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The apparition of adaptive immunity in Gnathostomata correlates with the expansion of

the E-protein family to encompass E2-2, HEB, and E2A. Within the family, E2-2 and

HEB are more closely evolutionarily related but their concerted action in hematopoiesis

remains to be explored. Here we show that the combined disruption of E2-2 and HEB

results in failure to express the early lymphoid program in Common lymphoid precursors

(CLPs) and a near complete block in B-cell development. In the thymus, Early T-cell

progenitors (ETPs) were reduced and T-cell development perturbed, resulting in reduced

CD4 T- and increased γδ T-cell numbers. In contrast, hematopoietic stem cells (HSCs),

erythro-myeloid progenitors, and innate immune cells were unaffected showing that E2-2

and HEB are dispensable for the ancestral hematopoietic lineages. Taken together, this

E-protein dependence suggests that the appearance of the fullGnathostomata E-protein

repertoire was critical to reinforce the gene regulatory circuits that drove the emergence

and expansion of the lineages constituting humoral immunity.

Keywords: E-protein, lymphoid specification, hematopoiesis, humoral immunity, evolution

Large Eumetazoan rely on an efficient system of innate and adaptive immune cells to survive and
reach reproductive age (1–3). The different cells of the hematopoietic system are all generated
from hematopoietic stem cells (HSCs) (4). Lymphoid specification is initiated in lymphoid primed
multipotent progenitors (LMPPs) that start to express genes associated with adaptive immune
cells (5, 6). LMPPs subsequently give rise to common lymphoid precursors (CLP) (7). Within the
heterogeneous CLP population, the LY6D+ fraction is further specified toward a B-lineage fate
(8, 9) and contains the first B-lineage committed cells that subsequently give rise to mature B-cells
(9, 10). Early lymphoid precursors leave the bone marrow to seed the thymus where they further
develop into early T-cell progenitors (ETP) that give rise tomature T-cells (11). Similarly, the innate
immune cells develop from different progenitors within the myeloid branch (12, 13), while natural
killer (NK) cells and part of the dendritic cells (DC) develop from the CLP (7, 14).

The origin of theGnathostomata (jawed vertebrate) hematopoietic system can be traced far back
in evolutionary history with phagocytic and cytotoxic innate immune cells being found across the
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Bilateria (15) and the erythroid/megakaryocyte lineages
appearing in the Agnatha (16). Similarly, lymphoid-like
cells are present in the Agnatha (17), Urochordata (18),
and Cephalochordata (19). However, while genes intimately
associated with adaptive immunity—including RAG (20, 21),
histocompatibility genes (22, 23), and immune type receptors
(22, 24, 25)—are found in lower Deuterostomata, B- and
T-cells mediated adaptive immunity emerged only in the
Gnathostomata. The appearance of new transcription factor
(TF) genes drive the apparition of novel cell types (26). The
appearance of adaptive immunity in the Gnathostomata
correlates with a dramatic increase in TF genes (1, 27). As part
of this expansion, the full Gnathostomata basic helix-loop-helix
E-protein family (28, 29) consisting of E2A (Tcf3), HEB (Tcf12),
and E2-2 (Tcf4) emerged.

It has been proposed, that E2A is more closely related to the
ancestral E-proteins while E2-2 and HEB are less evolutionarily
conserved and display expression patterns more restricted to
vertebrate-specific structures (29, 30). This suggests that E2A
should govern ancestral functions while HEB and E2-2 should
govern novel functions that emerged concomitantly to the rise of
the Gnathostomata. In line with this, E2A is the only E-protein
reported to impact HSC function and the development of
the myeloid- and erythro/megakaryocytic lineages (31–35). In
contrast, all the E-proteins promote development of B- and
T-cells (32, 36–47). The potential role of E2-2 in stem- and
progenitor cells remains largely unexplored.

