
Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12
DOI 10.1186/s13015-015-0040-x

RESEARCH Open Access

Sorting signed permutations by short
operations
Gustavo Rodrigues Galvão*, Orlando Lee and Zanoni Dias

Abstract

Background: During evolution, global mutations may alter the order and the orientation of the genes in a genome.
Such mutations are referred to as rearrangement events, or simply operations. In unichromosomal genomes, the most
common operations are reversals, which are responsible for reversing the order and orientation of a sequence of
genes, and transpositions, which are responsible for switching the location of two contiguous portions of a genome.
The problem of computing the minimum sequence of operations that transforms one genome into another – which
is equivalent to the problem of sorting a permutation into the identity permutation – is a well-studied problem that
finds application in comparative genomics. There are a number of works concerning this problem in the literature, but
they generally do not take into account the length of the operations (i.e. the number of genes affected by the
operations). Since it has been observed that short operations are prevalent in the evolution of some species,
algorithms that efficiently solve this problem in the special case of short operations are of interest.

Results: In this paper, we investigate the problem of sorting a signed permutation by short operations. More
precisely, we study four flavors of this problem: (i) the problem of sorting a signed permutation by reversals of length
at most 2; (ii) the problem of sorting a signed permutation by reversals of length at most 3; (iii) the problem of sorting
a signed permutation by reversals and transpositions of length at most 2; and (iv) the problem of sorting a signed
permutation by reversals and transpositions of length at most 3. We present polynomial-time solutions for problems
(i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for problem (iv). Moreover, we show that the
expected approximation ratio of the 5-approximation algorithm is not greater than 3 for random signed permutations
with more than 12 elements. Finally, we present experimental results that show that the approximation ratios of the
approximation algorithms cannot be smaller than 3. In particular, this means that the approximation ratio of the
3-approximation algorithm is tight.

Keywords: Genome rearrangement, Short reversals, Short transpositions

Background
One of the challenges of modern science is to under-
stand how species evolve. As evolution can be viewed
as a branching process, whereby new species arise from
changes occurring in living organisms, the study of the
evolutionary history of a group of species is commonly
made by analyzing trees whose nodes represent species
and edges represent evolutionary relationships. Since
these relationships are referred to as phylogeny, such trees
are called phylogenetic trees.

*Correspondence: ggalvao@ic.unicamp.br
Institute of Computing, University of Campinas, Av. Albert Einstein, 1251,
13083-852 Campinas, Brazil

Phylogenies can be inferred from different kinds of
data, from geographic and ecological, through behavioral,
morphological, and metabolic, to molecular data, such
as DNA. Molecular data have the advantage of being
exact and reproducible, at least within experimental error,
not to mention fairly easy to obtain ([1], Chapter 12).
Among the existing methods for phylogenetic reconstruc-
tion from molecular data, we focus on those referred
to as distance-based methods. These methods build the
phylogenetic tree corresponding to a group of species
as follows. First, the evolutionary distance between each
pair of species is estimated in order to generate a dis-
tance matrix M such that each entry Mi,j contains the
evolutionary distance between species i and j. Then, the
phylogenetic tree is constructed from this matrix using

© 2015 Rodrigues Galvão et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public
Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this
article, unless otherwise stated.

mailto: ggalvao@ic.unicamp.br
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 2 of 17

a specific algorithm, such as Neighbor-Joining [2]. There-
fore, a key point of distance-based methods is how to
estimate the evolutionary distance between two species.
A well-accepted approach for estimating the evolu-

tionary distance is the genome rearrangement approach
[3]. It proposes to estimate the evolutionary distance
between two species using the rearrangement distance
between their genomes, which is the length of the shortest
sequence of genome-wide mutations, called rearrange-
ment events, that transforms one genome into the other.
Assuming genomes consist of a single linear chromosome,
share the same set of genes, and contain no duplicated
genes, we can represent them as permutations of integers
where each integer corresponds to a gene. Besides, each
integer may have a sign,+ or−, indicating the gene orien-
tation. Permutations whose elements have signs are called
signed permutations and permutations whose elements
do not have signs are called unsigned permutations.
By representing genomes as permutations, the prob-

lem of finding the shortest sequence of rearrangement
events that transforms one genome into another can be
reduced to the combinatorial problem of calculating the
minimum number of operations necessary to transform
one permutation into another. By algebraic properties of
permutations, this problem can be equivalently stated
as the problem of calculating the minimum number of
operations necessary to transform one permutation into
the identity permutation (+1 + 2 . . . + n). This prob-
lem is commonly referred to as the permutation sorting
problem.
Depending on the operations allowed to sort a permuta-

tion, we have a different variant of the permutation sorting
problem. Reversals and transpositions are the most often
considered operations for phylogenetic reconstruction. A
reversal is responsible for reversing the order and flipping
the signs of a sequence of elements within a permuta-
tion, while a transposition is responsible for switching
the location of two contiguous portions of a permuta-
tion. The problem of sorting an unsigned permutation
by reversals is an NP-hard problem [4]. It was intro-
duced by Watterson et al. [5] and the best known result
is due to Berman, Hannenhalli and Karpinski [6], who
presented a 1.375-approximation algorithm. The prob-
lem of sorting a signed permutation by reversals was
introduced by Bafna and Pevzner [7], who presented a
1.5-approximation algorithm. Hannenhalli and Pevzner
[8] presented the first polynomial algorithm for this prob-
lem, which was further improved by Tannier, Bergeron
and Sagot [9] to run in subquadratic time. Barder, Moret
and Yan [10] showed how to determine the minimum
number of reversals that sorts a signed permutation
(without actually sorting) in linear time. The problem
of sorting an unsigned permutation by transpositions is
an NP-hard problem [11]. It was introduced by Bafna

and Pevzner [12], who presented a 1.5-approximation
algorithm. Later, Elias and Hartman [13] improved the
approximation bound to 1.375. Variants of the permu-
tation sorting problem which allow both reversals and
transpositions are also regarded in the literature [14-16].
Simultaneously with the study of the aforementioned

variants of the permutation sorting problem, some
researchers have investigated variants in which bounds
are imposed on the lengths of the operations. Jerrum [17]
proved that the problem of sorting an unsigned permuta-
tion by reversals (or transpositions) of length 2 is solvable
in polynomial time. Later, Heath and Vergara [18] consid-
ered the problem of sorting an unsigned permutation by
reversals of length at most 3 and presented the best known
result for it, a 2-approximation algorithm. Heath and
Vergara [19,20] also considered the problem of sorting an
unsigned permutation by transpositions of length at most
3 and presented a 4

3 -approximation algorithm. Jiang et al.
[21] presented a (1+ε)-approximation for unsigned per-
mutations with many inversions and, more recently, Jiang
et al. [22] also devised an 5

4 -approximation algorithm for
sorting general unsigned permutations by transpositions
of length at most 3. Finally, Vergara [23] showed that the
4
3 -approximation algorithm for the problem of sorting by
transpositions of length at most 3 is a 2-approximation
algorithm for the problem of sorting by reversals and
transpositions of length at most 3.
The biological relevance of these bounded variants is

grounded on the assumption that rearrangement events
affecting large portions of a genome are less likely to occur.
In the past, corroborating evidence has emerged, that is,
separate sets of observations have shown the prevalence
and significance of short reversals (i.e. reversals involv-
ing one or a few genes) in the evolution of bacterial
genomes [24,25] and lower eukaryotes genomes [26,27].
This fact, together with the realization that signed per-
mutations constitute a more biologically relevant model
for genomes, motivated us to investigate the problem of
sorting a signed permutation by short operations.
In preliminary work, Galvão and Dias [28] investigated

the problem of sorting a signed permutation by reversals
of length at most 3 and presented three approximation
algorithms, the best one having an approximation factor
of 9. In this paper, we not only present an approxima-
tion algorithmwith a better approximation factor, but also
consider other bounded variants. More precisely, we study
four variants of the permutation sorting problem: (i) the
problem of sorting a signed permutation by reversals of
length at most 2, (ii) the problem of sorting a signed per-
mutation by reversals of length at most 3, (iii) the problem
of sorting a signed permutation by reversals and transpo-
sitions of length at most 2, and (iv) the problem of sorting
a signed permutation by reversals and transpositions of
length at most 3. We present polynomial-time solutions

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 3 of 17

for problems (i) and (iii), a 5-approximation for problem
(ii), and a 3-approximation for problem (iv). Moreover,
we show that the expected approximation factor of the
5-approximation algorithm is not greater than 3 for ran-
dom signed permutations with more than 12 elements.
Finally, we present experimental results that show that the
approximation factors of the approximation algorithms
cannot be smaller than 3. In particular, this means that the
approximation factor of the 3-approximation algorithm is
tight.

Preliminaries
In this section, we present basic definitions that are used
throughout this paper, generally following [28]. Let n be a
positive integer.
A signed permutation π is a bijection of

{−n, . . . ,−2,−1, 1, 2, . . . , n} onto itself that satisfies
π(−i) = −π(i) for all i ∈ {1, 2, . . . , n}. The two-row
notation for a signed permutation is

π =
(−n . . . −2 −1 1 2 . . . n

−πn . . . −π2 −π1 π1 π2 . . . πn

)
,

πi ∈ {1, 2, . . . , n} for 1 ≤ i ≤ n. The notation used
in genome rearrangement literature, which is the one we
will adopt, is the one-row notation π = (π1π2 . . . πn).
Note that we drop the mapping of the negative elements
since π(−i) = −π(i) for all i ∈ {1, 2, . . . , n}. By abuse of
notation, we say that π has size n. The set of all signed
permutations of size n is S±

n .
A signed reversal ρ(i, j), 1 ≤ i ≤ j ≤ n,

is an operation that transforms a signed permuta-
tion π = (π1π2 . . . πi−1πiπi+1 . . . πj−1πjπj+1 . . . πn) into
the signed permutation π · ρ(i, j) = (π1π2 . . . πi−1
−πj − πj−1 . . . − πi+1 − πiπj+1 . . . πn). A signed reversal
ρ(i, j) is called a signed k-reversal if k = j− i+ 1. A signed
k-reversal is called short if k ≤ 3. It is called super short if
k ≤ 2.
The problem of sorting by signed short reversals con-

sists in finding the minimum number of signed short
reversals that transform a permutation π ∈ S±

n into the
identity permutation ιn = (+1 + 2 . . . + n). This num-
ber is referred to as the signed short reversal distance of
permutation π and it is denoted by dssr(π). Similarly, the
problem of sorting by signed super short reversals con-
sists in finding the minimum number of signed super
short reversals that transform a permutation π ∈ S±

n into
ιn. This number is referred to as the signed super short
reversal distance of permutation π and it is denoted by
dsssr(π).
A transposition ρ(i, j, k), 1 ≤ i < j < k ≤ n + 1,

is an operation that transforms a signed permuta-
tion π = (π1 . . . πi−1πi . . . πj−1πj . . . πk−1πk . . . πn)

into the signed permutation π · ρ(i, j, k) =

(π1 . . . πi−1πj . . . πk−1πi . . . πj−1πk . . . πn). A transpo-
sition ρ(i, j, k) is called an (x, y)-transposition, where
x = j − i and y = k − j. An (x, y)-transposition is called
short if x + y ≤ 3. It is called super short if x + y = 2.
The problem of sorting by signed short operations con-

sists in finding the minimum number of signed short
reversals and short transpositions that transform a per-
mutation π ∈ S±

n into ιn. This number is referred to as the
signed short operation distance of permutation π and it is
denoted by dsso(π). Similarly, the problem of sorting by
signed super short operations consists in finding the min-
imum number of signed super short reversals and super
short transpositions that transform a permutation π ∈ S±

n
into ιn. This number is referred to as the signed super short
operation distance of a permutation π and it is denoted by
dssso(π).
We say that a pair of elements (πi,πj) of a signed permu-

tation π is an inversion if i < j and |πi| > |πj|. The number
of inversions in a signed permutation π is denoted by
Inv(π).

