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Objective: To explore a new artificial intelligence (AI)-aidedmethod to assist the

clinical diagnosis of femoral intertrochanteric fracture (FIF), and further

compare the performance with human level to confirm the effect and

feasibility of the AI algorithm.

Methods: 700 X-rays of FIF were collected and labeled by two senior

orthopedic physicians to set up the database, 643 for the training database

and 57 for the test database. A Faster-RCNN algorithmwas applied to be trained

and detect the FIF on X-rays. The performance of the AI algorithm such as

accuracy, sensitivity, miss diagnosis rate, specificity, misdiagnosis rate, and time

consumption was calculated and compared with that of orthopedic attending

physicians.

Results: Compared with orthopedic attending physicians, the Faster-RCNN

algorithm performed better in accuracy (0.88 vs. 0.84 ± 0.04), specificity

(0.87 vs. 0.71 ± 0.08), misdiagnosis rate (0.13 vs. 0.29 ± 0.08), and time

consumption (5 min vs. 18.20 ± 1.92 min). As for the sensitivity and missed

diagnosis rate, there was no statistical difference between the AI and orthopedic

attending physicians (0.89 vs. 0.87 ± 0.03 and 0.11 vs. 0.13 ± 0.03).

Conclusion: The AI diagnostic algorithm is an available and effectivemethod for

the clinical diagnosis of FIF. It could serve as a satisfying clinical assistant for

orthopedic physicians.
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Introduction

As the pivotal location of force conduction in the hip joint,

the proximal femur could be damaged by the excessive violent

load (Bhandari and Swiontkowski, 2017). Femoral

intertrochanteric fracture (FIF) was the fracture of the

proximal femur in the hip joint. It was a violent articular

injury with a broad damage spectrum to the lower extremity

motor system, which usually accompanied a high in-hospital

death rate (6%–10%) and poor clinical outcome (Okike et al.,

2020; Zhao et al., 2020). With the unsatisfied mortality,

complications, mobility, and quality of life, FIF patients

suffered from excruciating misery. After the injury of the hip

joint, the initial diagnosis was commonly finished in the

emergency department, and a conventional X-ray could be the

primary diagnostic method to confirm whether a fracture

occurred. Rather than other imaging modalities such as CT

and MRI, X-ray was convenient, rapid, inexpensive, and easy

to be recognized by radiologists or orthopedists. Generally, the

ability to read X-ray images was an essential clinical skill that

must be mastered by qualified doctors, which could guarantee

accurate diagnosis and subsequent treatment. However, when it

was under urgent situations in the emergency department

(usually as the first visit for trauma patients) and lack of

senior doctors, the probability of inducing the risk of missed

diagnoses and misdiagnoses, especially for minor fractures, non-

displaced fractures, or occult fractures increased significantly

(Jamjoom and Davis, 2019). Several research studies had

illustrated that missed diagnoses and misdiagnoses could even

exceed 40% under severe and urgent conditions, which seriously

affected the credibility of clinical diagnosis, delayed the launch of

effective treatment, and induced poor clinical outcomes (Guly,

2001; Liu et al., 2021b). According to this, an accurate and

credible auxiliary tool for bone fracture detection remained

necessary.

With the advent of the intelligent-medicine era, a series of

high technologies with great development had gradually been

applied to the medical area to solve problems that were difficult

to achieve in traditional medicine. For instance, with the

supplementary mixed reality, the surgery of complex

traumatic fractures could be performed easily (Liu P. et al.,

2021), and with the assistance of a robot, the surgery could be

performed more accurately and safely (Oussedik et al., 2020).

