampling on inference of geogenetic maps. This figure shows the subsampling Scenario 5, in
which the lower left, top left, and top right squares are ‘protected,’ and all 9 samples are
removed from all other squares. Also shown are the corresponding PC map and SpaceMix geo-
genetic map (ellipses denote 95% credible intervals after a 50% burn-in).
(TIF)

S9 Fig. The effect of uneven sampling on inference of geogenetic maps. The effect of uneven
sampling on inference of geogenetic maps. This figure shows the subsampling Scenario 6, in
which the lower left, middle, and bottom right squares are ‘protected,’ and all 9 samples are
removed from all other squares, except for the bottom left and top right squares, which are
each randomly subsampled down to one sample. Also shown are the corresponding PC map
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and SpaceMix geogenetic map (ellipses denote 95% credible intervals after a 50% burn-in).
(TIF)

S10 Fig. The effect of uneven sampling on inference of geogenetic maps. The effect of
uneven sampling on inference of geogenetic maps. This figure shows, for each scenario, the
median distance between the true sampling coordinates and the sample coordinates in PC-
space and SpaceMix’s geogenetic space. For the SpaceMix analyses, the geogenetic coordinates
used were chosen from the MCMC iteration with the highest posterior probability.
(TIF)

S11 Fig. Credible intervals on estimated warbler population nugget parameters. a) analysis
without admixture b) analysis with admixture.
(TIF)

S12 Fig. Comparing geographic to geogenetic pairwise distance between warbler popula-
tions. a) observed population coordinates; b) pairwise geographic (great-circle) distance
between populations compared to that between their geogenetic locations. The highlighted
points show distances between populations from the plumbeitarsus and viridanus subspecies.
Notice that, regardless of their observed distance, their geogenetic separations are roughly con-
stant, and much larger than the geographic distance between them.
(TIF)

S13 Fig. Warbler population admixture proportions. Credible intervals on estimated warbler
population admixture proportion parameters.
(TIF)

S14 Fig. Comparison of inferred maps from three independent analyses. (a,b) Results from
analysis using observed locations as priors on population locations. c) Results from analysis
using random, uniformly distributed locations within the observed range of latitude and longi-
tude as priors on population locations.
(TIF)

S15 Fig. Likelihood surfaces for different placements of population ST between plumbeitar-
sus and viridanus clusters. a) log likelihood surface; b) posterior probability surface, incorpo-
rating the priors. The maximum a posteriori estimate (MAP) is shown as a star.
(TIF)

S16 Fig. Warbler individual admixture proportions. Credible intervals on estimated warbler
individual admixture proportion parameters.
(TIF)

S17 Fig. Warbler individual geogenetic map comparison. Inferred maps for warbler individ-
uals, colored by subspecies under analyses with and without admixture inference. a)map
inferred without admixture; b) close-up of all non-nitidus samples in non-admixture map; c)
map inferred with admixture; d) close-up of all non-nitidus samples in the admixture map.
(TIF)

S18 Fig. Maps of the posterior distributions on population locations in three separate
SpaceMix analyses on the warbler individual dataset. a) analysis with randomly generated
priors on geogenetic location parameters; b) one analysis with true geographic locations as pri-
ors on geogenetic location parameters; c) a second analysis with true geographic locations as
priors on geogenetic location parameters.
(TIF)
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S19 Fig. Warbler individual nugget parameters. Credible intervals on estimated warbler indi-
vidual nugget parameters. a) analysis without admixture; b) analysis with admixture.
(TIF)

S20 Fig. Warbler individual pairwise-π.Mean pairwise sequence divergence at polymorphic
sites calculated between all pairs of individuals from different subspecies, and colored by the
subspecies to which each individual in the comparison is drawn. Note that individuals Tro-
LN11 and Lud-MN3 have sequence divergence that is unusually low relative to that of other
comparisons between individuals f rom the same two subspecies.
(TIF)