Lemma 1. Let π be a signed permutation. If Inv(π) > 0,
then there exists an inversion (πi,πj) such that j = i + 1.

Proof. Let π1,π2, . . . ,πi be a maximal subsequence such
that |π1| < |π2| < · · · < |πi|. Since Inv(π) > 0, we have
that i < n. So |πi+1| < |πi| and the result follows.

Let �Inv(π , ρ) denote the change in the number of
inversions in a signed permutation π due to the applica-
tion of an operation ρ, that is, �Inv(π , ρ) = Inv(π) −
Inv(π · ρ). The following lemma provides bounds on the
value of�Inv(π , ρ) considering that ρ is a short operation.

Lemma 2. Let π be a signed permutation. Then, we have
that

i) −1 ≤ �Inv(π , ρ) ≤ 1 if ρ is a super short operation,
ii) −2 ≤ �Inv(π , ρ) ≤ 2 if ρ is a short transposition,

and
iii) −3 ≤ �Inv(π , ρ) ≤ 3 if ρ is a signed short reversal.

Proof. Suppose first that ρ is a super short operation. If
ρ is a 1-reversal, then �Inv(π , ρ) = 0. Moreover, if ρ is a
signed 2-reversal ρ(i, i+1) or a (1, 1)-transposition ρ(i, i+
1, i + 2), then �Inv(π , ρ) = 1 if (πi,πi+1) is an inversion
and �Inv(π , ρ) = −1 otherwise.
Now, suppose that ρ is a (1, 2)-transposition ρ(i, i+1, i+

2). We have that if (πi,πi+1) and (πi,πi+2) are inversions,
then �Inv(π , ρ) = 2. On the other hand, if (πi,πi+1)
and (πi,πi+2) are not inversions, then �Inv(π , ρ) = −2.
Finally, if either (πi,πi+1) or (πi,πi+2) is an inversion, then
�Inv(π , ρ) = 0. Note that a similar argument holds if ρ is
a (2, 1)-transposition.

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 4 of 17

Finally, suppose that ρ is a signed 3-reversal ρ(i, i + 2).
We have that if |πi| > |πi+1| > |πi+2, then �Inv(π , ρ) =
3. On the other hand, if |πi| < |πi+1| < |πi+2, then
�Inv(π , ρ) = −3. Since in the other subcases we have
that −1 ≤ �Inv(π , ρ) ≤ 1, the lemma follows.

Sorting by bounded signed reversals
In this section, we present a polynomial-time solution for
the problem of sorting by super short signed reversals
and a 5-approximation algorithm for the problem of sort-
ing by signed short reversals. Before we present the main
results, we first introduce a useful tool for tackling these
problems, the vector diagram. This tool was also used by
Heath and Vergara [18,23] for the problem of sorting by
(unsigned) short reversals.

The vector diagram
For each element πi of a signed permutation π , we define
a vectorv(πi)whose length is given by |v(πi)| = ||πi|− i|. If
|v(πi)|> 0, the vector v(πi) has a direction indicated by the
sign of |πi|− i. The vector v(πi) is a right vector if |πi|− i >

0 while it is a left vector if |πi| − i < 0. If the length of
v(πi) is zero, then v(πi) is said to be a positive zero vector
if πi = i and a negative zero vector if πi = −i. A vector
diagram Vπ of π is the set of vectors of the elements of π .
The sum of the lengths of all the vectors in Vπ is denoted
by Vec(π). See Figure 1 for an example.
Two elements πi and πj, i < j, of a signed permutation

π are said to be vector-opposite if the vectors v(πi) and
v(πj) differ in direction, |v(πi)| ≥ j − i, and |v(πj)| ≥ j − i.
Besides, they are said to be m-vector-opposite if j − i =
m. Note that m specifies the distance between vector-
opposite elements. For instance, in Figure 1 the elements
π2 = −4 and π4 = −1 are 2-vector-opposite elements.

Lemma 3. Let π be a signed permutation. If Inv(π) > 0,
then π contains at least a pair of vector-opposite elements.

Proof. We say that an element πe in π is out-of-place if
|πe| �= e. Note that there must exist out-of-place elements
in π if Inv(π) > 0. Among all out-of-place elements in
π , let πi be the one with the greatest absolute value. We
first show by contradiction that v(πi) is a right vector. Sup-
pose v(πi) is a left vector, that is, |πi| − i < 0. Then the

Figure 1 Vector diagram. Vector diagram of the signed permutation
π = (+3 − 4 + 6 − 1 + 5 − 2). Note that Vec(π) = 14.

element πk such that |πk| = i is an out-of-place element
with absolute value greater than |πi|, a contradiction.
Now since there is at least one right vector in Vπ , there

exists a rightmost right vector in Vπ , that is, a right vec-
tor v(πi) such that i is as large as possible. The element πk
such that k = |πi| is out-of-place since |πk| �= k. The vec-
tor v(πk) is therefore a left vector as it occurs to the right
of v(πi), the rightmost right vector. Consider the elements
πi+1,πi+2, . . . ,πk . At least one of these elements corre-
sponds to a left vector. Select the leftmost left vector from
these elements, that is, select the vector v(πj) such that
i + 1 ≤ j ≤ k and j is as small as possible.
We claim that πi and πj are vector-opposite elements.

Since |v(πi)| = k ≥ j, all that remains to be shown is
that |v(πj)| ≤ i. In other words, we need to show that
the correct position of element πj does not occur to the
right of position i. For a contradiction, suppose this is the
case. Then the element πt such that t = |πj| is out-of-
place and therefore v(πt) is either a right or left vector. It
is not a right vector since it occurs on the right of v(πi),
the rightmost right vector. It is not a left vector since it
occurs on the left of v(πj), the leftmost left vector from a
set that includes v(πt). Then we have a contradiction since
we have found an out-of-place element that corresponds
to a zero vector. The lemma follows.

Lemma 4. Let π ∈ S±
n be a signed permutation such

that Inv(π) > 0 and let πi and πj be m-vector-opposite
elements. Moreover, let π ′ ∈ S±

n be a signed permutation
such that |π ′

i | = |πj|, |π ′
j | = |πi|, and |π ′

k| = |πk| for all
k /∈ {i, j}. Then Vec(π) − Vec(π ′) = 2m.

Proof. We have that

Vec(π) − Vec
(
π ′) = ∑n

k=1
(|v (πk)| − ∣∣v (

π ′
k
)∣∣)

= |v (πi)| − ∣∣v (
π ′
i
)∣∣ + ∣∣v (

πj
)∣∣

−
∣∣∣v (

π ′
j

)∣∣∣
= m + m
= 2m,

and therefore the lemma follows.

Let �Vec(π , ρ) denote the change in the sum of the
lengths of all the vectors in Vπ due to the application of a
signed reversal ρ, that is, �Vec(π , ρ) = Vec(π) − Vec(π ·
ρ). The following lemma provides bounds on the value of
�Vec(π , ρ) considering that ρ is a signed short reversal.

Lemma 5. Let π be a signed permutation. Then, we have
that

i) �Vec(π , ρ) = 0 if ρ is a signed 1-reversal,
ii) −2 ≤ �Vec(π , ρ) ≤ 2 if ρ is a signed 2-reversal, and
iii) −4 ≤ �Vec(π , ρ) ≤ 4 if ρ is a signed 3-reversal.

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 5 of 17

Proof. Suppose first that ρ is a signed 1-reversal ρ(i, i).
In this case, ρ does not affect the length of the vector v(πi),
therefore �Vec(π , ρ) = 0.
Now, suppose that ρ is a signed 2-reversal ρ(i, i + 1).

If the elements πi and πi+1 are 1-vector-opposite, then
�Vec(π , ρ) = 2. On the other hand, if v(πi) is a zero
or a left vector and v(πi+1) is a zero or a right vector,
then �Vec(π , ρ) = −2. Note that �Vec(π , ρ) cannot be
greater than 2 and cannot be less than -2 because ρ(i, i+1)
can increase or decrease the length of v(πi) and v(πi+1) by
just one unit.
Finally, suppose that ρ is a signed 3-reversal ρ(i, i +

2). Note that ρ does not affect the length of the vector
v(πi+1). Now, if the elements πi and πi+2 are 2-vector-
opposite, then�Vec(π , ρ) = 4. On the other hand, if v(πi)
is a zero or a left vector and v(πi+2) is a zero or a right
vector, then �Vec(π , ρ) = −4. Note that �Vec(π , ρ) can-
not be greater than 4 and cannot be less than −4 because
ρ(i, i+ 2) can increase or decrease the length of v(πi) and
v(πi+2) by just two units.

Sorting by signed super short reversals
From the proof of Lemma 2, we have that a signed 1-
reversal does not change the number of inversions in a
signed permutation and a signed 2-reversal can elimi-
nate at most one inversion. This means that, for sorting
a signed permutation π , we have to apply Inv(π) signed
2-reversals plus a given number of signed 1-reversals in
order to flip the signs of the remaining negative elements.
The question is: how many signed 1-reversals do we have
to apply?
Intuitively, if an element πi is in t distinct pairs of inver-

sions in a signed permutation π , then its sign will be
flipped t times, one time per signed 2-reversal applied.
Therefore, if πi is negative and t is even, then πi will
remain negative after we apply the t signed 2-reversals.
The same is true when πi is positive and t is odd. We can
make use of the vector diagram in order to capture this
intuition formally.
Let Veven−

π be a subset of Vπ such that Veven−
π =

{v(πi) : πi < 0 and |v(πi)| is even} and let Vodd+
π be

a subset of Vπ such that Vodd+
π = {v(πi) : πi > 0

and |v(πi)| is odd}. The elements of a signed permuta-
tion π whose vectors belong to either Veven−

π or Vodd+
π

are precisely the elements which will be negative after
we apply the Inv(π) signed 2-reversals (Lemma 6). Using
this fact, we can obtain an exact formula for the signed
super short reversal distance of a signed permutation π

(Theorem 1).