Here we confirm that E2-2 and HEB are evolutionary related
and we found that their coordinated action is critical for the
development of early lymphoid progenitors. Mice lacking both
E2-2 and HEB display an almost complete block in B-cell
development at the level of the CLP and the few generated
immature B-cells preferentially develop into marginal zone
(MZ) B-cells. Similarly, we found T-cell development to be
perturbed, resulting in reduced numbers of CD4 T-cells and
increased numbers of γδ T-cells. In contrast, HSCs, erythro-
myeloid development and the generation of innate immune cells
were unperturbed. Together, this suggests that E2-2 and HEB
are dispensable for ancestral hematopoietic lineages and that
the appearance of the full Gnathostomata E-protein repertoire
promoted the apparition of humoral immunity.

MATERIALS AND METHODS

Animal Studies
To generate mice lacking specific E-proteins in the hematopoietic
system, Vav-iCre (48) was used in combination with conditional
(floxed) E2-2 (49), HEB (44), and E2A (50) alleles. Mice were
maintained on a C57BL/6 background and analyzed at 8–14
weeks of age. Animal studies were approved by the local ethics
committee (ethical approval number S16-15).

Preparation of Cells and Flow Cytometry
Bones, spleen, and thymus were dissected, crushed in PBS with
2% FCS and cells were collected after passing through a 70µm
filter. They were then Fc-blocked (CD16/32; 93) and stained
with combinations of the antibodies Sca1 (D7), CD105 (MJ7/18),

CD41 (MWReg30), CD48 (HM48-1), CD3 (145-2C11), CD4
(RM4-5), CD8 (53-6.7), B220 (RA3-6B2), NK1.1 (PK136), Mac1
(M1/70), Gr1 (RB6-8C5), TER119 (TER-119), CD150 (TCF15-
12F12.2), CD117 (2B8, eBioscience), CD127 (A7R34), CD44
(IM7), CD25 (PC61.5, eBioscience), CD19 (1D3, eBioscience),
TcRβ (H57-597, eBioscience), TcRγδ (GL3, eBioscience), Ly6C
(AL-21), Ly6G (1A8), MHCII (M5/114.15.2), CD11c (N418),
PDCA1 (927), Ly6D (49H4), Flt3 (A2F10), IgD (11-26c.2a), and
IgM (11/41, eBioscience). All antibodies were purchased from
BD Biosciences unless otherwise indicated. Propidium iodide
(PI) was utilized to discriminate dead cells. For hematopoietic
stem and progenitor cell isolation, cells were subjected to
lineage depletion using Dynabeads sheep anti rat IgG (Life
Technologies) together with TER119, CD19, CD3, Gr1, and
CD11b antibodies prior to staining. Analysis and cell sorting was
performed primarily on an LSR Fortessa and FACSAria IIu (BD
Biosciences). Analysis of data was done using the Flowjo 9.9.6
software (Flowjo).

Phylogenetic Analysis
The cDNA and amino acids sequences of the E-proteins
from analyzed organisms were obtained through the E-ensembl
repository (51). See Table S1 for the sequences used in this
study. Phylogenetic trees were constructed with MEGA7 (52)
selecting theMaximumLikelihoodmethod based on the Tamura-
Nei model; creating initial tree(s) using the Neighbor-Joining
and BioNJ algorithms; and using a Gamma distribution with
invariant sites. All positions in the cDNA and amino acids
sequences (including gaps) were considered when constructing
the trees. To assess the support of each node, the tree was
bootstrapped 500 times.

RNA Sequencing and Analysis
5-10 × 103 cells were FACS-sorted into buffer RLT with
β-mercaptoethanol and total RNA extracted using RNeasy
Micro Kit (Qiagen, Hilden, Germany) with on-column DNase
I treatment. Strand specific RNAseq libraries were prepared
using the TotalScriptTM RNA-seq kit (Epicenter, Madison, WI)
together with custommade Tn5 (transposase). Barcoded libraries
were pooled and pair-end sequenced (2 × 50 cycles) using the
Illumina platform (NextSeq500, Illumina, San Diego, CA).

RNAseq reads were mapped using STAR (53), reads in
exons quantified using HOMER (54) and significant changes
identified using EdgeR. Principal component analysis (PCA)
analysis and display was performed using R (v3.3.3). For details
see Supplemental Materials and Methods.