S21 Fig. PCA map of warbler individuals. The map of warbler individuals derived from a
Principal Components analysis, plotting PC1 against PC2. The PC coordinates have undergone
a full Procrustes transformation around the actual sampling coordinates.
(TIF)

S22 Fig. Simulation scenario of populations on a line. Simulation scenario of populations on
a line, contrasting PCA-based inference and SpaceMix inference. a) Scenario used to simulate
data in a spatial coalescent framework with nearest-neighbor migration; b) PCA map of allele
frequencies, plotting PC axis 1 against PC axis 2, forming a ‘U’ shape; c) Posterior distribution
of SpaceMix location inference, forming a rough line; d) Snapshot of the MAP draw from the
posterior, again showing a rough line.
(TIF)

S23 Fig. Comparison of geographic and geogenetic pairwise distances for warbler individu-
als. a) comparisons between populations in different subspecies. b) comparisons between pop-
ulations in the same subspecies.
(TIF)

S24 Fig. Comparison of geographic and geogenetic pairwise distances for human samples
individuals. Comparisons are colored by continent from which populations were sampled
(i.e., two populations sampled from Africa are green). Eurasia is divided into Western Eurasia
and East Asia.
(TIF)

S25 Fig. Credible intervals on estimated human sample nugget parameters. a) analysis with-
out admixture; a) analysis with admixture.
(TIF)

S26 Fig. Geogenetic map of human samples.Map of human populations from a different
SpaceMix analysis than that reported in the main text (“Real_Prior1”—inferred with admix-
ture), using real geographic coordinates as population location priors. a) complete map; b)
close-up of Eurasian populations.
(TIF)

S27 Fig. Geogenetic map of human samples.Map of human populations from another Space-
Mix analysis (“Real_Prior2”, inferred with admixture), using real geographic coordinates as
population location priors. a) complete map; b) close-up of Eurasian populations.
(TIF)

S28 Fig. PCA map of human samples used in SpaceMix analyses. The PC coordinates have
undergone a full Procrustes transformation around the actual sampling coordinates (shown in
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the inset map).
(TIF)

S29 Fig. Example parameter acceptance proportions. Example parameter acceptance propor-
tions for the α2 parameter and the nugget parameter, η, using the adaptive Metropolis-within-
Gibbs proposal mechanism.
(TIF)

S30 Fig. TreeMix analysis of lattice spatial coalescent simulation. The tree, residual covari-
ance matrix, and first three migration admixture arrows are shown.
(TIF)

S31 Fig. TreeMix analysis of lattice spatial coalescent simulation with a barrier. The tree,
residual covariance matrix, and first three migration admixture arrows are shown.
(TIF)

S32 Fig. TreeMix analysis of lattice spatial coalescent simulation with an expansion event.
The tree, residual covariance matrix, and first three migration admixture arrows are shown.
(TIF)

S33 Fig. TreeMix analysis of lattice spatial coalescent simulation with a long-range admix-
ture event. The tree, residual covariance matrix, and first three migration admixture arrows
are shown.
(TIF)

S34 Fig. TreeMix analysis of lattice spatial coalescent simulation with a barrier and short-
range admixture event. The tree, residual covariance matrix, and first three migration admix-
ture arrows are shown.
(TIF)

S35 Fig. TreeMix analysis of lattice spatial coalescent simulation with a barrier and mid-
range admixture event. The tree, residual covariance matrix, and first three migration admix-
ture arrows are shown.
(TIF)

S1 Table. Warbler sample metadata. Subspecies and geographic meta-data for greenish war-
bler individuals included in analysis.
(TIF)

S2 Table. Human sample metadata. Sample size and geographic meta-data for human sam-
ples included in analysis.
(TIF)

S1 Text. Command line arguments to simulate lattice datasets. Command line arguments
used in ms to simulate lattice datasets for SpaceMix analysis.
(TXT)
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