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Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed

animals that severely constrains international trade of livestock and animal products.

Currently, disease control measures include broad surveillance, enforcement of sanitary

policy, and use of an inactivated vaccine. While use of these measures has contributed

to eliminating foot-and-mouth disease virus (FMDV) from a vast area of the world,

the disease remains endemic in three continents, and outbreaks occasionally appear

in previously declared FMD-free zones, causing economic and social devastation.

Among others, a very fast rate of viral replication and the need for 7 days to achieve

vaccine-induced protection are the main limitations in controlling the disease. New

fast-acting antiviral strategies targeted to boost the innate immunity of the host to block

viral replication are needed. Here we review the knowledge on the multiple strategies

FMDV has evolved to block the host innate immunity, with particularly focus on the past

and current research toward the development of interferon (IFN)-based biotherapeutics

in relevant livestock species.

Keywords: foot-and-mouth disease virus (FMDV), interferon (IFN), antivirals, biotherapeutics, IFN-α, IFN-γ,

IFN-λ, IFN-ω

INTRODUCTION

The Disease: Foot-And-Mouth Disease
Foot-and-mouth disease (FMD) is one themost serious livestock diseases that affects cloven-hoofed
animals including cattle, swine, sheep, and goats as well as numerous species of wild species (1).
The disease displays high morbidity but is usually not lethal, except when it affects young animals
that may develop myocarditis. Infected animals secrete copious amounts of virus particles before
the onset of the clinical phase of the disease. Typical FMD clinical signs include fever and the
appearance of vesicular lesions on the tongue, mouth, feet, and teats. Among ruminants that
recovered from the disease, a relatively large number become asymptomatic virus carriers (2, 3),
although it is not clear what is the contribution of these carrier animals to disease transmission
in nature (4). The World Organization for Animal Health (OIE) lists FMD as a reportable disease
and therefore, by law, participating nations are required to inform the organization about all FMD
outbreaks. OIE member nations with reported cases of FMD are forbidden to engage in trading
of FMD-susceptible animals or their products. Thus, the presence of FMD in a country can have
severe economic consequences.

Different interventions to control an FMD outbreak include restriction of susceptible animal
movement, slaughter of infected/contact animals, decontamination of infected and surrounding
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premises, and vaccination. Vaccination is an option used mostly
in countries in which FMD is endemic, but disease-free nations
prefer to abstain from such practice. In general, FMD-free
countries that occasionally opted to vaccinate to better contain
the outbreak did slaughter all vaccinated animals to regain
commerce rights faster as occurred in the 2001 outbreak in
the UK and the Netherlands (5, 6). The current approved
FMD vaccine consists of purified chemically inactivated virus
[binary ethylenimine (BEI)-treated] formulated with oil-based or
aluminum adjuvants that induces serotype-specific protection in
approximately 7 days, and it is applied with a boosting protocol
for ensuring long-term protection (7). While this vaccine has
been successfully used for many decades leading to disease
eradication of a vast area of our planet, challenges remain.
FMD is endemic in most of Africa and Asia, and occasionally
epizootics appear in South America or in nations that have
been disease-free for many years, as it happened in the UK,
the Netherlands, South Korea, Taiwan, and Japan (8). Novel
vaccine technologies have been developed, but to this end, none
of them has fully addressed the limitations of the commercially
available vaccine or is currently approved for massive use (9, 10).
Alternatives or additional therapeutics that could complement,
or in some instances substitute for vaccination protocols, include
the use of antivirals and biotherapeutics that act quickly prior
to induction of vaccine-induced immunity. The development of
such molecules requires a thorough understanding of the biology
of the virus and its intricate interactions particularly, with the
innate immune molecular and cellular mechanisms evolved by
the host.

The Agent
Foot-and-mouth disease virus (FMDV) is a member of the
Aphthovirus genus within the Picornaviridae family, and it is the
etiologic agent of FMD (1). The virus contains a single-stranded
RNA of positive polarity. Its genome of ∼8,500 nucleotides
consists of a long open reading frame (ORF), flanked by a 5′ and
a 3′-untranslated region (-UTR). The ORF encodes a polyprotein
of about 2,300 amino acids which is processed by virus-encoded
proteases. Processing results in the generation of precursors and
mature protein products including: four structural [1A (VP4), 1B
(VP2), 1C (VP3), 1D (VP1)] and ten non-structural (NS) proteins
[Lpro, 2A, 2B, 2C, 3A, three distinct copies of 3B (VPg), 3Cpro,
and 3Dpol]. Due to high genetic variability, FMDV is categorized
in seven distinct serotypes, A, Asia-1, C, O, and Southern African
Territories 1–3 (SAT 1–3), and numerous subtypes or topotypes.
Upon infection, the virus spreads very rapidly usually achieving
100% morbidity. Depending on the route of entry, less than
10 tissue culture infectious doses are required to infect and
cause disease in animals (11). In fact, FMDV is one of the
fastest replicating RNA viruses in nature, taking as little as 3–
4 h to induce cytopathic effects in susceptible tissue culture cells.
One could envisage that during FMDV replication, almost every
component of the virus must play a role in dampening interfering
cellular responses to allow such rapid virus replication.