Pro B Cell Expansion Cultures and Fixation
B220+ cells were isolated from bone marrow of ER-Cre mice
(55) using magnetic cell separation (Miltenyi Biotec), expanded
for 6 days in the presence of IL-7 and SCF to obtain pro
B-cells. Pro B-cells were subsequently retrovirally transduced
with Bcl-2, expanded for seven additional days with 5µM 4-
Hydroxytamoxifen in the medium during the last 72 h. Pro
B-cells were fixed using EGS (1.5mM for 30min) in combination
with PFA (1% for 10min) and stored as pellets in−80◦C.
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ChIP Sequencing and Analysis
In brief, fixed pro B-cells were thawed, resuspended in SDS
lysis buffer, sonicated, and lysates subjected to ChIP by
adding dynabeads pre-loaded with either antibodies against
E2A, HEB, or E2-2. ChIPed chromatin was washed and
libraries prepared using reverse crosslinking in conjunction
with adapter ligation using the ThruPLEX DNA-seq
kit (Rubicon Genomics) or using the high-throughput
ChIPmentation approach (tagmentation followed by direct
amplification of libraries without prior DNA purification)
(56). For details see Supplemental Materials and Methods.
Libraries were sequenced using the HiSeq2000 or NextSeq500
platforms (Illumina).

ChIPseq reads were mapped using bowtie2 (57). Identification
of peaks, peak overlaps and motif enrichment/identification
analysis was done using HOMER’s findPeaks, mergePeaks,
and findMotifsGenome.pl, respectively (54). Visualization was
done using the UCSC genome browser. For details see
Supplemental Materials and Methods.

RESULTS

E2-2 and HEB Are Evolutionarily Related
To investigate the evolutionary history of the E-proteins in
Bilateria in light of recent sequencing data, we analyzed
similarities between cDNA and amino acid sequences of the E-
proteins across Animalia (Figures S1A–D). The E-proteins of
Protostomata and non-gnathostome Deuterostomata clustered
together (Figure S1B) and displayed relatively high sequence
divergence (Figure S1C) on the cDNA level. The Gnathostomata
E-proteins, in contrast, formed a separate clade (Figure S1B) and
displayed comparably higher similarity (Figure S1C). Within the
Gnathostomata clade, E2-2, and HEB formed a separate branch
from that of E2A (Figure S1B). Similar results were obtained
from the analysis of the amino acid sequences (Figure S1D).
This confirms the closer evolutionary relation between E2-2 and
HEB in Gnathostomata (29, 58). It could hence be hypothesized
that E2-2 and HEB are functionally related and together support
the development of cell lineages specific to the jawed vertebrate
hematopoietic system.

Deletion of E2-2 and HEB Does Not Impact
HSCs and Erythro-Myeloid Progenitors
To investigate the role of E2-2 and HEB in hematopoiesis,
we used the VaviCre mouse strain to mediate conditional
deletion of E2-2 (E2-2f/fVaviCre) or E2-2 together with HEB (E2-
2f/fHEBf/fVaviCre) in the hematopoietic system. Cre mediated
deletion of the floxed exons was verified in RNAseq data from
FACS sorted cells (Figures S2A–C). We observed a difference
in bone marrow (BM) cellularity only between littermate
control mice (lacking VaviCre) and E2-2f/fHEBf/fVaviCremice
(Figure 1A). However, no differences were observed in the
number of HSCs (Figure 1B, Figure S3A), megakaryocyte,
erythroid, and myeloid progenitors (Figure 1C, Figure S3B).
While being expressed in the HSC and erythro-myeloid
progenitors (Figure S2D), E2-2 and HEB are hence dispensable
for the maintenance and generation of these cell types in steady

state (32). This leaves E2A as the sole E-protein needed for HSCs
and erythro-myeloid development (31).