With the enhancement of 5G communication technology, the

telemedicine could be more realizable (Liu et al., 2020). As a

representative technique of intelligent-medicine, artificial

intelligence (AI) had also made great progress and become a

powerful tool in medical image analysis with the application of

machine learning (ML) and deep learning (DL) (Topol, 2019). AI

was an interdisciplinary study of computer technology,

mathematics, and cybernetics, which aimed to study,

stimulate, and even surpass human intelligence. AI had

formed several functional applications including 1) computer

vision, 2) speech recognition, 3) natural language recognition, 4)

decision planning, and 5) big data analysis. The primary

advantage of AI was the ability to capture feature items of the

target, which could be transformed into a performed method in

the image analysis by AI. In previous research studies, AI had

been applied to locate the abnormal area in the image of the

pathological section, capsule endoscopy, ultrasound, and

imageological examinations and achieved satisfying results in

improving detection accuracy and diagnostic level (Ding et al.,

2019; Nguyen et al., 2019; Norman et al., 2019; Wang et al., 2019;

Chen et al., 2021). Therefore, in the present study, we first

explored the ability of AI in FIF detection on X-ray images

and then compared the difference between AI and orthopedic

attending physicians. The result of this study could further verify

the feasibility of AI-assisted medical diagnosis and provide a

novel method for the clinical diagnosis of FIF.

Methods

Database and study design

As a multi-center study, the data of FIF X-rays were collected

from five Chinese triple-A grade hospitals (Wuhan Union

Hospital, Wuhan Puai Hospital, The Second Xiangya Hospital

of Central South University, Xiangya Changde Hospital, and

Northern Jiangsu People’s Hospital). The inclusion and

exclusion criteria are shown in Table 1. A total of 700 X-rays

from 459 FIF patients were acquired, including 459 FIF X-rays

and 241 normal hip X-rays. Then, the acquired 700 X-rays were

converted from Digital Imaging and Communications in

Medicine (DICOM) files to Joint Picture Group (JPG) files

with a matrix size of 600 × 800 pixels by Photoshop 20.0

(Adobe Corp., United States). These 700 JPG files were

numbered using FreeRename 5.3 software (www.pc6.com).

Through the random-number-table function in Excel

(Microsoft Corp., United States), 700 JPG files were randomly

divided into two datasets: a training database (including 643 files,

consisting of 413 FIF and 230 normal hips, for AI learning and

training) and the test dataset (including 57 files, consisting of

46 FIF and 11 normal hips, for effect validation). The ratio of the

two datasets was nearly 9:1.

Through the labeling software LabelImg (https://github.com/

tzutalin/LabelImg), 700 JPG files were further confirmed and

labeled with a tag of fracture (meant FIF) or normal hip for the

subsequent training. Label works were performed (A and B) with

more than 10 years of experience. Briefly, the files from the tab

named [Open Dir] were imported, and then the label type “VOC

label” (with the name suffix of “.xml”) from the tab named

[Pascal VOC] was selected. The menu bar was opened by right-

clicking the image, and the tab named [Create Rectangle] was

selected to outline the individual fracture line (or fracture areas

where fracture lines were not obvious, such as comminuted
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fractures) in the rectangle. Several standards of labeling needed to

be stated. 1) The rectangle should cover target areas as small as

possible to avoid leaving an invalid blank area. 2) If multiple

target areas existed, they should be marked. 3) A certain range of

errors was allowed, but ambiguous areas should not be marked.

The illustration of the labeling method is shown in Figure 1.

Then, a type of AI recognition algorithm was designed and

trained with the training database to learn the anatomical

features of the hip on non-FIF X-rays and the characteristics

of fracture lines on FIF X-rays. After the training process by

training database, the algorithm could automatically recognize

and label the suspicious area of FIF on X-rays in the test dataset,

whose results could assist in FIF detection. Finally, to verify the

difference between the algorithm and the human level, the

recognized performance in the test dataset of the AI algorithm

(in the form of accuracy, sensitivity, miss diagnosis rate,

specificity, misdiagnosis rate, and time consumption) were

compared with a panel of five orthopedic attending physicians

(C, D, E, F, and G) in the emergency department of Wuhan

Union Hospital. To protect patients’ privacy, all identifying

information such as name, sex, age, and ID on the X-rays

were anonymized and omitted when the data were first

acquired. The study was approved by the Ethics Committee of

Wuhan Union Hospital.