Innate Immunity and Interferon Activation
Early protection against viral infection is fundamentally
mediated by the action of interferons (IFNs), the pillar molecules
of the innate immune system (12–14). Expression of IFN is

triggered by the recognition of molecular signatures, collectively
named pathogen-associated molecular patterns (PAMPs), via
cellular receptors, pattern recognition receptors (PRRs) that can
distinguish “self from non-self ” molecules (Figure 1). Binding
of PAMPs to PRRs triggers a series of signal transduction events
and posttranslational modifications (PTMs: phosphorylation,
ubiquitination, ISGylation, etc.) that ultimately activate latent
transcription factors to induce IFN transcription. Subsequently,
secreted IFN proteins bind to specific receptors on the plasma
membrane to activate, in an autocrine and paracrine manner,
discrete and overlapping cellular signal transduction pathways.
Depending on the cell type and affected tissue, over 500 specific
IFN-stimulated genes (ISGs) may be induced, many of which
display antiviral activity to control the viral infection (12, 15, 16).
There are three families of IFNs based on the specific receptor
usage: types I, II, and III (Table 1) (13, 43–50). Type I IFNs
(i.e., IFN-α and IFN-β) signal through a heterodimeric receptor
complex formed by IFNAR1/IFNAR2, type II IFN (IFN-γ)
signals through the complex IFN-γR1/IFN-γR2, and type III
IFNs bind the receptor complex IL-28Rα/IL-10Rβ. Despite
the receptor differences, the three IFN families transduce
signals through the Janus kinase (JAK)–signal transducer and
activator of transcription (STAT) pathway, and type I and type
III IFNs induce redundant responses (Figure 2). Overall, the
rapid production of IFN helps to limit viral replication while
modulating other immune functions.

FOOT-AND-MOUTH DISEASE VIRUS
IMPAIRS INNATE IMMUNITY MOLECULAR
INTERACTIONS

Recognition of FMDV RNA by the host cell results in the
establishment of a rapid antiviral state to limit and control
infection. This selective pressure has allowed FMDV to evolve
many strategies to ensure enhanced virulence and rapid
infectivity. In general, RNA viruses can bypass the IFN response
by blocking: (i) global cellular transcription and translation;
(ii) IFN induction; and (iii) IFN signaling. Similarly to other
RNA viruses, FMDV can also target IFN-independent antiviral
responses mostly associated with cellular metabolic functions
(i.e., autophagy, apoptosis, stress granule formation, etc.) that
have been extensively described elsewhere (51, 52). In this
section, we will summarize the current literature on studies
conducted in vitro that explain how FMDV counteracts the host
innate immune response at the molecular level, including RNA
sensing, activation of adaptor/effector proteins, and regulation of
signaling pathways by specific PTMs.

Block on Cellular Transcription and
Translation
FMDV inhibition of cellular gene expression and protein
synthesis during infection is mainly driven by the viral-
encoded proteases: Leader (Lpro) and 3C. FMDV Lpro is
a papain-like protease (PLP) that induces cleavage of the
translation initiation factor eIF4G, including eIF4GI and eIF4GII
(53, 54) to disable cap-dependent protein synthesis. Also,
FMDV Lpro causes degradation of the transcription factor
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FIGURE 1 | Antiviral signaling pathways induced during viral infection. Cellular detection of microbial molecules known as pathogen-associated molecular patterns

(PAMPs, i.e., viral RNA) is mediated by pattern recognition receptors (PRRs) including cytosolic RNA sensors (i.e., RIG-I, MDA-5, or LGP2) and/or membrane-bound

TLRs. PAMP/PRR interaction activates signal transduction cascades (black arrows) that result in the production of IFN and inflammatory cytokines. RIG-I and MDA5

contain two caspase recruitment domains (CARD) and an RNA helicase domain. In the case of RIG-I, ubiquitination (green circles) is required for its effective activation.