Lemma 6. Let π be a signed permutation and let π ′ =
π · ρ(i, i + 1). Then, we have that |Veven−

π ′ | + |Vodd+
π ′ | =

|Veven−
π | + |Vodd+

π |.

Proof. The signed 2-reversal ρ(i, i+1) changes the signs
of πi and πi+1 along with the parities of |v(πi)| and
|v(πi+1)|. For this reason, if πi(or πi+1) belongs to either
Veven−

π or Vodd+
π , then π ′

i+1 = −πi (or π ′
i = −πi+1)

belongs to either Veven−
π ′ or Vodd+

π ′ . On the other hand, if
πi(or πi+1) does not belong to neither Veven−

π nor Vodd+
π ,

then π ′
i+1 = −πi (or π ′

i = −πi+1) does not belong to
either Veven−

π ′ or Vodd+
π ′ . Therefore the lemma follows.

Lemma 7. Let π be a signed permutation. Then, we have
that dsssr(π) ≤ Inv(π) + |Veven−

π | + |Vodd+
π |.

Proof. It suffices to prove that it is always possible to
apply signed super short reversals on π �= ιn in such a way
that the resulting permutation π ′ satisfies

Inv(π ′) + |Veven−
π ′ | + |Vodd+

π ′ | ≤ Inv(π) + |Veven−
π |

+ |Vodd+
π | − 1. (1)

If Inv(π) = 0, then |v(πi)|= 0 for every πi of π . This
means that |Vodd+

π | = 0, and therefore we can sort π with
|Veven−

π | signed 1-reversals and (1) holds.
If Inv(π) > 0, then there exists a signed 2-reversal

ρ(i, i + 1) that removes an inversion in π (Lemma 1).
So, apply such signed 2-reversal on π and let π ′ denote
the resulting permutation. We have that Inv(π ′) =
Inv(π) − 1. Moreover, we have that |Veven−

π ′ |+|Vodd+
π ′ |=

|Veven−
π |+|Vodd+

π | (Lemma 6). Summing both equalities
we obtain (1), therefore the lemma follows.

Lemma 8. Let π be a signed permutation. Then, we have
that dsssr(π) ≥ Inv(π) + |Veven−

π |+|Vodd+
π |.

Proof. It suffices to prove that if we apply an arbi-
trary signed super short reversal on π , then the resulting
permutation π ′ satisfies

Inv(π ′) + |Veven−
π ′ | + |Vodd+

π ′ | ≥ Inv(π) + |Veven−
π |

+ |Vodd+
π | − 1. (2)

Suppose first that we apply a signed 1-reversal ρ(i, i) on
π and let π ′ denote the resulting permutation. We have
that Inv(π ′) = Inv(π). Moreover, since the sign of πi is
flipped without changing the parity of |v(πi)|, we have that
|Veven−

π ′ |+|Vodd+
π ′ | ≥ |Veven−

π | + |Vodd+
π | − 1. Summing the

previous equality with this inequality we obtain (2).
Now, suppose that we apply a signed 2-reversal ρ(i, i+1)

on π and let π ′ denote the resulting permutation.We have
that |Veven−

π ′ |+|Vodd+
π ′ |= |Veven−

π |+|Vodd+
π | (Lemma 6).

Moreover, since a signed 2-reversal can remove at most
one inversion, we have that Inv(π ′) ≥ Inv(π) − 1. Sum-
ming the previous equality with this inequality we obtain
(2). Therefore the lemma follows.

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 6 of 17

Theorem 1. Let π be a signed permutation. Then, we
have that dsssr(π) = Inv(π) + |Veven−

π |+|Vodd+
π |.

Proof. Immediate from Lemmas 7 and 8.

From the proof of Lemma 7, we can derive the follow-
ing optimal algorithm for sorting a signed permutation
by signed super short reversals. First, perform signed
2-reversals on the inversions until the permutation has
no inversions. Then, perform signed 1-reversals on the
negative elements until the permutation has no nega-
tive elements. Since a signed permutation π ∈ S±

n can
have at most

(n
2
)
inversions and at most n negative ele-

ments, we have that this algorithm runs in O(n2) time.
We remark that the value of dsssr(π) can be computed
in O(n

√
log n) time because computing |Veven−

π |+|Vodd+
π |

takes O(n) time and computing Inv(π) takes O(n
√
log n)

time [29].

Sorting by signed short reversals
A trivial algorithm for the problem of sorting by signed
short reversals is the optimal algorithm for the problem
of sorting by signed super short reversals. From the lower
bound of Lemma 9, it follows that this trivial algorithm
is a 6-approximation algorithm. Moreover, we have that
this approximation bound is tight. For instance, we need 6
signed super short reversals for sorting the signed permu-
tation (−3− 2− 1), but one signed 3-reversal is sufficient
for sorting it.

Lemma 9. Let π be a signed permutation. Then, we have
that dssr(π) ≥ Inv(π)+|V−

π |+|V+
π |

6 .

Proof. It suffices to prove that if we apply an arbitrary
signed short reversal on π , then the resulting permutation
π ′ satisfies

Inv(π ′) + |Veven−
π ′ | + |Vodd+

π ′ | ≥ Inv(π) + |Veven−
π |

+ |Vodd+
π | − 6. (3)

From the proof of Lemma 8, we have that (3) holds
when we apply a signed super short reversal on π . So,
suppose that we apply the signed 3-reversal ρ(i, i + 2)
on π and let π ′ denote the resulting permutation. We
have that Inv(π ′) ≥ Inv(π) − 3. Moreover, we have that
|Veven−

π ′ |+|Vodd+
π ′ | ≥ |Veven−

π |+|Vodd+
π |−3. Summing both

inequalities we obtain (3), and the lemma follows.

Let Vodd
π be a subset of Vπ such that Vodd

π = {v(πi) :
|v(πi)| is odd} and let V 0−

π be a subset of Vπ such that
V 0−

π = {v(πi) : v(πi) is a negative zero vector}. By using
these two subsets of Vπ , we can obtain better bounds on
the signed short reversal distance of a signed permutation

π (Lemmas 11 and 12). These bounds lead to a 5-
approximation for the problem of sorting by signed short
reversals (Theorem 2). We note that the upper bound
given in Lemma 11 relies on the fact that it is always pos-
sible to switch the positions of a pair ofm-vector-opposite
elements (without affecting the elements between them)
applyingm signed short reversals (Lemma 10).

Lemma 10. Let π ∈ S±
n be a signed permutation such

that Inv(π) > 0 and let πi and πj be m-vector-opposite
elements. It is possible to transform π into π ′ ∈ S±

n such
that |π ′

i | = |πj|, |π ′
j | = |πi, and |π ′

k| = |πk| for all k /∈ {i, j}
applying d signed short reversals, where

d =
{
m − 1 if m is even,
m if m is odd.

Proof. We have two cases to consider:

a) m is even. In this case, we can transform π into a
signed permutation π ′ ∈ S±

n such that |π ′
i | = |πj|,

|π ′
j | = |πi|,π ′

j−1 = −πj−1, and π ′
k = πk for all

k /∈ {i, j − 1, j} applying the sequence of signed short
reversals ρ(i, i + 2), ρ(i + 2, i + 4), . . . , ρ(j − 4, j −
2)), ρ(j − 2, j)), ρ(j − 4, j − 2), . . . , ρ(i, i + 2).
Therefore, to transform π into π ′, we can apply m-1
signed 3-reversals.

b) m is odd. In this case, we can transform π into a
signed permutation π ′ ∈ S±

n such that |π ′
i | = |πj|,

|π ′
j | = |πi|, and π ′

k = πk for all k /∈ {i, j} applying the
sequence of signed short reversals ρ(i, i + 2),
ρ(i + 2, i + 4), . . . , ρ(j − 3, j − 1), ρ(j − 1, j), ρ(j − 3,
j − 1), . . . , ρ(i, i + 2). Therefore, to transform π into
π ′, we can apply m-1 signed 3-reversals and one
signed 2-reversal, totalizing m signed short reversals.

Since in both cases we can transform π into π ′ applying
2�m

2 � − 1, the lemma follows.

Lemma 11. Let π be a signed permutation. Then, we
have that dssr(π) ≤ Vec(π) + |Vodd

π | + |V 0−
π |.

Proof. It suffices to prove that it is always possible to
apply a sequence of t > 0 signed short reversals on π �= ιn
in such a way that the resulting permutation π ′ satisfies

Vec(π ′) + |Vodd
π ′ | + |V 0−

π ′ | ≤ Vec(π) + |Vodd
π |

+ |V 0−
π | − t. (4)

If Vec(π) = 0, then |v(πi)| = 0 for every πi in π . This
means that |Vodd

π | = 0. Therefore we can sort π with
|V 0−

π | signed 1-reversals and (4) holds.
If Vec(π) > 0, then π contains at least one pair of

vector-opposite elements (Lemma 3). Let πi and πj, i <

j, be m-vector-opposite elements. Now, suppose that we

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 7 of 17

apply the d signed reversals described in Lemma 10 on
π and let π ′ denote the resulting permutation. We will
show that the application of this sequence of signed short
reversals results in an average decrease in

�(π ,π ′) =Vec(π)+|Vodd
π |+|V 0−

π |−
(
Vec(π ′)+|Vodd

π ′ |+|V 0−
π ′ |

)
= 2m+

(
|Vodd

π |−|Vodd
π ′ |

)
+

(
|V 0−

π |−|V 0−
π ′ |

)

of at least 1 unit per signed short reversal. In other words,
we need to show that �(π ,π ′)

d ≥ 1.
In order the evaluate the value of�(π ,π ′), we divide our

analysis in two cases:

a) m is even. In this case, we have that the parities of the
lengths of the vectors do not change, therefore
|Vodd

π | − |Vodd
π ′ | = 0. In order to evaluate the value of

|V 0−
π | − |V 0−

π ′ |, we further divide our analysis into
three subcases:

i) |v(πi)| and |v(πj)| are even. In this subcase,
we have that the vectors v(πi), v(πj−1), and
v(πj) may become negative zero vectors,
therefore |V 0−

π | − |V 0−
π ′ | ≥ −3. This means

that �(π ,π ′) ≥ 2m − 3.
ii) |v(πi)| and |v(πj)| have distinct parities. In

this subcase, we have that the vector v(πj−1)
and one of the vectors v(πi) and v(πj)
(precisely the one whose length is even) may
become negative zero vectors, therefore
|V 0−

π | − |V 0−
π ′ | ≥ −2. This means that

�(π ,π ′) ≥ 2m − 2.
iii) |v(πi)| and |v(πj)| are odd. In this subcase, we

have that none of the vectors v(πi) and v(πj)
can become a negative zero vector, but the
vector v(πj−1) can. Therefore
|V 0−

π | − |V 0−
π ′ | ≥ −1. This means that

�(π ,π ′) ≥ 2m − 1.

b) m is odd. In this case, we further divide our analysis
into three subcases:

i) |v(πi)| and |v(πj)| are even. In this subcase,
we have that none of the vectors v(πi) and
v(πj) can become a negative zero vector,
therefore |V 0−

π | − |V 0−
π ′ | = 0. Moreover,

|v(πi)| and |v(πj)| become odd, therefore
|Vodd

π − |Vodd
π ′ | = −2. This means that

�(π ,π ′) = 2m − 2.
ii) |v(πi)| and |v(πj)| have distinct parities. In

this subcase, we have that the parities of the
lengths of the vectors v(πi) and v(πj) are
switched, therefore |Vodd

π | − |Vodd
π ′ | = 0.