Generation of Innate Immune Cells Except
pDCs Are Unaffected by E2-2 and HEB
Deletion
While the total number of spleen cells was reduced in E2-
2f/fHEBf/fVaviCremice (Figure 1D), no effect was observed on
the number of mature myeloid cells (Figure 1E, Figure S3C).
This further support that E2-2 and HEB are dispensable for
myelopoiesis. Similarly, natural killer (NK) cell numbers were
unaffected (Figure 1E, Figure S3C). In contrast, plasmacytoid
dendritic cells (pDC) were reduced by 86% by the deletion of E2-
2 and by 98% with the additional removal of HEB (Figures 1F,G)
indicating a previously unrecognized dependence on HEB for
pDC development (59).

E2-2 and HEB Are Needed for Proper
Generation of B-Cells and CD4 T-Cells
As the total number of spleen cells was reduced (Figure 1D), we
next investigated the effect of deletion of E2-2 and HEB on the
adaptive immune cells. The number of T-cells in the spleen was
not impacted by the depletion of E2-2, but E2-2f/fHEBf/fVav-
iCre mice displayed a 60% reduction in CD4 T-cells (Figure 2A).
The total number of B-cells in spleen was reduced by 42% by
the deletion of E2-2 and by 68% when HEB was additionally
depleted (Figure 2B). This reduction reflected a sharp drop in
transitional- and follicular B-cells (FoB) while marginal zone
(MZ) B-cell numbers remained unaffected in E2-2f/fVav-iCre and
increased in E2-2f/fHEBf/fVav-iCre mice (Figures 2C–E). This
suggests that the removal of E2-2 and HEB heavily promoted
the generation of MZ from transitional B-cells at the expense of
FoB (60, 61). Taken together, these data show that cell lineages
with ancestral functions (erythro-myeloid and cytotoxic cells)
(15, 16, 62–65) are independent of E2-2 andHEB. In contrast, cell
lineages central to adaptive (humoral) immunity (B- and CD4 T-
cells) or at the interphase between innate and adaptive immunity
(pDC) are dependent on E2-2 and/or HEB.

The Development of CD4 and γδ T-Cells Is
Perturbed by the Loss of E2-2 and HEB
With E2-2f/fHEBf/fVaviCre mice displaying decreased CD4
T-cells in the periphery (Figure 2A), we next investigated
T-cell development in the thymus (Figure 3A). Depletion
of E2-2 had no effect on thymic cellularity (Figure 3B).
However, E2-2f/fVaviCre mice displayed a visible decrease in
ETPs and DN2 followed by decreases in DN3E and IS(8)P
(Figure 3D). In line with previous studies of HEB knock-
out animals (36), the additional deletion of HEB perturbed
T-cell development (Figure 3A) with decreased total cellularity
in thymus (Figure 3B); significant decreases in ETP and DN2
(Figure 3C); increases in DN3E, DN3L, and IS(8)P (Figure 3D);
but markedly reduced DPs (Figure 3D). In spite of the marked
reduction in DPs, CD8 T-cells were present in normal numbers
(Figure 3E) while CD4 T-cells were severely reduced (>85%).
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FIGURE 1 | E2-2 and HEB are dispensable for ancestral lineages. Absolute number of total cells (A), hematopoietic stem cells (HSCs) (B), and erythro-myeloid

progenitors (C) in bone marrow. Absolute number of total cells (D), innate immune cells (E) (Gr, granulocytes; Eos, eosinophiles; MF, macrophages; cDC, conventional

dendritic cells) and plasmacytoid dendritic cells (pDC) (F) in spleen. For gating strategies for cell types in panel E-F and H see Figures S3A–C. (G) Gating strategy for

identification of pDCs. Prior gating is indicated above the FACS plots. Color symbols utilized throughout the figure to indicate the genotype of analyzed mice are

shown in the bottom right corner. Significance was calculated using the Mann-Whitney U test with ** and *** indicating p-values <0.01 and <0.001, respectively.

Additionally, E2-2f/fHEBf/fVaviCre animals displayed markedly
increased (6-fold) γδ T-cells numbers (Figure 3E) (36, 66).