Activated signals from either RIG-I or MDA5 are transmitted downstream via the mitochondrial adaptor MAVS resulting in the formation of MAVS filaments. At this

stage, different PTMs such as ubiquitination or ISGylation (black circles) can regulate their functions. Endosomal RNAs are detected by TLR3 or TLR7/8 which signal

through adaptor proteins TRIF and MyD88, respectively. MyD88 uses other adaptors, IRAK1/4, to allow for interaction with TRAF proteins. In addition to their role as

adaptor proteins, TRAFs also serve as E3 ubiquitin (Ub) ligases to regulate signaling. TRAF-mediated induction of poly-Ub is sensed by NEMO, thus recruiting

downstream effector kinases such as TBK1 or IKK. These proteins form different signaling complexes (i.e., NEMO/TBK1 and NEMO/IKK), leading to phosphorylation

(blue arrows) of transcription factors IRF3/7 (to a lesser extent IRF1 and IRF5 are also phosphorylated). IRF phosphorylation triggers dimerization and translocation

(Continued)
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FIGURE 1 | (orange arrows) to the nucleus where they bind mainly to IFN promoters/enhancers. Alongside with this pathway, TRAF6-E3 ligases can activate MAPK3

and other kinases including ERK1/2 and JNK which phosphorylate the components of the AP1 heterodimer, allowing for translocation to the nucleus and binding to

the IFNβ promoter/enhancer to activate transcription. Activated IKK also phosphorylates IκB, releasing NF-κB, which then translocates to the nucleus and binds at the

IFNβ promoter. AP-1, activating protein 1; CARD, caspase activation and recruitment domain; DUB, deubiquitinase; ER, endoplasmic reticulum; IκB, inhibitor of KB

kinases; IKK, IκB kinase; IL, interleukin; IRAK, interleukin-1 receptor-associated kinase; IRF, IFN regulatory factor; LGP2, laboratory of genetics protein 2; MAPK,

mitogen-activated protein kinase; MAVS, mitochondrial antiviral signaling protein; MDA5, melanoma differentiation-associated gene; MyD88, myeloid differentiation

primary response protein 88d; NEMO, NF-κB essential modulator; NF-κB, nuclear factor-κB; PKR, protein kinase R; PTM, posttranslational modification; RIG-I,

retinoic acid-inducible gene I; TANK, TRAF family member-associated NF-κB activator 1; TBK, TANK binding kinase; TLR, Toll-like receptor; TRAF, TNF receptor

associated factor; TRIF, TIR-domain-containing adapter-inducing interferon-β.

TABLE 1 | Use of IFN-based therapies against FMDV.

Type Recept. Signal Sub-

type

Species Milestone

Type I IFNAR1/IFNAR2 JAK1, TYK2 IFN-α/β Porcine/bovine • Recombinant bacterial expressed IFN-α/β is a potent biotherapeutic against

FMDV in vitro (17)

IFN-α Porcine • Ad5 delivered poIFN-α protects swine against different serotypes of FMDV

(18–20)

• poIFN-α-protection correlates with enhanced tissue-specific innate immune cell

infiltration in swine (21, 22)

• poIFN-α protection correlates with upregulation of essential ISGs in vitro (23, 24)

IFN-β Porcine • Ad5 delivered porcine poIFN-β protects swine against FMDV (20)

IFN-δ Porcine • Bacterially expressed poIFN-δ8 significantly inhibits FMDV replication in vitro (25)

IFN-ω7 Porcine • E. coli produced poIFN-ω7 protects cells against FMDV (26)

IFN-αω Porcine • Bacterially expressed IFN-αω added prior to infection resulted in a significant

reduction in FMDV replication in vitro (27)

IFN-τ Ovine • Ovine IFN-τ has antiviral effect against FMDV in vitro (28)

Type II IFNγR1 IFNγR2 JAK1, JAK2 IFN-γ Bovine • Recombinant bovine IFN-γ reduced FMDV replication in BTY cell culture (29)

IFN-γ Porcine • High dose of Ad5-poIFN-γ protects swine against FMD (30)

Type III IFN-λR1/IL-10R2 JAK2, TYK2 IFN-λ1 Porcine • Replication of FMDV in IBRS-2 cells is inhibited by treatment with the purified

recombinant poIFN-λ1 (31)

IFN-λ3 Bovine • Inoculation with Ad5-boIFN-λ3 resulted in the induction of several ISGs in tissues

of the upper respiratory tract (32) and protected cattle against challenge with

FMDV (33)

Porcine • Ad5-poIFN-λ3 protects swine against challenge with FMDV (34)

IFN Combos IFN-α

IFN-γ

Porcine • Use of a combination of Ad5-poIFN-γ and Ad5-poIFN-α (30) or Ad5-poIFN-αγ