Moreover, one of the vectors v(πi) and v(πj)
(precisely the one whose length is odd) may
become a negative zero vector, therefore

|V 0−
π | − |V 0−

π ′ | ≥ −1. This means that
�(π ,π ′) ≥ 2m − 1.

iii) |v(πi)| and |v(πj)| are odd. In this subcase, we
have that |v(πi)| and |v(πj)| become even,
therefore |Vodd

π | − |Vodd
π ′ | = 2. On the other

hand, we have that the vectors v(πi) and v(πj)
may become negative zero vectors, therefore
|V 0−

π | − |V 0−
π ′ | ≥ −2. This means that

�(π ,π ′) ≥ 2m.

Note that the only subcase in which we have �(π ,π ′)
d < 1

is subcase (b.i), precisely when m = 1. So, assume that
we have no choice other than selecting a pair of 1-vector-
opposite elements πi and πj such that |v(πi)| and |v(πj)|
are even. We will show that it is still possible to apply a
sequence of signed short reversals on π in such a way that
(4) holds.
Let v(πi) be the rightmost right vector of π , that is, i

is the largest integer for which v(πi) is a right vector. As
shown in the proof of Lemma 3, there exists an element
πj, j > i, such that πi and πj form a pair of vector-opposite
elements. Combining this fact with our initial assumption,
we can conclude that j = i + 1.
Now, suppose that we apply the signed short reversal

ρ(i, i + 1) on π and let π ′ denote the resulting permu-
tation. From our previous case-by-case analysis, we have
that �(π ,π ′) = 0. Moreover, we have that v(π ′

i+1) is the
rightmost right vector of π ′. Therefore, there exists an ele-
ment π ′

k , k > i + 1, such that π ′
i+1 and π ′

k form a pair
of m-vector-opposite elements, as shown in the proof of
Lemma 3. This means that we can apply the d short signed
reversals described in Lemma 10 on π ′, obtaining permu-
tation π ′′. Given that |v(π ′

i+1)| is odd, we can conclude
from our previous case-by-case analysis that �(π ′,π ′′) ≥
2m − 1 if m is odd and �(π ′,π ′′) ≥ 2m − 2 if m is even.
Hence, the average decrease in�(π ,π ′′) is of at least 2m−1

m+1
units per signed short reversal if m is odd and of at least
2m−2
m units per signed short reversal if m is even.
Note that 2m−1

m+1 < 1 when m = 1, but in this case we
show that the average decrease in �(π ,π ′′) is of at least
1 unit per signed short reversal. We have two cases to
consider:

1) |v(π ′
k)| is odd. In this case, we have that

�(π ′,π ′′) ≥ 2, therefore the average decrease in
�(π ,π ′′) is of at least 1 unit per signed short reversal.

2) |v(π ′
k)| is even. We show that this case cannot

happen. For the sake of contradiction, assume that
|v(π ′

k)| is even. Then, we have that |v(π ′
k)| ≥ 2.

Besides, sincem = 1, we have that k = i + 2. These
two facts imply that πi and πi+2 are
2-vector-opposite elements, but it contradicts our
initial hypothesis that we had no choice other than
selecting a pair of 1-vector-opposite elements.

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 8 of 17

Since it always possible to apply a sequence of t signed
short reversals on π in such a way that the resulting
permutation π ′ satisfies (4), the lemma follows.

Lemma 12. Let π be a signed permutation. Then, we

have that dssr(π) ≥ Vec(π)+|Vodd
π |+|V 0−

π |
5 .

Proof. It suffices to prove that if we apply an arbitrary
signed short reversal on π , then the resulting permutation
π ′ satisfies

Vec(π ′) +
∣∣∣Vodd

π ′
∣∣∣ +

∣∣∣V 0−
π ′

∣∣∣ ≥ Vec(π) +
∣∣∣Vodd

π

∣∣∣
+

∣∣∣V 0−
π

∣∣∣ − 5. (5)

Suppose first that we apply a signed 1-reversal ρ(i, i) on
π and let π ′ denote the resulting permutation. We have
that Vec(π ′) = Vec(π) and |Vodd

π ′ | = |Vodd
π |. Moreover,

since the sign of πi is flipped without changing the parity
of |v(πi)|, we have that |V 0−

π ′ | ≥ |V 0−
π | − 1 ≥ |V 0−

π | − 5.
Summing the previous equalities with this inequality we
obtain (5).
Suppose now that we apply a signed 2-reversal ρ(i, i+1)

on π and let π ′ denote the resulting permutation. We
have that Vec(π ′) ≥ Vec(π) − 2. Moreover, we have that
|Vodd

π ′ | ≥ |Vodd
π | − 2 and |V 0−

π ′ | ≥ |V 0−
π | − 2, but since

Vodd
π ∩ V 0−

π = ∅, we conclude that |Vodd
π ′ | + |V 0−

π ′ | ≥
|Vodd

π | + |V 0−
π | − 2 ≥ |Vodd

π | + |V 0−
π | − 3. Summing the

previous inequalities we obtain (5).
Finally, suppose that we apply a signed 3-reversal ρ(i, i+

2) on π and let π ′ denote the resulting permutation. We
have that the parities of the lengths of the vectors do not
change and hence |Vodd

π ′ | = |Vodd
π |. Moreover, we have

that Vec(π ′) ≥ Vec(π) − 4 and |V 0−
π ′ | ≥ |V 0−

π | − 3. It
should be noted, however, that if v(πi) (or v(πi+2)) belongs
to V 0−

π , then Vec(π ′) ≥ Vec(π) − 2 because the length of
v(πi)(or v(πi+2)) increases by 2 units. On the other hand,
if neither v(πi) nor v(πi+2) belongs to V 0−

π , then |V 0−
π ′ | ≥

|V 0−
π |−1. Therefore Vec(π ′)+|V 0−

π ′ | ≥ Vec(π)+|V 0−
π |−

5. Summing the previous equality with this inequality we
obtain (5) and the lemma follows.

Theorem 2. The problem of sorting by short signed
reversals is 5-approximable.

Proof. Immediate from Lemmas 11 and 12.

Heath and Vergara [18] have described an algorithm
for finding vector-opposite elements which runs in lin-
ear time on n, the size of the input permutation. Basically,
what their algorithm does is to find vector-opposite ele-
ments πi and πj such that v(πi) is the rightmost right
vector ofπ . Algorithm 1 is an adaptation of that algorithm.
The difference between the two algorithms is that, given a

signed permutation π �= ιn, Algorithm 1 guarantees that,
if it returns a pair (πi,πi+1), then πi and πi+2 are not 2-
vector-opposite. Note that Algorithm 1 also runs in linear
time on n.

Algorithm 1: Returns a pair of vector-opposite
elements

Data: A permutation π ∈ S±
n .

Result: A pair of vector-opposite elements.
1 i ← n
2 while |πi| ≤ i do
3 i ← i − 1
4 end while
5 j ← i + 1
6 while |πj| = j do
7 j ← j + 1
8 end while
9 if j < n and j − i = 1 then

10 if |πi+2| < i + 2 and |v(πi)| ≥ 2 and
|v(πi+2)| ≥ 2 then

11 j ← i+ 2
12 end if
13 end if
14 return (πi,πj)

Algorithm 2 sorts a signed permutation in two steps.
While the signed permutation has vector-opposite ele-
ments, the algorithm finds a pair of them using
Algorithm 1 and then switches their positions applying
the signed short reversals described in Lemma 10. When
the signed permutation has no vector-opposite elements,
the algorithm applies signed 1-reversals until the signed
permutation has no negative elements.

Algorithm 2: Algorithm for sorting by signed
short reversals

Data: A permutation π ∈ S±
n .

Result: Number of signed short reversals applied
for sorting π .

1 d ← 0
2 while Vec(π) > 0 do
3 Let πi and πj bem-vector opposite elements

returned by Algorithm 1
4 Apply signed short reversals on π such as

described in Lemma 10
5 d ← d + 2�m

2 � − 1
6 end while
7 Apply signed 1-reversals on π until it has no
negative elements and update d accordingly

8 return d

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 9 of 17

It follows from Theorem 2 that Algorithm 2 is a 5-
approximation algorithm for the problem of sorting by
short signed reversals. Regarding its time complexity, it
suffices to compute the total cost of calls to lines 3, 4, and
7. The total cost of calls in line 3 equals the total cost for
all calls to Algorithm 1. Although it runs in O(n) time and
there are O(n2) vector-opposite elements in a signed per-
mutation, we can provide the Algorithm 1 with enough
information so that the costs of calls to this algorithm can
be significantly reduced. Note that Algorithm 1 performs
two scans in the signed permutation, one for each vector
of the vector-opposite elements returned. By observing
that a rightmost right vector remains a rightmost vector
until it becomes a zero vector, it need not be searched
again if the vector has not been zeroed. Thus, the scan
for the rightmost vector needs to be performed only O(n)

times. In addition, the total cost of scans for the left vec-
tor for the same right vector is bounded by the length of
the right vector, also O(n). The total cost for all calls to
Algorithm 1 with this refinement is thus O(n2). Each call
to line 4 takes O(m) time, where m = j − i, and causes
a strict decrease in Vec(π) of 2m units. Thus, the cost in
this case is bounded by Vec(π) rather than the number of
iterations performed in the while loop. As each vector has
length at most n, we have that Vec(π) ≤ n2, meaning a
cost of O(n2) time for the calls to line 4. Finally, we have
that line 3 runs in O(n) time, therefore Algorithm 2 runs
in O(n2) time.
We finish by noting that there exists a large class of

signed permutations for which the approximation ratio of
Algorithm 2 is much lower than its worst-case approxima-
tion ratio (Lemma 13). Moreover, based on the fact that
the expected value of Vec(π) of a random signed permu-
tation π ∈ S±

n is n2−1
3 (Lemma 15), we can conclude that

the expected approximation ratio of Algorithm 2 for sort-
ing a random signed permutation is also lower than the
worst-case approximation ratio (Theorem 3). Just to make
things clear, we define a random signed permutation as
a random ordering of the elements {1, 2, . . . , n}, with the
added characteristic that the sign, + or−, of each element
is also randomly chosen.