Algorithm design, training, and
performance assessment

A classical Faster-RCNN target detection algorithm was

designed to recognize the fracture line of FIF X-ray (the

structure of the algorithm was shown in Figure 2). Briefly,

after the establishment of the Faster-RCNN algorithm, the

training database was first enhanced by the algorithm

including image rollover, rotation, cropping, and blurring,

which multiplied the original training database fivefold

TABLE 1 Inclusion and exclusion criteria of data collection.

Inclusion criteria Exclusion criteria

1 Patients were adults (age >18 years old) Juvenile patients (age <18 years old)

2 No other hip fractures were associated (such as the fractures of the femur, neck, femur head, and
proximal femur that did not involve intertrochanteric areas)

Other hip fractures were associated

3 The preoperative anteroposterior X-ray was available and standard without any improper
position, overexposure, ghosting, and shelters, such as plaster, splint, and metal objects on clothes

The preoperative anteroposterior X-ray was not performed in the
hospital or no standard

FIGURE 1
Illustrations of labeling methods. (A) Labeling of individual fracture lines. (B) Labeling of comminuted fractures.
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(643 files to 3,215 files). Then, the amplified training database

was imported into Faster-RCNN for algorithm training. During

the training process, images were scaled and preprocessed by the

algorithm and then input into the convolutional neural network

(CNN) for image feature extraction. The extracted feature map

was fed into the Region Proposal Network (RPN) to generate an

“anchor frame”, and then the full connection layer was used to

make a preliminary decision on the “anchor frame”. The

obtained preliminary decision and previously obtained

features were sent into the region of interest (ROI) pooling

layer to fix input dimensions, and finally, the prediction

results were obtained by box regression classification.

After Faster-RCNN training, the test database was imported

to verify the training effect, the performance of the algorithm to

recognize FIF or normal hip was calculated according to

outputted results (the FIF image with a red frame, normal

hip with non) and the real diagnosis (based on the labeling of

physician A and B). Finally, the performance of Faster-RCNN

was expressed in the form of accuracy, sensitivity, miss

diagnosis rate, specificity, misdiagnosis rate, and time

consumption.

Performance assessment of orthopedic
attending physicians

To assess the diagnostic performance of orthopedic

physicians on the clinical front line, in this study a panel of

five orthopedic attending physicians was recruited from the

emergency department of Wuhan Union Hospital. All of

them had experienced the emergency management of

traumatic fractures and possessed a professional ability to read

X-ray images. The panel of orthopedic attending physicians was

independent of this study and did not participate in any processes

of this project. They were informed to diagnose the test dataset

independently as FIF or normal hip without any reminder.

During the whole process, conversation and consultation were

forbidden and the time was unlimited. Then, their diagnostic

results were collected and judged according to the real diagnosis.

The accuracy, sensitivity, miss diagnosis rate, specificity,

misdiagnosis rate, and time consumption were calculated as

the performance.

Finally, the performance of AI and orthopedic attending

physicians were compared in order to evaluate the diagnostic

ability and clinical feasibility of the algorithm.

Statistics

The data of this study were presented as the mean ± standard

deviation (SD) or percentage, and the statistical analysis was

performed using GraphPad Prism 7.0 software (GraphPad Corp.,

United States). The significance between the algorithm and

orthopedic attending physicians was evaluated by the

Student’s t-test. p < 0.05 was considered to indicate statistical

significance.

FIGURE 2
Structure of the Faster-RCNN algorithm.
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Results

Performance of the algorithm

After training, the algorithm gave the test database a

diagnosis according to features learned before. If the diagnosis

was FIF, there would be a red rectangle on the suspicious fracture

line (As shown in Figure 3). 1) The F1 score (an indicator used to

measure the accuracy of the dichotomous model in statistics. It

took into account both the accuracy and recall of classification

models. The F1 score could be regarded as a harmonic average of

model accuracy and recall with a maximum value of 1 and a

minimum value of 0), 2) recall (the ratio of the amount of

relevant information checked out from the database to the total

amount), 3) precision, 4) AP (average precision), mAP (mean

average precision) and IOU (intersection over union), 5) AUC

(area under the curve) and ROC (the receiver operator

characteristic curve), and 6) accuracy, sensitivity, missed

diagnosis rate, specificity, and misdiagnosis rate were used to

evaluate the effect and performance of the algorithm. The

F1 score, recall, precision, AP, mAP, IOU, AUC, and ROC

are shown in Supplementary Material. The accuracy (0.88),

sensitivity (0.89), missed diagnosis rate (0.11), specificity

(0.87), and misdiagnosis rate (0.13) were calculated and

exported by the algorithm.