(35) showed an enhancement of the antiviral activity against FMDV in swine

Other Poly IC Porcine • Double stranded (ds) RNA poly ICLC, in combination with Ad5-poIFN-α

protected swine against FMDV (36)

siRNA Porcine • Combination of Ad5-poIFN-αγ with Ad-3siRNA targeting FMDV NS coding

regions blocked replication of all serotypes of FMDV in vitro (37)

IRF7/3 Porcine • Inoculation with Ad5-IRF7/3(5D) resulted in induction of IFN-α and fully protected

mice and swine challenged with FMDV 1 day after treatment (38, 39)

IRES Porcine • Use of synthetic IRES in combination with adjuvanted type-O FMD, improved

immune response and protection against FMDV challenge (40)

IFN/vaccine

combos

IFN-α Porcine • Use of a combination of Ad5-po-IFN-α and Ad5-A24 in swine resulted in

complete protection after challenge (19)

IFNα/γ Porcine • Ad5-poIFNα/γ co-administered with Ad5-siRNA targeting NS regions of FMDV,

and a commercial inactivated FMD vaccine partially protected swine (41)

IFN-λ3 Bovine • Use of a combination of Ad5-bov-IFN-γ3 and Adt-O1M in cattle resulted in

complete protection after aerosol challenge (42)

nuclear factor (NF)-κB and results in blockage of specific
downstream signaling effectors (55, 56). Studies in porcine cells
demonstrated that FMDV Lpro can promote its self-binding
to the transcription factor activity-dependent neuroprotective
protein (ADNP) and negatively regulate the activity of the IFN-
α promoter (57). In contrast, chromatin changes that favor the

upregulation of IFN and ISGs can inhibit FMDV replication
(58). Interestingly, deletion or mutations in different domains
of Lpro result in viral attenuation in vitro and in vivo (59–
63). Furthermore, these studies have shown a strong type I IFN
activity upon infection with different versions of FMDV Lpro
mutants (23, 56, 61).
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FIGURE 2 | Type I, II, and III interferon (IFN)-mediated signaling. All type I and type III IFN subtypes bind to respective receptors, IFNAR1/IFNAR2 and IFNLR1/IL10R2.

These interactions trigger the phosphorylation of JAK1 and TYK2 kinases which in turn phosphorylate STAT1 and STAT2. JAK2 mediates type III IFN-dependent STAT

phosphorylation. Phosphorylated heterodimers of STAT1/STAT2 bind to IRF9, forming the ISGF3G complex, which then translocates to the nucleus and binds to

IFN-responsive elements (ISREs) present in the promoters of over 500 ISGs. Type II IFN binds to the heterodimeric IFNγR1/IFNγR2 receptor also inducing

phosphorylation of JAK1/JAK2 kinases. In turn, mostly STAT1 is phosphorylated. Phosphorylated homodimers of STAT1 translocate to the nucleus and induce the

expression of genes controlled by gamma-activated sequence (GAS)-dependent promoter sequences. IFNAR1/2, IFN alpha receptor1/2; IFNγR1/2, IFN-gamma

receptor1/2; IFNALR1, IFN-lambda receptor 1; IL10R2, IL10 receptor 2; ISGs, IFN-stimulated genes; ISGF3G, ISG factor 3 gamma; JAK1/2, Janus kinase 1/2; STAT,

signal transducer and activator of transcription.

Interruption of cellular translation during infection can also
be mediated by FMDV 3Cpro, a chymotrypsin-like cysteine
protease that similarly to Lpro targets eIF4G and the cap-binding
complex eIF4A for cleavage, although these events occur later in
the infection (64, 65). 3Cpro can also participate in the inhibition
of host–cell transcription by cleaving histone H3 upon FMDV
infection (66, 67).

Block on Interferon Induction
During infection, the initial event that leads to the production
of IFN and pro-inflammatory cytokines is the recognition of