Lemma 13. Let A2(π) be the number of signed short
reversals applied by Algorithm 2 for sorting a signed per-
mutation π ∈ S±

n . We have that A2(π)
dssr(π)

≤ 3when Vec(π) =
0 or Vec(π) ≥ 4n.

Proof. We have two cases to consider:

a) Vec(π) = 0. In this case, we have that Algorithm 2
sorts π with |V 0−

π | signed 1-reversals. On the other

hand, we have that dssr(π) ≥ |V 0−
π |
3 because a signed

short reversal cannot affect more than 3 elements at
once. Therefore A2(π)

dssr(π)
≤ 3.

b) Vec(π) ≥ 4n. In this case, we have seen that
Algorithm 2 sorts π in two steps. First it applies
signed 2-reversals and signed 3-reversals on π until
Vec(π) = 0 and then it applies signed 1-reversals on
π until V 0−

π = 0. Note that, in the first step, each
signed short reversal applied by Algorithm 2 results
in an average decrease in Vec(π) of at least 2 units.
Hence Algorithm 2 applies at most Vec(π)

2 signed
short reversals in the first step. Moreover,
Algorithm 2 applies at most n signed 1-reversals in
the second step because |V 0−

π | ≤ n. On the other
hand, we have that dssr(π) ≥ Vec(π)

4 (Lemma 5). This
analysis lead us to conclude that A2(π)

dssr(π)
≤ 2 + 4n

Vec(π)
.

Therefore A2(π)
dssr(π)

≤ 3.

Since A2(π)
dssr(π)

≤ 3 in both cases, the lemma follows.

In what follows, let Pr(|v(πi)| = j) denote the probabil-
ity that |v(πi)| is equal to j and E(X) denote the expected
value of a random variable X.

Lemma 14. Let π ∈ S±
n be a random signed permuta-

tion. Then
∑n

i=1 Pr(|v(πi)| = j) = 2(n−j)
n for 1 ≤ j ≤

n − 1.

Proof. Wehave that |S±
n | = n! 2n and for each 1 ≤ k ≤ n,

there are (n− 1)! 2n signed permutations for which |πi| =
k. Then

Pr(|v(πi)|= j)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n if j = 0,
2
n if i + j ≤ n and i − j ≥ 1,
1
n if i + j > n or i − j < 1 but not both,
0 otherwise,

for 0≤ j ≤ n−1. In order to evaluate
∑n

i=1 Pr(|v(πi)| = j)
for a given j, we consider two cases:

a) 1 ≤ j < n
2 . In this case, we have that

Pr(|v(πi)| = j) =

⎧⎪⎨
⎪⎩

1
n if 1 ≤ i ≤ j,
1
n if n − j + 1 ≤ i ≤ n,
2
n otherwise.

Therefore, we have that
∑n

i=1 Pr(|v(πi)| = j) = j
n + j

n
+ 2(n−2j)

n = 2(n−j)
n .

b) n
2 ≤ j ≤ n. In this case, we have that

Pr(|v(πi)| = j) =

⎧⎪⎨
⎪⎩

1
n if 1 ≤ i ≤ n − j,
1
n if j + 1 ≤ i ≤ n,
0 otherwise.

Therefore, we have that
∑n

i=1 Pr(|v(πi)| = j) = n−j
n +

n−j
n = 2(n−j)

n .

Since in both cases
∑n

i=1 Pr(|v(πi)| = j) = 2(n−j)
n holds,

the lemma follows.

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 10 of 17

Lemma 15. Let π ∈ S±
n be a random signed permuta-

tion. Then E(Vec(π)) = n2−1
3 .

Proof. Given that E(|v(πi)|) = ∑n−1
j=0 j Pr(|v(πi)| = j),

we have that
E(Vec(π)) = E

(∑n
i=1|v(πi)|

)
= ∑n

i=1 E(|v(πi)|)
= ∑n

i=1
∑n−1

j=0 j Pr(|v(πi)| = j)
= ∑n−1

j=1 j
∑n

i=1 Pr(|v(πi)| = j)
= ∑n−1

j=1 j 2(n−j)
n

= 2
∑n−1

j=1 j − 2
n

∑n−1
j=1 j2

= 2
(
n2−n
2

)
− 2

n

(
(n−1)n(2n−1)

6

)
= n2 − n − 2n2−3n+1

3
= n2−1

3 ,

and the lemma follows.

Theorem 3. The expected approximation ratio of
Algorithm 2 for sorting a random signed permutation π ∈
S±
n is no greater than 3 for n ≥ 13.

Proof. According to Lemma 13, we have that the approx-
imation ratio of Algorithm 2 for sorting a given signed
permutation σ ∈ S±

n is no greater than 3 when Vec(σ) ≥
4n. Since we know that the expected value of Vec(π) of a
random signed permutation π ∈ S±

n is n2−1
3 (Lemma 15),

we conclude that the expected approximation ratio of
Algorithm 2 for sorting π is no greater than 3 if n2−1

3 ≥ 4n.
This inequality holds when n ≥ 13, and the theorem
follows.

Sorting by bounded operations
In this section, we present a polynomial-time solution for
the problem of sorting by super short operations and a
3-approximation algorithm for the problem of sorting by
short operations. Before we present the main results, we
first introduce a useful tool for tackling these problems,
the permutation graph. This tool was also used by Heath
and Vergara [20] for dealing with the problem of sorting
by short transpositions.

The permutation graph
The permutation graph of a permutation π ∈ S±

n
is the undirected graph Gπ = (V ,E), where V =
{π1,π2, . . . ,πn} and E = {(πi,πj) : i < j and |πi| > |πj|}.
In other words, Gπ is an undirected graph whose ver-
tex set is formed by the elements of π and edge set is
formed by the inversions in π . Figure 2 illustrates Gπ for
π = (+3 − 4 + 6 − 1 + 5 − 2).
Given a signed permutation π , we denote the number of

connected components (or simply components) of Gπ by
c(π). Moreover, we say that a component of Gπ is odd if

Figure 2 Permutation graph. Permutation graph of the signed
permutation (+3 − 4 + 6 − 1 + 5 − 2).

it contains an odd number of negative elements (vertices)
and we say it is even otherwise. The number of odd com-
ponents of Gπ is denoted by codd(π). Lastly, we say that
an edge of Gπ is a cut-edge if its deletion increases the
number of components of Gπ .

Sorting by signed super short operations
From the proof of Lemma 2, we have that a super short
operation can eliminate at most one inversion of a signed
permutation. This means that, for sorting a signed permu-
tation π , we have to apply Inv(π) super short operations
(i.e. 2-reversals and (1, 1)-transpositions) plus a given
number of signed 1-reversals in order to flip the signs of
the remaining negative elements. As before, the question
is: how many signed 1-reversals do we have to apply? As
Lemmas 16 and 17 show, the answer is codd(π).

Lemma 16. Let π ∈ S±
n be a signed permutation. Then,

we have that dssso(π) ≤ Inv(π) + codd(π).

Proof. It suffices to prove that it is always possible to
apply a signed super short operation on π �= ιn in such a
way that the resulting permutation π ′ satisfies

Inv(π ′) + codd(π ′) ≤ Inv(π) + codd(π) − 1. (6)

If Inv(π) = 0, then each component of Gπ is a single
vertex. Therefore, we can sort π with codd(π) signed 1-
reversals and (6) holds.
If Inv(π) > 0, then there exists an edge e = (πi,πi+1) in

Gπ (Lemma 1). Suppose first that e is not a cut-edge and
that we apply the (1, 1)-transposition ρ(i, i + 1, i + 2) on
π , obtaining the permutation π ′. We have that Inv(π ′) =
Inv(π) − 1. Moreover, since e is not a cut-edge, we have
that the vertex sets of the components ofGπ ′ are the same
as of the components of Gπ . This means that codd(π ′) =
codd(π). Summing both equalities we obtain (6).
Now, suppose that e is a cut-edge and let C denote the

component of Gπ which contains e. Moreover, let C1 and
C2 denote the components of C − e and assume, without
loss of generality, that πi ∈ C1. We have three cases to
consider:

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 11 of 17

a) C1 and C2 are both even. Note that C is even. Apply
the (1, 1)-transposition ρ(i, i+1, i+2) on π and let π ′
denote the resulting permutation. Then, we have that
Inv(π ′) = Inv(π) − 1 and that codd(π ′) = codd(π).
Summing both equalities we obtain (6).

b) C1 and C2 have distinct parities. Note that C is odd.
Apply the (1, 1)-transposition ρ(i, i + 1, i + 2) on π

and let π ′ denote the resulting permutation. Then,
we have that Inv(π ′) = Inv(π) − 1 and that
codd(π ′) = codd(π). Summing both equalities we
obtain (6).

c) C1 and C2 are both odd. Note that C is even. Apply
the signed 2-reversal ρ(i, i + 1) on π and let π ′
denote the resulting permutation. Then, we have that
Inv(π ′) = Inv(π) − 1. Moreover, we have that
codd(π ′) = codd(π) because C1 and C2 become even
after the signed reversal is applied on π . Summing
both equalities we obtain (6).

Since it is always possible to apply a signed super short
operation on π in such a way that the resulting permuta-
tion π ′ satisfies (6), the lemma follows.

Lemma 17. Let π ∈ S±
n be a signed permutation. Then

dssso(π) ≥ Inv(π) + codd(π).

Proof. It suffices to prove that if we apply an arbitrary
super short operation on π , then the resulting permuta-
tion π ′ satisfies

Inv(π ′) + codd(π ′) ≥ Inv(π) + codd(π) − 1. (7)

Suppose first that we apply a signed 1-reversal ρ(i, i)
and let π ′ denote the resulting permutation. Then, we
have that Inv(π ′) = Inv(π). Moreover, since the com-
ponent containing πi may become even, we have that
codd(π ′) ≥ codd(π) − 1. Summing the previous equality
with this inequality we obtain (7).
Now, suppose that we apply the (1, 1)-transposition

ρ(i, i + 1, i + 2) on π and let π ′ denote the resulting
permutation. We have two cases to consider:

a) (πi,πi+1) is not an inversion. In this case, we have
that Inv(π ′) = Inv(π) + 1. On the other hand, by
adding a new edge, we may eliminate two odd
components, therefore codd(π ′) ≥ codd(π) − 2.
Summing the previous equality with this inequality
we obtain (7).

b) (πi,πi+1) is an inversion. In this case, we have that
Inv(π ′) = Inv(π) − 1. Moreover, let e = (πi,πi+1) be
an edge of Gπ and let C be the component of Gπ

containing e and. We further divide our analysis into
two subcases:

i) e is not a cut-edge. In this case, we have that
codd(π ′) = codd(π) because the parity of the

component C − e is the same as of C,
therefore (7) holds.

ii) e is a cut-edge. In this case, let C1 and C2
denote the components of C − e. If C is odd,
then either C1 or C2 is odd. If C is even, then
either C1 and C2 are both odd or C1 and C2
are both even. In any case, we have that
codd(π ′) ≥ codd(π), therefore (7) holds.