Performance of orthopedic attending
physicians

The diagnostic results of five orthopedic attending physicians

were collected to calculate the accuracy, sensitivity, missed

FIGURE 3
Part of output X-rays from the test dataset. Suspicious fractures were labeled with a red rectangle by the Faster-RCNN algorithm.
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TABLE 2 Performance of orthopedic attending physicians.

Performance Physician C Physician D Physician E Physician F Physician G

Total correct/incorrect 47/10 49/8 47/10 46/11 51/6

Diagnostic result FIF Non FIF Non FIF Non FIF Non FIF Non

FIF (real fracture) 40 6 41 5 39 7 39 7 42 4

Non (real normal hip) 4 7 3 8 3 8 4 7 2 9

Accuracy 0.82 0.86 0.82 0.81 0.89

Sensitivity 0.87 0.89 0.85 0.85 0.91

Missed diagnosis rate 0.13 0.11 0.15 0.15 0.09

Specificity 0.64 0.73 0.73 0.64 0.82

Misdiagnosis rate 0.36 0.27 0.27 0.36 0.18

Time consumption (min) 16 min 17 min 19 min 21 min 18 min

TABLE 3 Comparison between the Faster-RCNN and orthopedic attending physicians.

Performance Algorithm Orthopedic
attending physician

T value p value

Accuracy 0.88 0.84 ± 0.04 2.64 0.03

Sensitivity 0.89 0.87 ± 0.03 1.37 0.21

Missed diagnosis rate 0.11 0.13 ± 0.03 1.37 0.21

Specificity 0.87 0.71 ± 0.08 4.69 0.002

Misdiagnosis rate 0.13 0.29 ± 0.08 4.69 0.002

Time consumption 5 min 18.20 ± 1.92 min 15.34 <0.001

FIGURE 4
Comparison between the Faster-RCNN and orthopedic attending physicians. *NS: not significant. *p < 0.05.
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diagnosis rate, specificity as well as misdiagnosis rate, and the

time consumption of each one was also recorded. The data are

shown in Table 2.

The comparison of the algorithm and
orthopedic attending physicians

The performance of Faster-RCNN and orthopedic attending

physicians were compared. The results are shown in Table 3 and

Figure 4.

In the diagnosis of the test database, the results illustrated an

accuracy of 0.88 for Faster-RCNN vs. 0.84 ± 0.04 for orthopedic

attending physicians (p < 0.05), a sensitivity of 0.89 for Faster-

RCNN vs. 0.87 ± 0.03 for orthopedic attending physicians (p >
0.05), a missed diagnosis rate of 0.11 for Faster-RCNN vs. 0.13 ±

0.03 for orthopedic attending physicians (p > 0.05), a specificity

of 0.87 for Faster-RCNN vs. 0.71 ± 0.08 for orthopedic attending

physicians (p < 0.05), a misdiagnosis rate of 0.13 for Faster-

RCNN vs. 0.29 ± 0.08 for orthopedic attending physicians (p <
0.05) and a time consumption of 5 min for Faster-RCNN vs.

18.20 ± 1.92 min for orthopedic attending physicians (p < 0.05).

Discussion

FIF was a kind of high-energy injury with complex

complications in the hip joint, which seriously threatened the

health of patients and even led to death (Simunovic et al., 2010;

Katsoulis et al., 2017). The early diagnosis and surgical treatment

were defined as critical factors in reducing postoperative

complications and mortality (Khan et al., 2013; Colais et al.,

2015; Investigators, 2020). However, under emergencies the

clinical diagnosis of FIF was often unsatisfactory due to an

unclear X-ray presentation, especially in minor fracture, non-

displaced fracture, or occult fracture, which could finally lead to

missed diagnoses or misdiagnoses. A retrospective analysis in the

emergency department illustrated that missed diagnoses and

misdiagnoses mostly occurred to the hip fracture (37.3%)

rather than other limb fractures, and doctors were more likely

to make mistakes between 5 p.m. and 3 a.m. due to fatigue and

other factors. After diagnosis correcting, there were more than

55% of patients who still required further treatment such as cast

immobilization or even surgery (Mattijssen-Horstink et al.,

2020). Hence, there was an urgent demand to find an

auxiliary tool to assist clinical fracture diagnosis.

