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HIV infection exerts profound and perhaps irreversible damage to the gut

mucosal-associated lymphoid tissues, resulting in long-lasting changes in the signals

required for the coordination of commensal colonization and in perturbations at the

compositional and functional level of the gut microbiota. These abnormalities in gut

microbial communities appear to affect clinical outcomes, including T-cell recovery,

vaccine responses, HIV transmission, cardiovascular disease, and cancer pathogenesis.

For example, the microbial signature associated with HIV infection has been shown to

induce tryptophan catabolism, affect the butyrate synthesis pathway, impair anti-tumoral

immunity and affect oxidative stress, which have also been linked to the pathogenesis of

cancer. Furthermore, some of the taxa that are depleted in subjects with HIV have proved

to modulate the anti-tumor efficacy of various chemotherapies and immunotherapeutic

agents. The aim of this work is to provide a broad overview of recent advances in our

knowledge of how HIV might affect the microbiota, with a focus on the pathways shared

with cancer pathogenesis.
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INTRODUCTION

A hallmark of treated HIV infection is sustained, low-level viral inflammation. While the cause
of this persistent activation of innate and adaptive immunity despite well-controlled HIV RNA
replication is not completely understood, it is widely assumed that chronic defects of mucosal
immunity are a major contributor (1). HIV targets the mucosa on structural and functional
levels (2–4). Arguably, these disturbances will have consequences on the signals required for the
coordination of commensal colonization, which may explain the shifts in microbial distributions
and metabolic activity of gut microbial communities (5–7). In addition, these abnormalities caused
by HIV infection have been shown to result in increased translocation of microbial products from
the gut to the circulation in both animal models and HIV-infected individuals (8, 9). It has been
repeatedly shown that biomarkers of bacterial translocation positively correlate with markers of
T-cell activation, monocyte activation, and proinflammatory cytokines (10). It is widely accepted
now that sustained low-level activation of the innate and adaptive immune systems is a major driver
of AIDS and non-AIDS-related comorbidities (11–15). Collectively, these observations argue that
microbial translocation, a phenomenon intrinsically linked to the gut microbiota, is a driver of
inflammation, and adverse outcomes during treated HIV infection.
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INFLUENCE OF THE MICROBIOTA ON HIV
IMMUNOPATHOGENESIS DURING
TREATED INFECTION

The gut microbiota has been associated with HIV
immunopathogenesis (5, 16–19). Defining the influence of
HIV on the microbiota, however, is more difficult. Studies
on the impact of SIV infection in the gut microbiota of
non-human primates have found only modest differences
in the fecal bacterial communities between SIV-infected
macaques compared to uninfected macaques, suggesting that the
development of immunosuppression, rather than SIV infection
itself, may drive the differences (20, 21). In addition, induction of
dysbiosis with vancomycin does not accelerate the progression
of untreated SIV infection (22). The effects of HIV infection
on microbial diversity appear to be confounded by a number
of factors, including the nadir of CD4+ T-cells (23) and the
risk factor for HIV acquisition (24, 25). While admittedly there
are difficulties dissecting the specific effects of HIV disease on
the microbial communities, there is wide consensus that the
gut microbiomes of HIV-positive individuals exhibit specific
compositional and functional shifts (5, 19, 26–29). Surprisingly,
the microbiota associated with HIV infection shares traits with
that associated with other proinflammatory conditions, such
as the depletion of butyrate-producing bacteria observed in
inflammatory bowel disease (30).

It is therefore tempting to assume that so-called “HIV-
associated dysbiosis” may be implicated in the sustainment
of systemic inflammation in treated HIV disease. Several taxa
and their associated pathways (Figure 1) have been linked with
persistent immune abnormalities (5, 7, 31). The real picture,
however, may be far more complex. From an ecological point
of view, the components of a rapidly evolving ecosystem
will respond to environmental perturbations by adapting their
composition and functions to achieve the optimal fitness within
their changing habitat (32). For example, the fecal microbiota of
people with HIV has been shown to harbor greater abundances of
genes related to resistance to oxidative stress, such as the genetic
machinery for glutathione metabolism or zeatin biosynthesis
pathways (7, 31).