Finally, suppose that we apply the signed 2-reversal
ρ(i, i + 1) on π and let π ′ denote the resulting permuta-
tion. By making use of an argument analogous to the one
in the previous paragraph, we conclude that π ′ satisfies (7)
and the lemma follows.

Theorem 4. Let π ∈ S±
n be a signed permutation. Then,

dssso(π) = Inv(π) + codd(π).

Proof. Immediate from Lemmas 16 and 17.

Let π be a signed permutation. From the proof of
Lemma 17, we can conclude that a super short operation
cannot decrease the value of codd(π) if it is applied on an
inversion in π . Moreover, from the proof of Lemma 16,
we can conclude that if a (1, 1)-transposition increases
the value of codd(π) when applied on an inversion in
π , then it is possible to apply a signed 2-reversal on
this inversion in such a way that codd(π) remains unal-
tered. These observations lead us to the following optimal
algorithm for sorting by signed super short operations
(Algorithm 3).

Algorithm 3: Optimal algorithm for sorting by
super short operations

Data: A permutation π ∈ S±
n .

Result: Number of super short operations applied
for sorting π .

1 d ← 0
2 codd ← codd(π)

3 while Inv(π) > 0 do
4 Let (πi,πi+1) be an inversion in π

5 π ← π · ρ(i, i + 1, i + 2)
6 if codd(π) > codd then
7 π ← π · ρ(i, i + 1, i + 2) � undo the

previous (1, 1)-transposition
8 π ← π · ρ(i, i + 1)
9 end if

10 d ← d + 1
11 end while
12 Apply signed 1-reversals on π until it has no

negative elements and update d accordingly
13 return d

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 12 of 17

The time complexity of Algorithm 3 depends on the
time complexity of the algorithm used to compute the
value of codd(π). A straightforward algorithm is to tra-
verse Gπ with a depth-first search and count the number
of odd components. Such an algorithm runs in O(n2)
time. It is possible, however, to count the number of odd
components in Gπ in O(n) time.
Koh and Ree [30] have studied the permutation graph

of unsigned permutations and have demonstrated some
useful properties about them. Since the permutation
graph of the signed permutation π ∈ S±

n is isomorphic
to the permutation graph of the unsigned permutation
(|π1||π2| . . . |πn|), we are able to translate those proper-
ties to the permutation graph of signed permutations. In
particular, Lemma 18 represents the translation of one of
those properties.

Lemma 18. Let π ∈ S±
n be a signed permu-

tation. The vertex sets of the components of Gπ

are of the form C1 = {π1,π2, . . . ,πk},C2 =
{πk+1,πk+2, . . . ,πl}, . . . ,Ct = {πm+1,πm+2, . . . ,πn}.
Moreover, we have that {|π1|, |π2|, . . . , |πk|} =
{1, 2, . . . , k}, {|πk+1|, |πk+2|, . . . , |πl|} = {k + 1, k +
2, . . . , l}, . . . , {|πm+1|, |πm+2|, . . . , |πn|} = {m + 1,m +
2, . . . , n}.

We say that a contiguous sequence of elements
πiπi+1 . . . πj, i ≤ j, of a signed permutation π is a com-
plete substring if {|πi|, |πi+1|, . . . , |πj|} = {i, i + 1, . . . , j}.
From Lemma 18, we have that the vertex set of a com-
ponent of Gπ forms a complete substring. Furthermore,
assume that {πi,πi+1, . . . ,πj} is the vertex set of a compo-
nent of Gπ . We claim that πiπi+1 . . . πj is the minimum
complete substring that starts with πi. For the sake of
contradiction, suppose that there exists a complete sub-
string πiπi+1 . . . πk such that k < j. We have that πl >

πm for every i ≤ l ≤ k and k + 1 ≤ m ≤ j.
Therefore there does not exist any edge in Gπ connect-
ing the elements in {πi,πi+1, . . . ,πk} with the elements
in {πk+1,πk+2, . . . ,πj}. But this contradicts our hypothe-
sis that {πi,πi+1, . . . ,πj} is the vertex set of a component
of Gπ .
From the discussion of the last paragraph, we can design

the following algorithm for finding the vertex sets of the
components of the permutation graph of a signed per-
mutation π ∈ S±

n . Find the minimum complete substring
π1π2 . . . πk starting with π1 and let C1 = {π1,π2, . . . ,πk}
be a component of Gπ . If k < n, then find the minimum
complete substring πk+1πk+2 . . . πl starting with πk+1 and
let C2 = {πk+1,πk+2, . . . ,πl} be another component of
Gπ . Continue with this process until all elements have
been assigned to a component. It remains to show how to
find the minimum complete substring πiπi+1 . . . πj start-
ing with πi. Note that i is the least element and j is the

largest element of the set S = {|πi|, |πi+1|, . . . , |πj|}. Since
all integers in the interval [i, j] are in S, we have that
|S| = j − i + 1. This fact give us the necessary and suf-
ficient condition for knowing when we have found the
last element of the minimum complete substring start-
ing with πi. The complete algorithm is detailed below
(Algorithm 4).

Algorithm4: Find the vertex sets of the components
of a permutation graph

Data: A permutation π ∈ S±
n .

Result: The vertex sets of the components of Gπ .
1 C ← ∅
2 S ← ∅
3 i ← 1
4 while i ≤ n do
5 C ← C ∪ {πi}
6 min ← i
7 max ← |πi|
8 while (max−min+1) > |C| do
9 i ← i + 1

10 C ← C ∪ {πi}
11 if |πi| > max then
12 max ← |πi|
13 end if
14 end while
15 S ← S ∪ C
16 C ← ∅
17 i ← i + 1
18 end while
19 return S

Algorithm 4 performs a linear scan on the positions of
the permutation π ∈ S±

n , and so it runs in O(n). With the
vertex sets of the components ofGπ , it is easy to count the
number of odd components inGπ inO(n) time. Returning
to Algorithm 3, we can see that lines 4-9 run inO(n) time.
Since the while loop iterates a total ofO(n2) times and line
12 runs in O(n) time, we can conclude that Algorithm 3
runs in O(n3) time. We remark that the value of dssso(π)

can be computed in O(n
√
log n) time because comput-

ing codd(π) takes O(n) time and computing Inv(π) takes
O(n

√
log n) time [29].

Sorting by signed short operations
A trivial algorithm for the problem of sorting by signed
short operations is the optimal algorithm for the prob-
lem of sorting by signed super short operations. From the
lower bound of Lemma 19, it follows that this algorithm

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 13 of 17

is a 4-approximation algorithm. In addition, we have that
this approximation bound is tight. For instance, we need
4 signed super short operations for sorting the signed
permutation (−3 − 2 − 1), but one signed 3-reversal is
sufficient for sorting it.

Lemma 19. Let π ∈ S±
n be a signed permutation. Then,

dsso(π) ≥ Inv(π)+codd(π)
4 .

Proof. It suffices to prove that if we apply an arbitrary
short operation on π , then the resulting permutation π ′
satisfies

Inv(π ′) + codd(π ′) ≥ Inv(π) + codd(π) − 4. (8)

From the proof of Lemma 17, we have that (8) holds in
case we apply a super short operation on π . So, suppose
that we apply a short operation ρ on π which acts on the
elements πi,πi+1, and πi+2. Moreover, let π ′ denote the
resulting permutation. We have three cases to consider:

a) πi,πi+1, and πi+2 belong to the same component. In
this case, we have that Inv(π ′) ≥ Inv(π) − 3 and
codd(π ′) ≥ codd(π) − 1, therefore (8) holds.

b) two elements in {πi,πi+1,πi+2} belong to a
component C1 and the remaining element belongs to
a component C2. In this case, we have that
Inv(π ′) ≥ Inv(π) − 1 and codd(π ′) ≥ codd(π) − 2,
therefore (8) holds.

c) πi,πi+1, and πi+2 belong to distinct components. In
this case, we have that Inv(π ′) = Inv(π) + 3 and
codd(π ′) ≥ codd(π ′) − 3, therefore (8) holds.

Since (8) holds in any case, the lemma follows.

Given a signed permutation π , let ctodd(π) be the num-
ber of odd components of Gπ which have exactly t ver-
tices. By just considering the odd components having
at most two vertices, we can obtain better bounds on
the signed short operation distance of a signed permuta-
tion π (Lemmas 21 and 22). These bounds lead to a 3-
approximation for the problem of sorting by signed short
reversals (Theorem 5). We note that the upper bound
given in Lemma 21 relies on the fact that we can establish
an isomorphism between a component with m vertices
and the permutation graph of a signed permutation σ ∈
S±
m (Lemma 20).

Lemma 20. Let π ∈ S±
n be a signed permutation and let

C = (VC ,EC) be a component of Gπ with m vertices. Then,
there exists a signed permutation σ ∈ S±

m such that Gσ is
isomorphic to C.

Proof. By Lemma 18, we have that if VC =
{πi+1,πi+2, . . . ,πi+m}, then {|πi+1|, |πi+2|, . . . , |πi+m|} =

{i+1, i+2, . . . , i+m}. Let σ ∈ S±
m be a signed permutation

such that

σj =
{

πi+j − i if πi+j > 0
πi+j + i if πi+j < 0

for all j ∈ {1, 2, . . . ,m}. We claim that the bijective func-
tion f (πi+x) = σx is an isomorphism between C and Gσ .
To see this, firstly note that πi+x is a negative vertex if, and
only if, σx is a negative vertex. Secondly, let k and l be to
integers such that 1 ≤ k < l ≤ m. Note that (πi+k ,πi+l) is
an edge of C if, and only if, (σk , σl) is an edge ofGσ , and so
the lemma follows.

Lemma 21. Let π ∈ S±
n be a signed permutation. Then

dsso(π) ≤ Inv(π) + c2odd(π) + c1odd(π).

Proof. It suffices to prove that it is always possible to
apply a sequence of t > 0 signed short operations on
π �= ιn in such a way that the resulting permutation π ′
satisfies
Inv(π ′)+c2odd(π

′) + c1odd(π
′)≤ Inv(π)+c2odd(π)+c1odd(π) − t.