In this study, an AI algorithm (Faster-RCNN) was applied to

help doctors automatically diagnose the clinical FIF on hip

X-rays, which had shown a satisfying performance compared

with five orthopedic attending physicians. After feature

extraction and learning from the training database of

643 X-rays, the test database of 57 X-rays was imported to

confirm the effect of the algorithm. From results in this study,

Faster-RCNN showed an excellent ability. Compared with the

performance of orthopedic attending physicians, Faster-RCNN

performed better in accuracy (0.88 vs. 0.84 ± 0.04), specificity

(0.87 vs. 0.71 ± 0.08), and especially time consumption (5 min vs.

18.20 ± 1.92 min), with a nearly fourfold increase. It meant

Faster-RCNN performed better in the total recognition of FIF

from the normal hip and got a lower misdiagnosis rate than the

human level (0.13 vs. 0.29 ± 0.08). Strikingly, as for the time

consumption, Faster-RCNN was drastically faster than the

manual diagnostic speed. Despite the sensitivity and missed

diagnosis rate of Faster-RCNN were not significantly

improved than the human level, it still reached the level of

orthopedic attending physicians (0.89 vs. 0.87 ± 0.03) and

(0.11vs. 0.13 ± 0.03). Also, the performance of orthopedic

attending physicians in this study proved the conclusion of

Mattijssen’s research (Mattijssen-Horstink et al., 2020). Missed

diagnoses and misdiagnoses really existed in the daily medical

work and posed threat to the diagnosis, treatment, and

rehabilitation of patients, which still kept demanding for a

clinical auxiliary tool, such as AI. The performance of AI in

this study showed that after training, AI could already serve as an

assistant for doctors in FIF diagnosis and even perform better

than the human level in some aspects. Moreover, according to the

nonemergency and time-free testing environment in the process

of human performance assessment, which did not simulate real

urgent circumstances very well, the authors believed the

performance of AI could be even better than the reality of the

emergency department.

There were already studies indicating a satisfying

performance of AI in the assistance for clinical disease

diagnosis. For example, in the diagnosis of lung disease, Yoo

designed an AI model through chest X-ray analysis of

5,485 smokers. Through training, the sensitivity and specificity

of the model reached 0.86 and 0.85 in lung nodules automatic

recognition on X-ray, 0.75 and 0.83 of lung cancer recognition

with a 0.38 positive predictive value and a 0.99 negative

predictive value, which were more accurate than radiologists

(Yoo et al., 2020). During the period of coronavirus disease in

2019 (COVID-19), Wang established a CNNs algorithm to learn

chest CT of 1,647 COVID-19 infected patients and

800 noninfected patients from Wuhan, China. Diagnostic tests

were carried out by suspected infected patients in multiple

clinical institutions, and the sensitivity and specificity of the

model reached 0.92 and 0.85. The median time consumption was

0.55 min, which got 15 min less than that of the manual level and

provided great help for rapid diagnosis in the fight against the

epidemic (Wang et al., 2020). Zhao measured the size of tumors

in the lungs, liver, and lymph nodes of patients based on CT with

different slice intervals, and the intra- and inter-reader variability

were also analyzed by linear mixed-effects models and the Bland-

Altman method (Zhao et al., 2013). Research studies meant a

well-trained AI algorithm was fully competent for the imaging

diagnosis of clinical diseases and had reached the level of imaging
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physicians, which effectively sped up the workflow of imaging