Defining the clinical scope of the changes in gut microbial
communities can be challenging because a big proportion of
bacteria are dead, dormant, or inactive (33, 34). Expensive and
time-consuming techniques are required to measure the proteins
and metabolites synthesized by active bacteria. The extent of
functional adaptation of microbial communities to the ecological
perturbation induced by HIV might influence the different
immunologic outcomes achieved during antiretroviral therapy
(ART). In fact, HIV infection activates an important fraction of
the gut microbiota. Although only 20% of the fecal microbiota
is metabolically active in healthy controls, HIV infection is
characterized by the activation of up to 50% of microbial
communities (35). Among immunological ART responders, the
metabolic activity of some taxa (Succinivibrionaceae family)
is boosted, acting as anti-inflammatory buffers thanks to
the accumulation of proinflammatory mediator. In addition,
cannabinoid oleamide and biliverdin (a viral inhibitor) are

also accumulated within bacteria and may contribute to health
recovery by inhibiting viral replication, stimulating the immune
system, and ultimately reducing inflammation. These findings
are in sharp contrast to those observed in immunological non-
responders whose gut bacteria metabolism is most similar to that
of ART-naïve participants. The metabolic activity of their gut
bacteria is characterized by the cleavage of the sialic and dolichol
components necessary to maintain enterocyte integrity (19).

The Kynurenine Pathway
Indoleamine-2,3-dioxygenase-1 (IDO1) involved in tryptophan
catabolism via the kynurenine pathway is correlated with
epithelial barrier disruption and bacterial translocation in HIV
infection (36). Induction results in the production of kynurenine
derivatives with immunosuppressive effects, impairing mucosal
immunity, and promoting bacterial translocation and higher
mortality (37). In a seminal study, Vujkovic-Cvijin et al.
(5) characterized 140 genera significantly correlated with
tryptophan catabolism. Some of these taxa were found to
encode the genetic machinery that reproduces the same
tryptophan catabolism as human IDO1. This finding was further
confirmed by metabolomic analysis in gut bacteria via the
detection of the kynurenine subproduct 3-hydroxyanthranilate
(34). In a subsequent study combining metagenomic and
metatranscriptomic data, we showed that HIV-infected
individuals exhibited increased anaerobic catabolism of
tryptophan via tryptophanase anaerobic fermentation compared
with healthy controls (23). This expression was upregulated
in the Prevotella, Acidaminococcus, and Clostridium genera.
It is likely that the HIV-associated microbiota exerts a strong
influence on this critical pathway at the crossroads between
metabolism and immunity.

Short-Chain Fatty Acids
Short-chain fatty acids (SCFAs) are the primary fermentation
products of gut microbiota from dietary fibers. The most
abundantly produced SCFAs include acetate, propionate,
and butyrate (38, 39). Butyrate is a regulator of intestinal
homeostasis and a modulator of immune cell response. It is
involved in the maintenance of enterocyte barrier integrity
and mucine production (40), induces transcription of human
genes via histone deacetylase inhibition (41), and promotes
immunotolerance to commensal bacteria (42). Several studies
have demonstrated a decrease in butyrate-producing bacteria,
including Roseburia, Coprococcus, Faecalibacterium, and
Eubacterium, in both HIV-treated and ART-naïve individuals,
in association with altered SCFAs profiles (17, 43). In patients
with ulcerative colitis, depletion of both Faecalibacterium
prausnitzii and Roseburia intestinalis has been proposed to be
the hallmark of dysbiosis (44). It is increasingly accepted that
the butyrate synthesis pathway supports intestinal inflammation
and represents a potential therapeutic target for interventions
aimed at mitigating chronic inflammation (45). Propionate and
acetate have been less studied in HIV but have been linked to
conferring protection against cardiovascular disease and playing
other beneficial roles in other diseases (46).
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FIGURE 1 | Implications of the gut microbiota in HIV pathogenesis. IDO1, indoleamine 2,3-dioxygenase 1; scGOS, short-chain galactooligosaccharides; lcFOS,

long-chain fructooligosaccarides; HDAC, histone deacetylases.