(9)

If Inv(π) = 0, then each component of Gπ is a single
vertex. Therefore, we can apply c1odd(π) signed 1-reversals
and (9) holds.
If Inv(π) > 0, then there exists an edge e = (πi,πi+1) in

Gπ (Lemma 1). Let C denote the component of Gπ which
contains e and assume thatC containsm vertices.We have
four cases to consider:

a) m ≥ 5. In this case, we further divide our analysis
into two subcases:

i) e is not a cut-edge. In this case, apply the (1,
1)-transposition ρ(i, i + 1, i + 2) on π and let
π ′ denote the resulting permutation. Then,
we have that Inv(π ′) = Inv(π)−1, c2odd(π

′) =
c2odd(π), and c1odd(π

′) = c1odd(π). Therefore
(9) holds.

ii) e is a cut-edge. In this case, let C1 and C2
denote the components of C−e. Moreover, let
m1 be the number of vertices in C1 and letm2
be the number of vertices in C2. Ifm1 ≥ 3 and
m2 ≥ 3, then apply the (1, 1)-transposition
ρ(i, i + 1, i + 2) on π and let π ′ denote the
resulting permutation. We have that
Inv(π ′) = Inv(π) − 1, c2odd(π

′) = c2odd(π),
and c1odd(π

′) = c1odd(π). So, without loss of
generality, assume thatm1 ≤ 2. Note that
m2 ≥ 3 becausem1 + m2 = m ≥ 5. If C1 is
even, then apply the (1, 1)-transposition
ρ(i, i + 1, i + 2) on π and let π ′ denote the
resulting permutation. We have that
Inv(π ′) = Inv(π)−1, c2odd(π

′) = c2odd(π), and

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 14 of 17

c1odd(π
′) = c1odd(π). Otherwise, if C1 is odd,

apply the signed the 2-reversal ρ(i, i+ 1) on π

and let π ′ denote the resulting permutation.
We have that Inv(π ′) = Inv(π) − 1,
c2odd(π

′) = c2odd(π), and c1odd(π
′) = c1odd(π).

In any case, we have that the resulting
permutation π ′ satisfies (9).

b) m = 4. According to Lemma 20, there exists a signed
permutation σ ∈ S±

4 such that Gσ is isomorphic to
C. We have verified that every permutation σ ∈ S±

4
for which c(σ) = 1 can be sorted with at most Inv(σ)

signed short operations, therefore it is possible to
apply a sequence of signed short operations on C in
such a way that the resulting permutation π ′ satisfies
(9).

c) m = 3. Analogous to case b).
d) m = 2. In this case, we further divide our analysis

into three subcases:

i) πi and πi+1 are both negatives. In this case,
apply the signed the 2-reversal ρ(i, i+ 1) on π

and let π ′ denote the resulting permutation.
We have that
Inv(π ′) = Inv(π) − 1, c2odd(π

′) = c2odd(π),
and c1odd(π

′) = c1odd(π), therefore (9) holds.
ii) πi and πi+1 have distinct signs. In this case,

apply the (1, 1)-transposition ρ(i, i + 1, i + 2)
on π and let π ′ denote the resulting
permutation. Then, we have that
Inv(π ′) = Inv(π) − 1, c2odd(π

′) = c2odd(π) − 1,
and c1odd(π

′) = c1odd(π) + 1, therefore (9)
holds.

iii) πi and πi+1 are both positives. In this case,
apply the (1, 1)-transposition ρ(i, i + 1, i + 2)
on π and let π ′ denote the resulting
permutation. Then, we have that
Inv(π ′) = Inv(π) − 1, c2odd(π

′) = c2odd(π),
and c1odd(π

′) = c1odd(π), therefore (9) holds.

Since it is always possible to apply a sequence of signed
short operations on π in such a way that the resulting
permutation π ′ satisfies (9), the lemma follows.

Lemma 22. Let π ∈ S±
n be a signed permutation. Then,

we have that dsso(π) ≥ Inv(π)+c2odd(π)+c1odd(π)

3 .

Proof. It suffices to prove that if we apply an arbitrary
short operation on π , then the resulting permutation π ′
satisfies

Inv(π ′) + c2odd(π
′) + c1odd(π

′)≥ Inv(π)+ c2odd(π)+c1odd(π)−3.
(10)

Suppose first that we apply a signed 1-reversal ρ(i, i) and
let π ′ denote the resulting permutation. Then, we have
that Inv(π ′) = Inv(π). Moreover, since πi can belong to
an odd component with at most two vertices, we have that
c2odd(π

′)+c1odd(π
′) ≥ c2odd(π)+c1odd(π)−1, therefore (10)

holds.
Now, suppose that we apply a super short operation ρ

on π which acts on the elements πi and πi+1, and let π ′
denote the resulting permutation. We have two cases to
consider:

a) πi and πi+1 belong to the same component. In this
case, we have that Inv(π ′) = Inv(π)− 1 and
c2odd(π

′) + c1odd(π
′) ≥ c2odd(π) + c1odd(π), and (10)

holds.
b) πi and πi+1 belong to distinct components. In this

case, we have that Inv(π ′) = Inv(π) + 1 and
c2odd(π

′) + c1odd(π
′) ≥ c2odd(π) + c1odd(π) − 2.

Therefore (10) holds.

Finally, suppose that we apply a short operation ρ on π

which acts on the elements πi, πi+1, and πi+2. Moreover,
let π ′ denote the resulting permutation. We have three
cases to consider:

a) πi,πi+1, and πi+2 belong to the same component. In
this case, we have that Inv(π ′) ≥ Inv(π) − 3 and
c2odd(π

′) + c1odd(π
′) ≥ c2odd(π) + c1odd(π). Therefore

(10) holds.
b) two elements in {πi,πi+1,πi+2} belong to the

componentC1 and the remaining element belongs to
the component C2. In this case, we have that
Inv(π ′) ≥ Inv(π) − 1 and
c2odd(π

′) + c1odd(π
′) ≥ c2odd(π) + c1odd(π) − 2, and

(10) holds.
c) πi,πi+1, and πi+2 belong to distinct components. In

this case, we have that πi < πi+1 < πi+2, thus
Inv(π ′) = Inv(π) + 3. Moreover, we have that
c2odd(π

′) + c1odd(π
′) ≥ c2odd(π) + c1odd(π) − 3.

Therefore (10) holds.

Since (10) holds in every case, the lemma follows.

Theorem 5. The problem of sorting by short signed oper-
ations is 3-approximable.

Proof. Immediate from Lemmas 21 and 22.

Let π be a signed permutation. From the proof of
Lemma 21, we can conclude that as long as Inv(π) > 0,
we can apply a sequence of short operations that elimi-
nates inversions and keeps the value of c2odd(π) + c1odd(π)

unchanged. When Inv(π) = 0, we can sort π apply-
ing c1odd(π) signed 1-reversals. This is precisely what
Algorithm 5 does.

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 15 of 17

Algorithm 5: Algorithm for sorting by short opera-
tions
Data: A permutation π ∈ S±

n .
Result: Number of short operations applied for

sorting π .
1 d ← 0
2 codd ← c2odd(π) + c1odd(π)

3 while Inv(π) > 0 do
4 Let (πi,πi+1) be an inversion in π

5 Let C = (VC ,EC) be the component of Gπ such
that πi,πi+1 ∈ VC

6 if |VC | ≥ 5 then
7 π ← π · ρ(i, i + 1, i + 2)
8 if c2odd(π) + c1odd(π) > codd then
9 π ← π · ρ(i, i+ 1, i+ 2) � undo the

previous (1,
1)-transposition

10 π ← π · ρ(i, i+ 1)
11 end if
12 d ← d+ 1
13 else if |VC | = 4 or |VC | = 3 then
14 Letm = |VC | and let σ ∈ S±

m be a signed
permutation such that Gσ � C (Lemma 20)

15 Apply on C the sequence of short operations
that optimally sorts σ

16 d ← d + dsso(σ)

17 else
18 if πi < 0 and πi+1 < 0 then
19 π ← π · ρ(i, i+ 1)
20 else
21 π ← π · ρ(i, i+ 1, i+ 2)
22 end if
23 d ← d+ 1
24 end if
25 end while
26 Apply signed 1-reversals on π until it has no negative

elements and update d accordingly
27 return d

It follows from Theorem 5 that Algorithm 5 is a 3-
approximation algorithm for the problem of sorting by
short reversals. Regarding its time complexity, we have
that each iteration of the while loop takesO(n) time. Since
the while loop iterates a total of O(n2) times and line 26
runs in O(n) time, we can conclude that Algorithm 5 runs
in O(n3) time.

Experimental results
We have implemented Algorithms 2 and 5, and we have
audited them using GRAAu [31]. The audit consists of
comparing the distance computed by an algorithm with
the rearrangement distance for every π ∈ S±

n , 1 ≤ n ≤

10. The results are presented in Tables 1 and 2, where
n is the size of the permutations, Avg. Ratio is the aver-
age of the ratios between the distance returned by an
algorithm and the rearrangement distance, Max. Ratio is
the greatest ratio among all the ratios between the dis-
tance returned by an algorithm and the rearrangement
distance, and Exact is the percentage of distances returned
by the algorithm that is exactly the rearrangement
distance.
Besides providing theMax. Ratio, GRAAu also provides

up to 50 permutations for which the algorithms achieved
this ratio. These permutations can be used to obtain
lower bounds on the theoretical approximation ratios of
Algorithms 2 and 5. This is precisely what Lemmas 23 and
24 do. Observe that, in the case of Algorithm 5, the lower
bound matches the upper bound, so we can conclude that
its approximation ratio is tight (Lemma 25).

Lemma 23. The approximation ratio of Algorithm 2 is
at least 3.

Proof. Let π = (+3 + 4 − 1 − 2) be a signed permuta-
tion. On one hand, we have that Algorithm 2 applies the
sequence of signed short reversals ρ(2, 4), ρ(1, 3), ρ(1, 1),
ρ(2, 2), ρ(3, 3), and ρ(4, 4) for sorting π . On the other
hand, we have that the sequence of signed short reversals
ρ(1, 3) and ρ(2, 4) sorts π , and the lemma follows.

Lemma 24. The approximation ratio of Algorithm 5 is
at least 3.