viral RNA (Figure 1). Sensing of FMDV-RNA is mediated by
MDA5 (68), a protein that belongs to a family of helicases
known as retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLRs). Recent studies have shown that the interaction between
RLRs (RIG-I and LGP2) and the FMDV proteins Lpro, 2B,
and 3A interferes with the induction of type I IFN (69–72).
Indeed, overexpression of either FMDV 2B or 3A resulted in the
downregulation of RIG-I and MDA5 mRNA expression (69, 70).
In contrast, upregulation of LGP2 transcripts has been observed
during FMDV infection in porcine cells, despite a detectable
reduction of LGP2 protein levels, presumably due to FMDV
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Lpro-induced cleavage (71, 72). The apparent inconsistency
between the levels of LGP2 mRNA and protein during FMDV
infection may be explained by LGP2’s ability to serve as a positive
and negative regulator of RIG-I andMDA5 signaling, presumably
affecting multiple steps of the IFN induction pathway (73). In
addition to RLRs, nucleotide-binding oligomerization domain
(NOD)-like receptors (NLRs), NOD1 andNOD2, also participate
in the recognition of RNA. A study by Liu et al. (74) described
the association of NOD2 with FMDV 2B, 2C, and 3Cpro to block
innate immunity activation. Protein kinase R (PKR) is another
recognized PRR that acts as an RNA sensor (75). Binding of
RNA to PKR induces a conformational change that leads to
autophosphorylation and activation (76). The primary target of
activated PKR is the eukaryotic initiation factor 2 α subunit
(eIF2α), whose phosphorylation results in the blockage of cellular
protein synthesis, a relatively common process during viral
infection (77). Although no direct interaction between FMDV
RNA and PKR has been demonstrated, it has been reported
that PKR activity modulates FMDV infectivity. In fact, in tissue
culture experiments, depletion of endogenous levels of PKR using
siRNA resulted in increased FMDV titers (17, 23). Furthermore,
it has been recently shown that overexpression of autophagy-
related ATG5-ATG12 proteins induces transcription of PKR and
subsequent reduction of FMDV replication (78). These results
suggest that PKR has a complex role as an RNA sensor but also as
an antiviral agent during FMDV infection.

It has been demonstrated that FMDV also targets DExD/H-
box RNA helicases, formally accepted as PRRs and modulators
of the antiviral signaling pathway (79). In vitro experiments
intending to analyze protein–protein interactions revealed the
association between the RNA helicase DDX1 and FMDV 3D
(80). Interestingly, these studies indicated that during FMDV
infection in porcine cells, cleavage of DDX1 was detected, while
overexpression of DDX1 resulted in the upregulation of IFN-β
and other ISG mRNAs which correlated with virus inhibition
(80). Other DExD/H-box RNA helicases such as RNA helicase
H (RHA) are hijacked during FMDV infection and interact with
FMDV 5’UTR, 2C, and 3A to facilitate virus replication (81).

Signaling pathways downstream from RNA sensing involve
the activation of different adaptor and effector proteins. One
of the pathways that lead to signal activation requires the
formation of specific complexes such as NF-κB essential
modulator (NEMO) and the kinase IKK, which bridges the
activation of NF-κB and IFN regulatory factor (IRF) signaling
pathways. It has been demonstrated that FMDV 3Cpro interacts
with NEMO and induces its cleavage, resulting in impaired
innate immune signaling (82). IRF-mediated signals driven by
IRF-3 and IRF-7 can also be targeted by FMDV proteins.
Specifically, overexpression of Lpro in PK-15 cells resulted in
the downregulation of IRF-3 and IRF-7 protein levels and
inactivation of IFN-β and IFN-λ1 promoter (31, 83).

Other factors involved in the activation of IFN include
conventional PTMs such as phosphorylation and ubiquitination
which ensure effective regulation of these signaling pathways
(84). Also, different cellular deubiquitinases (DUBs) can reverse
ubiquitination to control the intensity of the immune signaling

response. Interestingly, it has been shown that FMDV Lpro
can remove ubiquitin (Ub) molecules from several proteins
required for IFN mRNA expression and those involved in the
activation/repression of the IFN loop (85). This role becamemore
evident by the observation that during infection, FMDV Lpro
can cleave cellular substrates modified with the Ub-like molecule
ISG15 (86). Furthermore, mutation of Lpro that impairs
deISGylase/DUB function results in viral attenuation (87). In
this regard, identification of FMDV targets for deubiquitination
and deISGylation may contribute to elucidate the role of
those factors in counteracting the innate response and develop
novel countermeasures.

Block on Interferon Signaling
The ligand-mediated association of the specific IFN receptors
promotes a signaling cascade that results in the phosphorylation
of the receptor by the action of JAKs. These events result in
the generation of docking sites for downstream adaptor and
effector proteins including signal transducer and activator
of transcription (STAT) proteins that associate with other
factors and translocate to the nucleus inducing transcription
of a plethora of ISGs (described above and in Figure 2).
Although blockage of the JAK–STAT signaling pathway has
not been reported during FMDV infection, overexpression
of either FMDV 3Cpro or VP3 can inhibit this response. For
instance, IFN-β-treated HeLa cells overexpressing FMDV 3Cpro
suppressed IFN-stimulated promoter activities and induced
proteasome- and caspase-independent protein degradation
of karyopherin α1 (KPNA1), the nuclear localization signal
receptor for tyrosine-phosphorylated STAT1 (88). This
interaction inhibited the nuclear translocation of STAT1/STAT2,
impeding maximal ISG promoter activity. In another study
in HEK293T cells, overexpression of VP3 followed by co-
immunoprecipitation revealed the association between VP3 and
JAK1. FMDV VP3 also inhibited virus-triggered activation of the
IFN-β promoter, leading to the decrease in transcription of ISGs
presumably due to lysosomal-induced degradation of JAK1 (89).
A yeast two-hybrid screen identified FMDV 2C in complex with
N-myc and STAT interactor (Nmi), a protein known to augment
immune function dependent on STAT-mediated transcription.
Interestingly, such interaction resulted in the recruitment of
Nmi to vesicular compartments followed by the induction of
apoptosis in BHK-21 cells (90).