Trimethylamine-N-Oxide
Trimethylamine-N-oxide (TMAO) is a gut microbiota-
dependent choline and carnitine metabolite that is responsible
for an increased risk of atherogenesis and cardiovascular
disease risk (47), particularly in individuals who consume
large quantities of meat and possess a specific microbiome
signature with enriched proportions of the genus Prevotella
(48). This metabolite has also been associated with
atherosclerotic plaque burden in HIV in some (49, 50)
but not all (51) studies. A recent cohort study comparing
the fecal microbiota of HIV-infected individuals with
and without ischemic heart disease showed that high
TMAO plasma levels was a marker of cardiovascular
heart disease and correlated with the fecal abundance
of Phascolarctobacterium, Desulfovibrio, Sutterella, and
Faecalibacterium (52).

Microbiota as a Tool for Precision Medicine
for HIV
Hopefully, future studies will exploit these connections between
microbiota and HIV immunopathogenesis to improve the
clinical management of HIV infection. From a diagnostic point
of view, one could utilize microbiota to identify individuals
at higher risk of HIV acquisition (53–55), to anticipate the

responsiveness to pre-exposure prophylaxis strategies with
topical antiretroviral drugs (56), and to predict the risk of
precancerous anal lesions (57). From a therapeutic point of
view, we may gain the ability to manipulate the microbiota
to enhance vaccine immunogenicity (58), boost immune
recovery after ART initiation (59, 60), and attenuate chronic
inflammation and bacterial translocation (61). A number of
studies assessing HIV patients’ dietary supplementation with
prebiotics and probiotics have collectively suggested that dietary
supplementation may exert some beneficial immunological
effects, particularly in ART-naïve individuals (30, 59, 62–64).
However, two recent controlled studies focused on ART-naive
(60) and ART-suppressed (65) individuals have failed to detect
significant parameters of inflammation, bacterial translocation or
immune activation. These findings call into question the utility
of these strategies. The first pilot study of fecal microbiota
transplantation in HIV failed to demonstrate adequate
engraftment of colonoscopy microbiota on the microbiota
of the recipients (66). Ongoing studies (NCT02256592 and
NCT03329560) are evaluating different modalities of fecal
microbiota transplantation. Clinical trials assessing the use
of postbiotics—metabolites or cell-wall components released
by microbiota—and represent the future landscape of this
fascinating field.
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INFLUENCE OF MICROBIOTA IN CANCER

Microbiota as a Trigger of
Cancer Pathogenesis
Cancer is a multifaceted disease influenced by both genetic
and environmental factors. Microorganisms are emerging as
one of the contributors to carcinogenesis, and today we
know that approximately 20% of the global cancer burden
is directly attributable to infectious agents (67). Beyond the
neoplasias directly linked to infectious agents, increasing
evidence reveals that microbial communities as a whole play a
key role in carcinogenesis by altering the balance of host cell
proliferation and apoptosis; hindering anti-tumoral immunity;
and influencing the metabolism of host-produced factors,
ingested food components, and drugs (68, 69).