Looking closer at the progressive generation of cells from
the prior stage in each developmental transition in E2-
2f/fHEBf/fVaviCre mice, the altered cell numbers observed were
mirrored by increased generation of DN3E, DN3L, and IS(8)P
before a sharp drop in the generation of DP TCRβ−cells
(Figure 3F). While few in numbers, DP TCRβ+ were generated
in increased numbers with CD4 and CD8 T-cells subsequently
being generated at a normal and increased ratio, respectively
(Figure 3F). Taken together these results demonstrate that E2-2
and HEB are needed for normal thymopoiesis.

E2-2 and HEB Are Critical for Lymphoid
Specification and B-Cell Development
The development of LMPPs and CLPs constitute the first
steps of lymphoid specification (5, 7, 9). Depletion of E2-2
alone did not significantly affect the number of LMPPs and
Ly6D−CLPs (Figures 4A–C). However, the number of B-cell
specified LY6D+CLPs (8, 9) was reduced by half (Figure 4C).
Correspondingly, total B-cells were reduced by 43% (Figure 4D)
with each stage in B-cell development displaying a 30–50%
reduction (Figures 4E,F). The additional loss of HEB, in contrast,
lead to a 70% decrease in the number of LMPPs and LY6D−CLP
(Figures 4A–C). In addition, the E2-2f/fHEBf/fVaviCre mice
strikingly displayed a near complete loss of LY6D+CLP (>98%
reduction) (Figures 4A,B). This phenotype is similar to what has
previously been reported for E2A knock-out (32). Accordingly,
B-cell numbers were severely reduced (Figure 4D) with a >99%

reduction in cell-numbers of maturing B-cells (Figures 4E,F) and
a 94% reduction in mature B-cells (Figures 4E,F) in BM.

To analyzemore closely the impact of E2-2 andHEB depletion
on developmental transitions, we plotted cell number ratios at
each consecutive stage of development as a fraction of the prior
stage (Figure 4G). E2-2 deficient mice only displayed a modest
decrease in the generation of LY6D+CLP from LY6D−CLP
while the consecutive generation of CD19+ developmental
stages remained unaffected (Figure 4G). This indicates that E2-
2, similarly to what has been reported for HEB deficient animals
(32), is important for the LY6D− to LY6D+ CLP transition but
largely dispensable for BM B-cell maturation. This is in line with
the expression data showing that early lymphoid progenitors
(LMPPs and CLPs) expressed similar levels of E2-2, HEB and
E2A while HEB and E2A were the predominantly expressed E-
proteins in B-lineage cells (Figure S2D). The combined deletion
of E2-2 and HEB severely impacted the generation of LMPPs,
LY6D+CLP and pre-B while, at the same time, seemingly
increasing the generation of immature B-cells (Figure 4G).
Interestingly, the generation of proB cells from the few remaining
LY6D+CLP was unaffected (Figure 4G), indicating that B-
lineage commitment at this stage is unperturbed by the lack of
E2-2 andHEB. Together, this demonstrates that the collaboration
of E2-2 and HEB is critical for the generation of early lymphoid
progenitors and the development of B-cells in the BM.

Expression of the Early Lymphoid Program
Is Disrupted by Removal of E2-2 and HEB
To better understand the mechanisms behind the impaired
generation of the B-cell specified LY6D+CLPs and to understand
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FIGURE 2 | E2-2 and HEB are needed for proper B-cell and CD4 T-cell generation. (A) Absolute number of T-cells, CD4 T-cells, and CD8 T-cells in spleen. For T-cell

gating strategy see Figure S3C. Absolute number of B-cells (B) and B-cell subsets (C,D) (including: T1, transitional 1-, transitional 2-; MZ, marginal zone; and FoB,

follicular B-cells) in spleen. (E) Gating strategy for identification of B-cell subsets. Prior gating is indicated above the FACS plots. Color symbols utilized throughout the

figure to indicate the genotype of analyzed mice are shown below panels (C,D). Significance was calculated using the Mann-Whitney U test with *, **, and ***

indicating p-values <0.05, <0.01, and <0.001, respectively.
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FIGURE 3 | Maturation of CD4 and γδ T-cells is perturbed by the loss of E2-2 and HEB. (A) Gating strategy for identification of T-cell developmental stages. Absolute

numbers of: total cells (B); ETP/DN1 and DN2 (C); DN3E, DN3L, DN4, IS(8)P, DP TCRβ−, and DP TCRβ+ (D); and γδ T-, CD4 T- and CD8 T-cells (E) in thymus. Prior

gating is indicated above the FACS plots. (F) Cell number ratios for each consecutive stage of development as a fraction of the prior stage. Each dot represents the

ratio for one individual animal. Color symbols utilized throughout the figure to indicate the genotype of analyzed mice are shown at the bottom of the figure.