interpretation. Also, there were various research studies that

implemented the automated diagnosis of orthopedic diseases

with the AI algorithm. For instance, Gan trained CNN with

2,340 anterior-posterior wrist radiographs, and finally, the

algorithm got an accuracy of 0.93, sensitivity of 0.9, and

specificity of 0.96 in the diagnosis of distal radius fractures,

which showed a similar ability to orthopedists and radiologists

(Gan et al., 2019). Choi established a dual-input CNN upon

1,266 pairs of anteroposterior or lateral elbow radiographs for the

automated detection of supracondylar fracture, after the DL

process, the algorithm expressed a specificity of 0.92 and a

sensitivity of 0.93, which provided a comparable diagnostic

ability to radiologists (Choi et al., 2020). As for proximal

humeral fractures, Chung set up a deep CNN and trained the

algorithm with 1,891 X-rays of the shoulder joint (515 normal

shoulders, 346 greater tuberosity fractures, 514 surgical neck

fractures, 269 three-part fractures, and 247 four-part fractures).

The algorithm showed excellent performance with 0.96 accuracy,

0.99 sensitivity, and 0.97 specificity for distinguishing normal

shoulders from proximal humerus fractures. Moreover, in the

fracture type classifying, the trained algorithm also showed

promising results with 0.65–0.86 accuracy,

0.88–0.97 sensitivity, and 0.83–0.94 specificity, which

performed better than general physicians and similar to

orthopedists specialized in the shoulder (Chung et al., 2018).

The scaphoid fracture was the most common carpal bone

fracture, whose diagnosis might be difficult, particularly for

physicians inexperienced in hand surgery, to accurately

evaluate and interpret wrist radiographs due to its complex

anatomical structures. In terms of this issue, Ozkaya built

CNN to detect scaphoid fractures on anteroposterior wrist

radiographs and also compared the performance of the

algorithm and doctors in the emergency department. This

study included a total of 390 patients with AP wrist

radiographs, and the algorithm expressed a 0.76 sensitivity

and 0.92 specificity in identifying scaphoid fractures, which

showed that CNN’s performance was similar to a less

experienced orthopedic specialist but better than the physician

in the emergency department (Ozkaya et al., 2022). In addition to

fractures, AI also improved the interpretation of the skeletal age

and the intelligent diagnosis of scoliosis, osteosarcoma,

osteoarthritis, motor system injury as well as other orthopedic

diseases (Watanabe et al., 2019; Garwood et al., 2020; Gorelik and

Gyftopoulos, 2021). All of research studies confirmed the

feasibility and value of AI in clinical diagnosis (the summary

of the performance of AI are shown in Table 4).

Compared with other similar studies, the innovative

algorithm Faster-RCNN was constructed at the beginning of

the present study and first applied in the detection of FIF. As the

first strength of the study, Faster-RCNN was the further

evolution of R-CNN and Fast R-CNN with a superior

performance, which greatly improved the accuracy and speed

of detection. The end-to-end target detection framework was also

truly realized. In principle, Faster R-CNN could be regarded as a

system combined with RPN modules of Region Generation

Network on the basis of Fast R-CNN. The role of selective

search in the Fast R-CNN system was replaced by the Region

Generation Network. And the core concept of RPN was applying

CNN to generate the Region Proposal Network directly with the

essence of the sliding window. As a result, it increased the speed

of suggestion box generation to an average of 10 ms. From the

data of this present study, the performance of Faster-RCNN was

satisfying in the fracture diagnosis. Although, some of the

performances were not as high as compared with other

studies, we considered that differences might be caused by

different anatomical features, the size of the database, and the

diversity of labeling methods. Even so, the results of the study still

indicated the feasibility and necessity of AI assistance in the

diagnosis of FIF. The second strength of the present study was the

comparatively small database, which might also be a limitation.

Researchers in the field of AI-aided medicine always excessively

pursued the larger database. Definitely, we believed that a high-

volume database was the guarantee for the well-training of the AI

algorithm. However, the satisfying result of this study also meant

the mature algorithm structure and the accurate and effective

labeling method were also equally important, which determined

ultimate effectiveness. Third, as a multi-center study of five

Chinese triple-A grade hospitals, the multiformity of our data

further ensured the compatibility, applicability, and maturity of

the well-trained algorithm. The performance of the model

verified in different data environments would be more credible.