Barrier failure has been proposed to be the most relevant
mechanism for bacterially driven carcinogenesis, resulting in
increased host-microbiota interactions (70, 71). The failure
of control mechanisms (e.g., barrier defects, immune defects,
dysbiosis) is believed to represent the trigger of bacterial-driven
carcinogenesis (72), leading to activation of different responses
that converge in cell proliferation and cancer development. The
microbiome itself represent a functional barrier by suppressing
the growth of pathobionts via different mechanisms, including
both resource competition and direct interference competition
(73). Therefore, dysbiosis has also been associated with cancer
(71). Alterations of gut bacteria have been linked to the
development of colorrectal cancer (CRC) (74), but also to
extraintestinal cancers, including liver (75), breast (76), and
lung cancer (77, 78). While lung microbiome investigations
are still in their infancy, the lung microbiotas of patients
with lung cancer are distinct from those of other patients
(e.g., individuals with emphysema) (79). The abundance of
several types of bacteria in the lungs—including Granulicatella,
Streptococcus, and Veillonella—has been proposed to be a
hallmark of lung cancer (80). An association between the
abundance of the Koriobacteriaceae family in the lungs and
recurrence free survival has been reported (81). Furthermore, the
fecal microbiota of individuals with lung cancer is depleted of
Bifidobacteria (82), a commensal genus with known anti-tumoral
effects. Bifidobacteria appears able to enhance the efficacy of
anti-programmed cell death ligand 1 therapy (83).

Microbiota-Associated Pathways Linked
to Carcinogenesis
Recent studies of CRC have identified different mechanisms of
carcinogenesis. The bacterial driver-passenger model proposes
that the colonic mucosa of patients at risk of CRC is colonized
by pro-inflammatory bacteria that can produce genotoxins
that lead to DNA mutations and increase cell proliferation
(“drivers”). These changes facilitate the replacement of the
commensal bacteria with opportunistic pathogens (“passengers”)
with competitive advantage in this niche, which leads to tumor
progression (72). From the 1990s onward, various studies have
demonstrated an association between CRC and specific colonic
bacterial species, which favor the development of cancer through
different pathogenic pathways (Figure 2) (86). Very impressively,

Fusobacterium nucleatum and certain co-occurring bacteria have
been found not only in primary CRC but also in distant
metastases. Antibiotic treatment of mice carrying xenografts
of F. nucleatum-positive human CRC slowed tumor growth,
demonstrating the causal role of this taxon in oncogenesis (87).

Among the carcinogenic mechanisms shown in Figure 2,
microbial fermentation products of dietary fiber into SCFAs,
including butyrate, propionate, and acetate, with known anti-
inflammatory properties (85) likely play a major role. Butyrate
is one of the primary sources of energy for enterocytes, and it has
been associated with the downregulation of the WNT signaling
pathway, inhibition of proliferation and migration of neoplastic
cells, and apoptosis induction (88). Butyrate also reinforces
mucosal health via Treg-cell activation and IL-10 expression
(89). Butyrate producers (e.g., F. prausnitzii, Roseburia, and
Bifidobacterium) are depleted in CRC patients (69).

Another mechanism related to the catabolism of dietary
precursors strongly influenced by the microbiota is the
production of the proatherogenic TMAO.While the implications
of this derivative of choline metabolism appear clear for
cardiovascular disease (47), this pathway has been rarely studied
in the field of oncology. One investigation has suggested that
alterations in cholinemetabolismmay be associated with a higher
risk of CRC (90).

The Microbiota Modulates the Efficacy and
Toxicity of Anticancer Therapies
The microbiota can modulate cancer initiation and progression,
but it might also influence response to therapy and treatment-
related toxicity (91). First, the bioavailability of many oral
drugs depends on their biotransformation in the gut by local
microbiota and may also indirectly affect the metabolism of
systemically delivered drugs via the regulation of xenobiotic
metabolism in distant organs such as the liver (92). Second,
the immune response plays an essential role in anticancer
activity, and themicrobiomemight affect chemotherapy response
via this mechanism. There is evidence that oxaliplatin and
cyclophosphamide activity is modulated by gut microbiota by
priming myeloid cells for high-level reactive oxygen species
(ROS) production (resulting in DNA damage) and enhancing
T-helper cell-mediated anti-tumor responses, respectively (93,
94). Chemotherapy-related adverse events can also be managed
via microbiome modulation. For example, diarrhea caused by
irinotecan toxicity, which is mediated by microbial-produced
β-glucuronidases, can be regulated by targeting microbial
metabolism (95). The microbiota might also play a role in
response and toxicity to radiotherapy. Radiation-related mucosal
injury is associated with changes in the microbiome, and germ-
free mice have been shown to be resistant to radiation enteritis
(91). Lastly, recent pioneering studies have yielded paradigm
shifts in our knowledge of the interactions between gut bacteria
and cancer therapy. The gut microbiome has been shown
to modulate the anti-tumor efficacy in pre-clinical models of
various chemotherapies (93, 94) and immunotherapeutic agents
(96–99), including antibodies against cytotoxic T lymphocyte-
associated antigen 4 (CTLA4) and anti-programmed cell death
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FIGURE 2 | Mechanisms by which bacteria influence cancer development and progression. (A) Barrier loss and increased bacterial translocation engages pattern