Evidently, FMDV proteins can also target crosstalk pathways
induced by JAK/STAT signaling, and due to this versatility,
understanding of these signaling events during FMDV infection
is challenging.

FOOT-AND-MOUTH DISEASE VIRUS
IMPAIRS INTERFERON-MEDIATED
CELLULAR INNATE IMMUNE RESPONSES

Similarly to what happens in vitro, FMDV manipulates the
early innate immune response in vivo to ensure a window
of opportunity that favors viral replication and spread before

Frontiers in Veterinary Science | www.frontiersin.org 6 August 2020 | Volume 7 | Article 465

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Medina et al. IFN Against FMDV

the onset of effective adaptive immunity required for virus
clearance. During infection, FMDV interacts with a range of host
cells including natural killer (NK) cells, dendritic cells (DCs),
monocytes/Mφ, and γδ T cells. All these cells play an important
role in innate immune responses that trigger the production
of large quantities of IFN and other cytokines which serve as
autocrine agents (91–95).

Shortly after FMDV infection in swine, the number of
circulating NK cells transiently decreases and the remaining NK
cells show a dysfunctional lytic activity against target cells and a
reduction of IFN-γ production (96). In parallel, FMDVblocks the
ability of porcine DCs to mature into conventional DCs (cDCs)
(97), dampening their response against Toll-like receptor (TLR)
ligands (98). Another subset of porcine DCs, plasmacytoid DCs
(pDCs), also referred to as the major professional systemic IFN-α
producers, are also affected by FMDV (99, 100). During infection,
partial depletion of pDCs in the peripheral blood has been
detected, and the remaining pDCs are less capable of producing
IFN-α in response to ex vivo stimulation by TLR ligands or virus
(101). Similar to pDCs, FMDV infection reduces the production
of IFN-α on Langerhans cells (LCs) (98), a distinct subset of
tissue-resident DCs of the skin (102). It has also been suggested
that porcine γδ T cells and Mφ can serve as targets for FMDV
infection in swine (103, 104), although the interplay between
these cells and FMDV remains unclear.

Comparably to swine, FMDV infection in cattle triggers
several early events in the innate immune system, although
the effects are not exactly the same. For instance, bovine NK
cells originated from FMDV-infected cows have an elevated
cytotoxic function against bovine target cells in vitro (105).
In addition, some subsets of cDCs are significantly decreased
during the peak of viremia, while the expression of major
histocompatibility complex (MHC) class II molecules on all
bovine cDCs is reduced and the processing of exogenous antigen
is impaired (106). Furthermore, during FMDV infection, the
number of systemic mature bovine pDCs characterized by
the expression of CD4+ and MHC class II+ is increased
presumably to intensify a humoral response and T cell activation,
while levels of immature CD4+ MHC class II-pDCs are
declined (106). Examination of bovine γδ T cells revealed that
these cells with the surface expression marker WC1+ show
a transient activated phenotype and increased expression of
IFN-γ (107).

FMDV also affects the innate immune response at the cytokine
level in the natural host. In vivo cytokine profile analysis during
the clinical phase of disease shows a systemic decrease of pro-
inflammatory cytokines [IL-1β, IL-6, and tumor necrosis factor
(TNF)-α] and an increase of the anti-inflammatory cytokine IL-
10 and IFN-α (22, 33, 61, 101, 106). Most likely, these changes
are related to the early T cell unresponsiveness and lymphopenia
described in swine and cattle during FMDV infection (33, 102,
106, 108). Interestingly, a significant induction of inflammatory
and antiviral factors at the local level is detected in cattle, in sites
of abundant viral amplification, such as the nasal/oropharynx or
vesicular lesions (109–111). A consistent upregulation of IFN-α,
-β, -γ, and -λ mRNA in distinct microanatomical compartments
of the nasopharyngeal mucosa, concurrent with occurrence of

viremia, has also been detected in cattle (112). In contrast, studies
in swine demonstrated that IFN expression in infected swine
skin is inhibited (21). These differences may be due to the
analysis of follicle-associated epithelium of the nasopharyngeal
mucosa in cattle vs skin in swine or to the specific sampling
technique used in each experiment. While in the cattle study
laser-capture microscopy was used to focus only in areas of high
FMDV replication, in the swine study, RNA was extracted from
a piece of skin without discriminating between microanatomical
compartments. Evidently, more studies are needed to elucidate
the intricate interactions between FMDV and the innate immune
system of specific animal hosts.