Proof. Let π = (−3 − 2 − 5 − 4 + 1) be a signed per-
mutation. On one hand, we have that Algorithm 5 applies
the sequence of signed short operations ρ(1, 2, 3), ρ(3,
4, 5), ρ(4, 5), ρ(3, 4), ρ(2, 3), and ρ(1, 2) for sorting π .
On the other hand, we have that the sequence of signed

Table 1 Results obtained from the audit of the
implementation of Algorithm 2

n Avg. ratio Max. ratio Exact

1 1.00 1.00 100.00%

2 1.00 1.00 100.00%

3 1.13 2.50 77.08%

4 1.18 3.00 60.16%

5 1.24 3.00 41.04%

6 1.28 3.00 26.04%

7 1.31 3.00 15.06%

8 1.34 3.00 8.00%

9 1.35 3.00 3.93%

10 1.37 3.00 1.79%

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 16 of 17

Table 2 Results obtained from the audit of the
implementation of Algorithm 5

n Avg. ratio Max. ratio Exact

1 1.00 1.00 100.00%

2 1.00 1.00 100.00%

3 1.04 1.50 91.67%

4 1.02 1.50 93.75%

5 1.31 3.00 46.41%

6 1.54 3.00 19.11%

7 1.73 3.00 7.13%

8 1.87 3.00 2.50%

9 1.99 3.00 0.75%

10 2.08 3.00 0.20%

short operations ρ(3, 5) and ρ(1, 3) sorts π . Therefore the
lemma follows.

Lemma 25. The approximation ratio of Algorithm 5 is
tight.

Proof. Immediate from Theorem 5 and Lemma 24.

Conclusions
In this article, we have presented optimal algorithms
for sorting by signed super short reversals and for sort-
ing by signed super short operations, a 5-approximation
algorithm for sorting by signed short reversals, and a
3-approximation algorithm for sorting by signed short
operations. We have shown that the expected approx-
imation ratio of the 5-approximation algorithm is not
greater than 3 for random signed permutations with more
than 12 elements. Moreover, the experimental results on
small signed permutations have led us to conclude that
the approximation ratio of both approximation algorithms
cannot be smaller than 3. In particular, this means that the
approximation ratio of the 3-approximation algorithm is
tight.
We make two remarks. The first remark is that bound-

ing the length of the operations is not the only approach
yielded by the assumption that rearrangement events
affecting large portions of a genome are less likely to occur.
Some researchers [32-34] have proposed to assign weights
to the operations according to their length. The second
remark is that, as opposed to the unbounded variants of
the permutation sorting problem, sorting a linear per-
mutation by short operations is not equivalent to sorting
a circular permutation by short operations (see [35] for
details). To the best of our knowledge, the only bounded
variant considered in the literature that involves circular
permutations is the problem of sorting an unsigned cir-
cular permutation by reversals of length 2. Jerrum [17]

and Egri-Nagy et al. [35] demonstrated how to solve this
problem in polynomial time.
We see some possible directions for future work. One

is to develop polynomial time solutions for the problem
of sorting by signed short reversals and for the problem
of sorting by signed short operations. Another possibility
is to study the problem of sorting signed circular per-
mutations by short operations. In particular, we think
that the ideas used to solve the problem of sorting by
signed super short reversals can also be used to tackle the
problem of sorting a signed circular permutation by rever-
sals of length of at most 2. Finally, one could apply the
methods discussed in this work to inferring phylogenies.
For instance, Egri-Nagy et al. [35] applied their method
(i.e. sorting unsigned circular permutations by reversals
of length 2) to reconstruct the phylogenetic history of
some published Yersinia genomes. As a result, they pro-
duced a phylogenetic tree that is broadly consistent with
the phylogenetic tree of Bos et al. [36].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the algorithms: GRG, OL, and ZD. Implemented the
algorithms and performed experiments: GRG. Wrote the final manuscript: GRG.
All authors read and approved the final manuscript.

Acknowledgements
GRG acknowledges the support from the Coordination for the Improvement
of Higher Education Personnel (CAPES) and the São Paulo Research
Foundation (FAPESP) under grant #2014/04718-6. OL was supported by the
National Council for Scientific and Technological Development (CNPq) under
grants 303947/2008-0 and 477692/2012-5. ZD acknowledges the support
from the CNPq under grants 306730/2012-0, 477692/2012-5, and
483370/2013-4. Finally, the authors thank the Center for Computational
Engineering and Sciences at Unicamp for financial support through the
FAPESP/CEPID, grant 2013/08293-7.

Received: 15 December 2014 Accepted: 19 February 2015

References
1. Gascuel O. Mathematics of evolution and phylogeny. New York, New

York, USA: Oxford University Press, Inc.; 2005.
2. Saitou N, Nei M. The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(1):406–25.
3. Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of

genome rearrangements. Cambridge, Massachusetts, USA: The MIT Press;
2009.

4. Caprara A. Sorting permutations by reversals and eulerian cycle
decompositions. SIAM J Discrete Math. 1999;12(1):91–110.

5. Watterson GA, Ewens WJ, Hall TE, Morgan A. The chromosome inversion
problem. J Theor Biol. 1982;99(1):1–7.

6. Berman P, Hannenhalli S, Karpinski M. 1.375-approximation algorithm for
sorting by reversals. In: Proceedings of the 10th Annual European
Symposium on Algorithms (ESA’2002), Lecture Notes in Computer
Science, vol.2461. Rome, Italy: Springer; 2002. p. 200–10.

7. Bafna V, Pevzner PA. Genome rearrangements and sorting by reversals.
SIAM J Comput. 1996;25(2):272–89.

8. Hannenhalli S, Pevzner PA. Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals. J.
ACM. 1999;46(1):1–27.

9. Tannier E, Bergeron A, Sagot MF. Advances on sorting by reversals.
Discrete Appl Math. 2007;155(6-7):881–8.

Rodrigues Galvão et al. Algorithms for Molecular Biology (2015) 10:12 Page 17 of 17

10. Bader D, Moret B, Yan M. A linear-time algorithm for computing
inversion distance between signed permutations with an experimental
study. J Comput Biol. 2001;8(5):483–91.

11. Bulteau L, Fertin G, Rusu I. Sorting by transpositions is difficult. SIAM J
Discrete Math. 2012;26(3):1148–80.

12. Bafna V, Pevzner PA. Sorting by transpositions. SIAM J Discrete Math.
1998;11(2):224–40.

13. Elias I, Hartman T. A 1.375-approximation algorithm for sorting by
transpositions. IEEE/ACM Trans Comput Biol Bioinf. 2006;3(4):369–79.

14. Walter MEMT, Dias Z, Meidanis J. Reversal and transposition distance of
linear chromosomes. In: Proceedings of the 5th International Symposium
on String Processing and Information Retrieval (SPIRE’1998). Santa Cruz,
Bolivia: IEEE Computer Society; 1998. p. 96–102.

15. Rahman A, Shatabda S, Hasan M. An approximation algorithm for sorting
by reversals and transpositions. J Discrete Algorithms. 2008;6(3):449–57.

16. Gu Q, Peng S, Sudborough IH. A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theor Comput Sci.
1999;210(2):327–39.

17. Jerrum MR. The complexity of finding minimum-length generator
sequences. Theor Comput Sci. 1985;36:265–89.

18. Heath LS, Vergara JPC. Sorting by short swaps. J Comput Biol. 2003;10(5):
775–89.

19. Heath LS, Vergara JPC. Sorting by bounded block-moves. Discrete Appl
Math. 1998;88:181–206.

20. Heath LS, Vergara JPC. Sorting by short blockmoves. Algorithmica.
2000;28(3):323–54.

21. Jiang H, Zhu D, Zhu B. A (1+ε)-approximation algorithm for sorting by
short block-moves. Theor Comput Sci. 2012;439:1–8.

22. Jiang H, Feng H, Zhu D. An 5/4-approximation algorithm for sorting
permutations by short block moves. In: Proceedings of the 25th
International Symposium on Algorithms and Computation (ISAAC’2014),
Lecture Notes in Computer Science, vol.8889. Jeonju, Korea: Springer;
2014. p. 491–503.

23. Vergara JPC. Sorting by bounded permutations. USA: Virginia Polytechnic
Institute & State University: PhD thesis, Blacksburg, VA; 1998.

24. Dalevi DA, Eriksen N, Eriksson K, Andersson SGE. Measuring genome
divergence in bacteria: a case study using chlamydian data. J Mol Evol.
2002;55(1):24–36.

25. Lefebvre JF, El-Mabrouk N, Tillier E, Sankoff D. Detection and validation
of single gene inversions. Bioinformatics. 2003;19(suppl 1):190–6.

26. McLysaght A, Seoighe C, Wolfe KH. High frequency of inversions during
eukaryote gene order evolution In: Sankoff D, Nadeau JH, editors.
Comparative Genomics, Computational Biology, vol.1. Dordrecht, The
Netherlands: Kluwer Academic Publishers; 2000. p. 47–58.

27. Seoighe C, Federspiel N, Jones T, Hansen N, Bivolarovic V, Surzycki R, et
al. Prevalence of small inversions in yeast gene order evolution. Proc Nat
Acad Sci U S A. 2000;97(26):14433–7.

28. Galvão GR, Dias Z. Approximation algorithms for sorting by signed short
reversals. In: Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB’2014). Newport
Beach, California, USA: ACM Press; 2014. p. 360–9.

29. Chan TM, Pătraşcu M. Counting inversions, offline orthogonal range
counting, and related problems. In: Proceedings of the 21th ACM-SIAM
Symposium on Discrete Algorithms (SODA’10). Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics; 2010. p. 161–73.

30. Koh Y, Ree S. Connected permutation graphs. Discrete Math.
2007;307(21):2628–35.

31. Galvão GR, Dias Z. An audit tool for genome rearrangement algorithms.
ACM J Exp Algorithmics. 2014;19(Article 1.7):1.1–1.34.

32. Pinter RY, Skiena S. Genomic sorting with length-weighted reversals.
Genome Inf. 2002;13:103–11.

33. Swidan F, Bender MA, Ge D, He S, Hu H, Pinter RY. Sorting by
length-weighted reversals: Dealing with signs and circularity. In:
Proceedings of the 15th Annual Symposium on Combinatorial Pattern
Matching (CPM’2004), Lecture Notes in Computer Science, vol. 3109.
Istanbul, Turkey: Springer; 2004. p. 32–46.

34. Bender MA, Ge D, He S, Hu H, Pinter RY, Skiena S, et al. Improved
bounds on sorting by length-weighted reversals. J Comput Syst Sci.
2008;74(5):744–774.

35. Egri-Nagy A, Gebhardt V, Tanaka MM, Francis AR. Group-theoretic
models of the inversion process in bacterial genomes. J Math Biol.
2014;69(1):243–65.

36. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N,
Coombes BK, et al. A draft genome of Yersinia pestis from victims of the
black death. Nature. 2011;478(7370):506–10.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Keywords

	Background
	Preliminaries
	Sorting by bounded signed reversals
	The vector diagram
	Sorting by signed super short reversals
	Sorting by signed short reversals

	Sorting by bounded operations
	The permutation graph
	Sorting by signed super short operations
	Sorting by signed short operations

	Experimental results
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