recognition by Toll-like receptors (TLRs) and activation of innate and adaptive responses. The interleukin-23 (IL-23)-IL-17 axis, IL-6, and tumor necrosis factor-α, lead

to chronic inflammation mediated by nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) activation, favoring tumor progression

(68). (B) Bacterial virulence-factors promote carcinogenesis by engaging specific host pathways, which plays a decisive role in many malignancies. Fusobacterium

nucleatum Fad-A binds host E-cadherin on colonic epithelial cells, and triggers Wnt/β-catenin pathway activation, resulting in increased NF-κB, and ultimately in

increased tumor growth (84). Other virulence factor such as H.pylori CagA have been widely studied (68). (C) Some microorganisms modulate tumorigenesis through

specific toxins, which induce host DNA damage. Cytolethal distending toxin (CDT) produced by Gram-negative bacteria, Bacteroides fragilis toxin and Escherichia coli

colibactin constitute some of the most studied toxins identified as potential drivers of CRC (70). (D) Dietary residues determine the composition and metabolic activity

of the microbiota. An imbalanced high-fat, high-meat, low-fiber diet, lead to a greater exposition to secondary bile acids, and protein fermentation metabolites (such

as ammonia, phenols, sulfides, and nitrosamines), which have inflammatory and carcinogenic effects (85).

protein 1 (PD-1) (92). Individuals with metastatic melanoma
responding to anti-PD-1 were enriched with Faecalibacterium
genus in intestinal microbiota; non-responding individuals had
a higher abundance of Bacteroidales (97). Another study found
an abundance of Bifidobacterium in responding individuals;
Ruminococcus obecum and Roseburia intestinalis were associated
with a lack of responsiveness (99). The role of the microbiota on
treatment response is further supported by striking data showing
poorer survival outcomes on patients with metastatic non-small
cell lung cancer or renal cell carcinoma receiving antibiotics
just before or just after initiation of treatment with immune
checkpoint blockade (100). Converging data support a robust
interaction between specific bacteria and the systemic immune
response (97–99). In subjects with non-small cell lung cancer

specific memory CD4+ and CD8+ T-cells against Akkermansia
muciniphila predicted a longer progression-free survival (98).

In subjects with melanoma the abundance of Faecalibacterium

genus positively correlated with the with a higher frequency of
cytotoxic CD8 T-cell infiltration in the tumor bed. Similarly,
in mice intratumoral CD8+ T-cell infiltration after anti-PD-L1
treatment correlated the microbiota composition (100).

Is It Possible to Exploit the Microbiome to
Improve Clinical Outcomes in Oncology?
Emerging evidence suggests that altering the microbiota might
represent a therapeutic avenue for cancer management (101).
Modulation of gut microbiota in preclinical models has been
shown to enhance therapeutic response (102). Landmark studies
have demonstrated that fecal microbiota transplantation from
cancer patients who had responded to anti-PD-1 therapy
improved the effects of PD-1 blockade in germ-free or antibiotic-
treatedmice (97–99). Several trials involving patients on immune

checkpoint blockade undergoing fecal microbiota transplant
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TABLE 1 | Gut microbial signatures associated with clinical outcomes in both HIV and cancer and putative mechanisms.

Bacteria implicated Pathway/Function Mechanisms Biological effect Clinical consequences References

↓ Faecalibacterium prausnitzii

↓ Lachnospira spp.