EFFECTIVE USE OF INTERFERON
AGAINST FOOT-AND-MOUTH DISEASE
VIRUS IN VITRO

Type I Interferon
The role of IFN in controlling FMDV replication was first
proposed in 1962 when Dinter and Philipson demonstrated that
calf kidney cells exposed to FMDV could become persistently
infected and proposed this was a consequence of the induction
of an IFN-like inhibitor present in the supernatant of infected
cells (113). Later studies also suggested that swine leukocytes
treated with phytohemagglutinin produced an inhibitor of
FMDV replication with properties similar to IFN (114). It was
not until 1999 that new studies demonstrated that the ability
of FMDV to form plaques in cell culture correlated with the
suppression of type I IFN (α/β) protein expression (115). These
results were further supported by detection of IFN protein and
antiviral activity in the supernatants of primary porcine, ovine,
and bovine kidney cells infected with an attenuated FMDV
mutant (leaderless) as compared to the supernatants of cells
infected with wild-type (WT) virus. Later studies by the same
group provided proof of concept on the use of recombinant
bacterial expressed IFN-α/β as a potent biotherapeutic against
FMDV (17). This approach was further developed by delivering
recombinant porcine IFN-α/β using a replication-defective
human Adenovirus 5 vector (Ad5-poIFN-α/β) (18). Infection of
IBRS-2 cells with Ad5-poIFN-α/β resulted in secreted poIFN-
α/β IFN protein detected as early as 4 h post-infection (hpi)
and lasting for at least 30 h. Most important, expressed IFN
protein displayed strong biological antiviral activity against
FMDV. Follow-up studies by the same group showed that all
FMDV serotypes are very sensitive to Ad5-delivered poIFN-α/β,
and sterile protection could be achieved in vivo, highlighting
the potential of this approach for the development into a
broad biotherapeutic strategy to control FMDV replication
(116).

In the last 10 years, advancements is genomics have led
to the characterization of almost all type I IFN subtypes in
the porcine and bovine genome (117–119), which are more
numerous than those identified in primates and mice. This has
revealed different functional genes and pseudogenes with diverse
expression profiles and antiviral functions against different
viruses, mostly in swine (118, 120, 121). In fact, a recent study
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demonstrated that poIFN-ω7, known for its ability to induce
the highest levels of antiviral activity when compared to other
poIFN-ω subtypes, elicits an antiviral state against FMDV in
IBRS-2 cells treated with the recombinant form of poIFN-ω7
produced in Escherichia coli (26). Other subclasses of type I
IFN, known to be produced in swine and cattle, include IFN
alphaomega (IFN-αω, also known as IFN-µ) and IFN delta (IFN-
δ). Significant reduction in FMDV replication has been observed
upon treatment of porcine cells with bacterially expressed IFN-
αω or IFN-δ8 prior to viral infection (25, 27).

Recently, another member of type I IFN family, IFN-τ , which
is only produced in ruminants, has been evaluated as an antiviral
against FMDV (28). IFN-τ is a paracrine reproductive hormone
secreted constitutively by trophoblasts and endometrial cells to
increase the life span of the corpus luteum; however, production
is not induced upon viral infection (122). While its secretion
is restricted to ruminants, it has a broad-spectrum activity
against various cross-species viruses. Interestingly, IFN-τ has
55% homology with the amino acids of IFN-α, which allows for
binding to type I IFN receptors. The property of IFN-τ that
makes it an interesting therapeutic candidate for the treatment
of various viral diseases is its significantly lower toxicity as
compared to other type I IFNs.

Type II Interferon
In contrast to type I IFN, the type II IFN family is composed
of only one member, IFN-γ, which exerts its actions through
a specific receptor, IFNGR1/IFNGR2. IFN-γ is weakly resistant
to heat and acid, and it is able to activate leukocytes such
as macrophages, and granulocytes, also exerting regulatory
functions on T and B lymphocytes (123, 124). Indeed, production
of IFN-γ is used as a tool to measure cell-mediated immune
responses against FMDV in vaccinated cattle (125–127) and
in swine (61). Interestingly, IFN-γ responses as measured by
its ability to induce proliferation of CD4+ T cells correlate
with a vaccine-induced protection and a reduction of FMDV
persistence as it was shown for bovines inoculated with high
doses of inactivated vaccine FMDV A Malaysia 97 (128).
Therefore, the increase of the cellular immune response against
FMDV seems to be comparable with the upregulation of IFN-γ
at least in cattle (125, 127, 128).