Significance was calculated using the Mann-Whitney U test with *, **, and *** indicating p-values <0.05, <0.01, and <0.001 respectively.

how it relates to the similar phenotype observed in mice
lacking E2A (32), we characterized the transcriptional profiles of
LY6D−CLPs remaining in E2-2f/fVaviCre, E2-2f/fHEBf/fVaviCre,
and E2Af/fVaviCre mice using RNAseq (see Table S2 for sample
information). Principal component analysis (PCA) of full
expression profiles showed that LY6D−CLP cells from the
different genotypes form a distinct cluster and hence represent
the same population of cells regardless of disrupted E-protein
gene(s) (Figure 5A). A total of 150 genes displayed significant
(corrected p-value <0.01) expression changes in LY6D−CLPs in
one or more of the analyzed strains (Figure 5B). As expected,
B-lineage related genes (including Ebf1, Blnk, Blk, Ets1, Dntt,
Notch1, Rag1, and Rag2) were severely affected (Figure 5B) and
overall the gene set was functionally associated with lymphocyte
differentiation and signaling (Figure S4). While the majority of

genes did not show highly significant changes in all genotypes
(Figures 5C,D), the overall pattern of the expression changes
was highly similar in E2-2ffHEBffVaviCre and E2AffVaviCre mice
(Figures 5B,D,E). The modest expression changes observed
in the E2-2ffVaviCre mice were often concordant to those
observed in E2AffVaviCre mice and E2-2ffHEBffVaviCre mice
(Figures 5B,D,E). Taken together, this shows that E2-2, HEB and
E2A largely reinforce the same gene network in early lymphoid
progenitors while having variable impact on the expression of
individual genes.

E-proteins Display Partly Overlapping
Association With Chromatin
To further understand the mechanisms through which E2-2
and HEB control B lymphopoiesis, we analyzed the binding
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FIGURE 4 | The combined activity of E2-2 and HEB are critical for the generation of lymphoid progenitors and B-lineage cells. (A) Gating strategy for identification of

stem- and lymphoid progenitors. Prior gating is indicated above the FACS plots. (B,C) Absolute numbers of stem- and lymphoid progenitors indicated cell types in

BM. Absolute numbers of total B-cells (D) and each B-cell developmental stage (E) in BM. (F) Gating strategy for identification of total B-cells and B-cell

developmental stages. Prior gating is indicated above the FACS plots. (G) Cell number ratios for each consecutive stage of development as a fraction of the prior

stage. Each dot represents the ratio in an individual animal. Color symbols utilized throughout the figure to indicate the genotype of analyzed mice are shown below

panel G. Significance was calculated using the Mann-Whitney U test with * and *** indicating p-values <0.05 and <0.001 respectively.

pattern of E2A, HEB and E2-2 in pro B-cells using ChIP-seq
in conjunction with adapter ligation (E2A) or high-throughput
ChIPmentation (56) (HEB and E2-2) (see Table S2 for sample
information). Library preparation using adapter ligation and
tagmentation (ChIPmentation) has previously been shown to

produce highly comparable results (67). We identified 16510
E2A, 2167 HEB and 139 E2-2 high quality peaks (peak score
≥10) (Figure 6A, Figure S5A). E2-2 is the lowest expressed
E-protein in pro B-cells (Figure S2D) and the relatively low
enrichment of E2-2 (most peaks have a peak score <10,
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FIGURE 5 | Loss of E-protein activity disrupts the early lymphoid transcriptional program. (A) Principal component analysis of RNAseq data. (B) Hierarchically

clustered heatmap showing the (row normalized) expression of genes with significant (adjusted p-value <0.01 calculated by EdgeR) changes in LY6D−CLPs from