↓ Roseburia intestinalis

↓Ruminococcaceae

SCFA-production Histone deacetylase inhibition

Human gene transcription

↓ antigen presentation

↑ immunotolerance

Immunotolerance Cell

proliferation

HIV: systemic inflammation.

Higher risk of tuberculosis

Cancer: risk of CRD

development

(Roseburia intestinalis)

(30, 31, 97,

105, 106)

↑ Gammaproteobacteria

↑ Pseudomonas spp.

↑ Bacillus spp.

↑ Burhloderia spp.

↑ Prevotella

↑ Acidaminococcus

Tryptophan

catabolism

IDO1 inhibition

↑ immunosuppressive

kynurenine derivatives

↓ Th17 cells

Immunotolerance

Barrier failure

Angiogenesis

HIV: bacterial translocation,

inflammation, mortality

Cancer: Overexpressed in

tumoral cells (e.g., endometrial

cancer, lung cancer) IDO1

inhibitors under evaluation in

both conditions.

(5, 29, 107–

109)

↑ Bacteroides fragilis IL-10 signaling

pathway

Polysaccharide A production

TLR-2 activation IL-10

expression

Immunotolerance HIV: Systemic immune

activation. Periodontitis

Cancer: anti-tumoral effects.

Enhancement of CTLA-4

blockade efficacy

(5, 110–113)

↑ Actinobacteria

↓ Bacteroidetes

↑ Firmicutes

↑ Gammaproteobacteria

↑ Clostridium XIVa

↑ Faecalibacterium spp.

Choline metabolism TMAO production Endothelial dysfunction

Inflammation

HIV: carotid atherosclerosis,

monocyte activation

Cancer: malignant

transformation, risk of

colorectal cancer

(51, 52, 114–

117)

↑ Bifidobacteria Antitumoral

immunity

↑ Dendritic cell activation

↑ CD8+ T cell priming and

accumulation in the tumor

microenvironment

↑ Cross-reactivity with

tumor antigens

CTL responses

Epithelial cell turnover

Immunomodulatory

strain-dependent

effects

HIV: immune recovery under

ART

Cancer: Protection against

cancer development.

Enhancement of

immunocheckpoint

blockade efficacy.

(19, 82, 83,

118–120)

↓ Akkermansia muciniphila Chemotaxis ↓ Mucin degradation Host immune regulation HIV: higher systemic

inflammation (sCD14, IP10) and

intestinal inflammation (fecal

calprotectin)

Cancer: longer progression

free-survival. Enhanced efficacy

of PD-1 blockade

(26, 121–123)

↑ Fusobacterium spp. Cell proliferation TLR-4 signaling.PPAK1 cascade.

Nuclear factor KB induction

Cell proliferation and

oncogenesis

HIV: poor immune recovery after

ART

Cancer: colorrectal

cancer development

(17, 124–126)

↑ Lactobacillales Inflammation.

Antitumoral

immunity

Upregulated IFN-γ, GZMB, and

PRF1 expression in CD8+ T-cells

Enhanced antitumor

response

HIV: greater immune recovery

after ART

Cancer: predictor of enhanced

immunotherapy efficacy

(19, 99, 126–

128)

ART, antiretroviral therapy; CTL, cytotoxic T-cell mediated; SCFA, short-cain fatty acid; IDO1, indolamine-2,3-deoxygenase-1; LPS, lypopolisaccharide; TMAO, trimethylamine-N-oxidase.

are currently underway, but definitive data are lacking (91).

Probiotics have been shown to boost anti-tumor immune

responses inmice, but their off-trial use in humans is discouraged

because there is still insufficient evidence to implement dietary

guidelines or prebiotic administration in the setting of cancer

therapy (91). Manipulation of the microbiome in cancer

patients might result in novel indications for this intervention,

as illustrated by the efficacy demonstrated in the first case

series of patients with refractory immune checkpoint inhibitor-

associated colitis successfully treated with fecal microbiota

transplantation (103). Nearly 40 clinical trials assessing gut

microbiota modulation in cancer are ongoing (91). The results
of these investigations will inform best strategies and define
indications of this therapeutic approach to improve clinical
outcomes in oncology.