Through the research of AI application in medicine, we

confirmed that AI had brought clinical work with obvious

TABLE 4 Summary of the performance of AI in fracture diagnosis.

Fracture diagnosis Database size Accuracy Sensitivity Specificity Reference

Distal radius fractures 2,340 0.93 0.9 0.96 Gan et al. (2019)

Supracondylar fractures 1,266 — 0.93 0.92 Choi et al. (2020)

Proximal humeral fractures 1,891 0.96 0.99 0.97 Chung et al. (2018)

Scaphoid fractures 390 — 0.76 0.92 Ozkaya et al. (2022)

Femoral intertrochanteric fractures (this study) 700 0.88 0.89 0.87 —
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benefits. 1) Removing the workload of clinicians. The most

striking feature of AI was the ability of automation. In the

traditional model, the work of X-ray diagnosis was a laborious

and labor-consuming process, whose efficiency always declined

with the increasing workload. AI could process and recognize

X-rays efficiently without fatigue, which simplified the workflow

and reduced the difficulty (Bi et al., 2019). 2) Decreasing the

occurrence of misdiagnoses and missed diagnoses. Diagnostic

mistakes were inevitable during the busy medical work. After

training with the labeling from veteran senior doctors, the

algorithm could be recognized as a medical assistant with

extensive experiments. Also, with the peculiar ability of image

features extracting and suspicious signs locating, the screening

level of the algorithm was beyond that of visual observation of

humans. Hence, the AI-generated diagnosis could be a powerful

reference for clinical doctors to avoid a large portion of

diagnostic errors. 3) Accelerating the generation of clinical

diagnosis. The automated diagnosis of AI could be generated

in several seconds, which was more effective and stable rather

than that of humans. 4) Improving diagnostic reliability. 5)

Providing more guarantee to patient health (Liu et al., 2021a).

6) Saving medical resources and promoting rational

redistribution. Medical resources were unevenly distributed

whether between the emergency department and other

medical departments or between underdeveloped regions and

developed regions. With the promotion of AI in medicine,

limited medical resources could be saved for redistribution.

The predicament of medical deficiency in the emergency

department or in remote and backward areas would also be

alleviated. 7) Improving the clinical ability of physicians. In

addition to providing reference to avoid medical negligence,

intelligent diagnosis from AI could also provide a detailed and

quantitative analysis rather than a qualitative conclusion, which

would expand the limited clinical knowledge of junior doctors

and improve their clinical diagnosis level. The physician’s

continuous studying and progress in the working environment

would also be achieved (Gao et al., 2022). In the future, the well-

trained AImodel could also be embedded in the picture archiving

and communication (PACS) system to realize real-time and

more efficient guidance, which could avoid the tedious work

of image acquisition and model importing. We believed these

benefits must be a great enhancement for clinical work.

However, according to possible computational errors and

potential medical risks brought by an incomplete algorithm, the

AI-generated diagnosis was best used only as a reference for

doctors, which proposed that we should apply AI as clinical

assistance, rather than a replacement. The final diagnosis still

required supervision from a senior physician with extensive

experience.

There were also some limitations of this study: 1) the

database was not large enough, which would influence the

final performance of the AI algorithm; 2) the database of this

study only consisted of anteroposterior hip X-ray, which was

not suitable for the diagnosis of lateral film; 3) the whole study

merely focused at the identification of FIF and the fracture

classification was uninvolved. Fracture classification was also

important to determine the therapeutical principle and

surgical plan, which would be more convenient and

functional if it could be realized by the AI diagnosis. 4)

The external validation dataset was not set in the

verification process. The external validation dataset was an

independent dataset and unknown to the algorithm, which

could verify the performance of transportability and

generalization of the algorithm temporally and

geographically. According to the limited data in this stage

of our study, to guarantee the training effect of the algorithm

in priority, the setting of an external validation dataset was not

available. In future research, the aforementioned points would

be further improved.

Conclusion

The AI diagnostic algorithm is an available and effective

method for the clinical diagnosis of FIF, which could serve as a

satisfying clinical assistant for orthopedic physicians.
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