E2-2f/fVavCre (Q1), E2-2f/fHEBf/fVavCre (Q2) or E2Af/fVavCre (Q3) as compared to control (ctrl). Significance of expression changes in each comparison (Q1-3) is

indicated to the right of the heatmap. (C) Venn diagrams showing the overlap between the significant expression changes in the indicated genotypes. Relative

expression change (mean expression is set to one for each gene) of up-regulated (D) and down-regulated genes (E) from Q1-Q3. *indicates a p-value <0.002

calculated using the Mann-Whitney U test.
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FIGURE 6 | E2-2, HEB and E2A have partly overlapping binding patterns. (A) Number and overlap of identified E2-2, HEB, and E2A peaks in proB cells. (B) Genomic

localization of identified peaks. (C) Genome browser tracks showing E-protein binding near central B-lineage genes. (D) Percentage of genes in the E-protein

dependent early lymphoid program (up/down regulated in Figure 5B) and all expressed genes in LY6D−CLPs that have HEB and E2A peaks within the gene body

±20 kb. (E) Genome browser tracks showing E-protein binding near genes that were regulated by E-proteins in LY6D−CLPs.

Figure S5A) limits accurate peak calling. Hence, E2-2 binding
is likely underestimated. Peaks from the three E-protein ChIP
experiments displayed highly significant enrichment of E-protein
DNA binding motifs (Figure S5B).

E2A mostly bound regions without identified HEB and E2-
2 peaks (Figure 6A, Figure S5C) while the majority of E2-
2 and HEB peaks overlapped with E2A peaks (Figure 6A,
Figure S5C). Interestingly while rare, sites with clearly biased E-
protein binding could be identified (Figure S5C). Most binding
sites identified where localized in intronic and intergenic
regions (Figure 6B). In contrast to the other E-proteins, a
significant fraction of E2A peaks were also found in promoter
regions (Figure 6B). No difference was observed in the E-
protein DNA binding motifs of HEB and/or E2A, with the

most enriched motifs containing the same bHLH motif core
(CAGCTG) (68). The most enriched motif in E2A peaks
was present amongst the motifs found in the peaks common
to E2A and HEB (Figure S5D). Genes central to B-lineage,
including IgH, CD19, Pax5, CD79a, CD79b, Igll1, and VpreB,
were bound by the three E-proteins (Figure 6C). A similar
pattern was found for genes that are part of the E-protein-
dependent early lymphoid program in LY6D− CLPs (Figure 5B),
including Ebf1, Rag1, Rag2, Blnk, Dntt, Notch1, and Blk
(Figures 6D,E, Figure S5E). These regions at the center of
the lymphoid and B-lineage programs, bound by E2A and
HEB, presented a higher enrichment for Ebf and Pax DNA
binding motifs compared to regions with only detectable E2A
peaks (Figure S5F).
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Taken together this further supports the notion that E2-2
and HEB critically reinforce the action of E2A on gene
regulatory circuits critical to early lymphoid specification and
B-cell development.

DISCUSSION

Phylogenetic analysis of the E-proteins suggests that the
Gnathostomata E-protein family arose through two subsequent
duplications (29, 58). Interestingly, analysis of the structure of
the E-protein loci in non-Gnathostomata argues for the original
Gnathostomata E-protein being structurally similar to the present
HEB/E2-2 loci (58). The initial duplication generated two E-
protein loci that diverged into the proto-E2-2/HEB and E2A loci.
The second duplication subsequently gave rise to the E2-2 and
HEB loci as well as two E2A loci out of which one was eventually
lost (58, 69). Being evolutionarily related, E2-2 and HEB could
hence support similar functions. The E-proteins play critical roles
in all the hematopoietic lineages (31, 32, 36, 38, 40–46, 59–
61, 70, 71). However, the function of E2-2 in early hematopoietic
development and its concerted action with the evolutionarily
related E-protein HEB has not been thoroughly addressed.