HIV, CANCER, AND THE MICROBIOTA:
CONVERGING PATHWAYS AND
RESEARCH AVENUES

Can we learn anything from microbiome studies of HIV-positive
patients that may be applicable to cancer? First, the vast majority
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of mechanistic studies regarding the influence of the microbiome
in HIV are cross sectional in nature (104). The well-known
limitations of these studies are magnified by underappreciated
confounding factors related to microbiota studies. For example,
it took several years for the field to recognize that the increased
abundance of Prevotella spp. observed in the first studies of
HIV-infected individuals (5, 7, 16, 18) was confounded by the
lower proportion of men who had sex with men in the control
groups (24). Given the particular clinical profile of patients
undergoing anticancer treatment, these confounders may be even
more pronounced in patients with cancer.

Several pathways strongly influenced by microbiota appear
to affect pathogenic mechanisms present in different conditions.
Gut microbial signatures associated with clinical outcomes
in both HIV and cancer and the putative mechanisms are
summarized in Table 1. For example, the major butyrate
producers Faecalibacterium prausnitzii and Roseburia intestinalis
are depleted in subjects with HIV (17, 43), intestinal bowel
disease (44), and CRC (69). Because butyrate production
has been shown to promote Treg-cell activation and IL-10
expression (89, 105), the butyrate synthesis pathway is a
potential therapeutic target for conditions in which enterocyte
barrier integrity and mucosal tolerogenic immune responses are
implicated. The kynurenine pathway has been also implicated
in both HIV (5) and cancer pathogenesis (129). IDO1 is
frequently overexpressed in many malignancies, where it
correlates with poor survival and prognosis. Besides its role
in immunosuppression, IDO1 promotes cancer development
by inducing inflammatory neovascularization, interacting with
checkpoint inhibitors, and modulating gut microbiota (130).
While it is still too soon to draw conclusions about the
therapeutic potential of IDO1 inhibitors for HIV disease
and cancer, an increasing number of IDO1 inhibitors are
currently in preclinical development or under evaluation in
clinical trials (131, 132).

Analyzing gutmicrobiota from a functional perspective will be
crucial to advancing knowledge about the role of the microbiome
in the pathogenesis of cancer and understanding its interactions
with immunotherapy. While bifidobacteria have not typically
appeared to be compositionally relevant in most HIV studies
reliant on 16S sequencing, its functional importance is clear
when we assess the functional level of the microbiota. For
example, while using 16S sequencing we only demonstrated

modest changes in gut microbiota structure after a short prebiotic
intervention, which did not include changes in the abundance
of bifidobacteria (30). Using proteomics we demonstrated a 100-
fold increase in the activity of the Bifidobacteriaceae family,
which strongly correlated with the thymic output, a surrogate
marker of the ability of the immune system to renew the T-
cell pool (118). In a study aimed at identifying the bacterial
biomarkers of precancerous anal lesions in HIV, Bifidobacterium
spp. were also the most predictive taxa in stools of anal
dysplasia (57). Because Bifidobacterium spp. enhance anti-tumor
immunity and anti-PD-L1 efficacy (83), it is likely that the
importance of this genus will remain underappreciated until
researchers evaluate the functional level of the microbiota.

While the microbiome agenda is expanding, it is still
unclear whether we can effectively manipulate the microbiome
to treat HIV and cancer. Pilot studies analyzing the effects
of fecal microbiota transplantation will provide powerful
indications of our ability to modify clinical outcomes via
microbiota manipulation. In the coming years, we look forward
to learning to exploit the potential of the microbiota for
precision medicine (e.g., predicting treatment responsiveness
or toxicities). Gaining further insights into the mechanisms by
which the microbiota influences HIV disease and cancer will
help to leverage the microbiome to develop interventions for
both conditions.
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