The B-cell developmental pathway has been shown to
critically rely on E2A and HEB, both TFs needed for the
generation of LY6D+CLPs (32). We similarly found that the
loss of E2-2 impaired the generation of LY6D+CLPs while
earlier progenitors (including LMPPs and LY6D−CLPs) were
unaffected. Further development of B-cells from LY6D+CLPs
was unperturbed with the subsequent stages appearing at
expected ratios. This indicates that the reduced number of B-cells
is primarily caused by the impaired LY6D− to LY6D+ transition
within the CLP compartment.

Interestingly, the combined deletion of E2-2 and HEB had a
direct additive effect resulting in a near complete developmental
block at the LY6D−CLP stage and dramatically reduced B-
cell numbers. Hence, E2-2 and HEB together have a critical
and previously unrecognized role in supporting early lymphoid
development in the BM. This phenotype is reminiscent of the
one observed in E2A knockout animals (32). In line with this,
the genes of the early lymphoid program were associated with
combined E2A and HEB binding. This further supports the
notion that all three E-proteins, to a large extent, reinforce the
same gene regulatory circuit in CLPs (32).

The dramatic reduction of BM B-lymphopoiesis in E2-
2ffVaviCre and E2-2ffHEBffVaviCre animals was mirrored in
reduced numbers of transitional (T1 and T2) B-cells and reduced
FoBs. In contrast MZ B-cell numbers were maintained in E2-
2ffVaviCre mice or even expanded in E2-2ffHEBffVaviCremice.
This, arguing that MZ B-cells are generated at the expense of
FoBs, confirming that the levels of all three E-proteins are critical
to maintain a normal MZ to FoB ratio [60, 61].

E2-2ffVaviCre and E2-2ffHEBffVaviCre mice displayed, on
average, a 60% reduction in ETPs. Hence, while at a reduced
level, E2A alone is sufficient to maintain thymic seeding in the
absence of the other E-proteins (38, 45). T-cell development
downstream of the ETP was significantly perturbed only in E2-
2ffHEBffVaviCre animals resulting in reduced CD4 T-cells and

increased generation of γδ T-cells. This phenotype is similar to
the one observed in the HEB KO mice (36). Hence, this suggests
that E2-2 has limited impact on adult thymopoiesis (59).

In line with previous findings, the number of pDCs was greatly
reduced in mice lacking E2-2 (59, 72–74). However, we only
observed a block in pDCs generation after the additional deletion
of HEB (E2-2ffHEBffVaviCre). Hence, while E2-2 is clearly the
main E-protein needed for pDC development, this indicates that
HEB to a limited extent can support pDC development and
cooperate with E2-2 in the pDC lineage.

In contrast to the clear impact of E2-2 and HEB on cells
involved in humoral immunity (B- and CD4 T-cells), the loss
of these TFs did not affect HSC numbers, erythro-myeloid
progenitors nor the production of the major innate immune cells
lineages including granulocytes, macrophages, and natural killer
cells. Similarly the cytotoxic branch of adaptive immunity (CD8
T-cells) was unaffected.

Taken together, this suggests that E2-2 and HEB—in contrast
to E2A (31, 33–35)—are dispensable for lineages with ancestral
functions. Functionally, this suggests that E2A, while structurally
being the most divergent E-protein locus (58), maintains
ancestral hematopoietic functions in addition to having been
co-opted for lymphoid development and B-cell development
in particular.

Until recently, it was hypothesized that the adaptive immune
system arose from an evolutionary “big bang” at the speciation
of the Gnathostomata (1). However, advances in genome
sequencing of lower Deuterostomata has shifted this dogma
by describing the presence of adaptive immunity related
genes (including RAG, histocompatibility genes and immune
type receptors) previously thought to be restricted to the
Gnathostomata (20–25, 63). The presence of lymphoid-like
cells in lower chordates (17–19) further suggests that the
lymphoid genetic toolbox was present before the emergence
of humoral immunity. Accordingly, the E-protein dependence
of the early lymphoid program suggest that the appearance
of the full Gnathostomata E-protein repertoire was crucial for
reinforcing the gene regulatory circuits that drove the emergence
and expansion of the hematopoietic lineages constituting
humoral immunity.
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