One of the first experiments that examined the IFN-γ
potential to inhibit FMDV replication was performed in bovine
thyroid (BTY) cells. BTY cells were treated with different
concentrations of recombinant bovine IFN-γ followed by
infection with FMDV variants isolated from oropharynx cells
collected from persistently infected bovines (29). Interestingly,
IFN-γ pretreatment resulted in a significant reduction of viral
RNA and FMDV proteins as measured by RT-PCR and ELISA,
respectively. These results were further bolstered by experiments
intended to provide insights on the molecular mechanism of
the IFN-γ antiviral function against FMDV. Specifically, a
transcriptomic analysis of FMDV-infected porcine kidney cells
previously treated with IFN-γ revealed a significant upregulation
of transcription factors (STAT1 and IRF1) involved in the
regulation of diverse ISGs (129). By using the Ad5 vector strategy,
it was also demonstrated that type II IFN displays antiviral

activity against FMDV in porcine cells (19). Interestingly,
significant enhancement of the antiviral effect against FMDV
was observed by using a combination of Ad5-poIFN-γ and
Ad5-poIFN-α. Furthermore, use of a dicistronic Ad5 vector
that expresses both poIFN-γ and poIFN-α has shown enhanced
antiviral activity in porcine cells (35).

Type III Interferon
The newest addition to the IFN families is the type III IFNs
(IFN-λ1 or IL29, IFN-λ2 or IL28A, IFN-λ3 or IL28B, and
IFN-λ4) which share signal transduction pathways of the type
I IFN family albeit the use of a different cellular receptor,
the IL-28Rα/IL-10Rβ heterodimer. In contrast to type I IFN
receptors, which are expressed in almost all cell types, IL-28Rα is
expressed in a tissue-dependent fashion such as epithelia (49, 50).
In addition, downstream activation of IFN-λ-induced signals
requires phosphorylation of STAT1 mediated by JAK2 (130). The
first study that reported the antiviral function of IFN-λ against
FMDV was conducted in bovine cell cultures (32). In this study,
embryonic bovine kidney (EBK) cells treated with supernatants
from cells previously transduced with Ad5-boIFN-λ3 protected
cells from FMDV-induced cytopathic effects and correlated
with enhanced upregulation of IFN and ISG mRNAs. Similarly,
porcine cells could be protected against FMDV infection by
pretreatment with recombinant porcine IFN-λ1 (poIFN-λ1) (31)
or with supernatants of cells transduced with an Ad5-poIFN-
λ3 (34). All together, these results demonstrated that FMDV is
highly susceptible to the action of type III IFN.

EFFECTIVE USE OF INTERFERON
AGAINST FOOT-AND-MOUTH DISEASE
VIRUS IN THE NATURAL HOST

Despite distinct induction of IFN and innate immune responses
during FMDV infection in swine and cattle, spatial distribution
of IFN is similar. In both species, in vivo detection of IFN occurs
only after the virus has successfully replicated in the primary site
and has spread systemically. In fact, similarly to what has been
described in vitro (see previous section), the virus is very sensitive
to the IFN antiviral effect in vivo (22). This property highlighted
the potential use of these molecules as biotherapeutics against
FMD, inviting new research to evaluate similar products against
emerging animal diseases, a policy supported by the OIE.
However, the use of IFNs in animals requires extensive testing
in species of interest in order to evaluate the metabolic rate
and potential adverse systemic effects of individual preparations
(131–133). In this regard, although only in humans or animal
models for human diseases, many approaches to change IFN’s
pharmacokinetic profile have been examined. These include the
covalent modification of IFN with poly-ethylene-glycol (PEG)
molecules (PEGylation) or the expression of recombinant IFN
fused to Fc fragments of immunoglobulins. Evaluations of these
modified IFNs have been tested for the treatment of multiple
human diseases such as hepatitis B and C, multiple sclerosis,
and cancer (134–137). Potential use of these new IFN-modified
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platforms should improve its biotherapeutic function in the
animal setting.

In this section, we summarize in vivo studies that evaluated the
use of different platforms to deliver IFN or IFN inducers, alone or
in combination, as a means to protect against FMD (Table 1).

Interferon Treatment Protects Swine
Against Foot-And-Mouth Disease
The first IFN tested in swine for its antiviral activity against
FMDV was poIFN-α, delivered with an Ad5 vector (18). Using
this platform, swine intramuscularly (IM) inoculated with 109

pfu of Ad5-poIFN-α expressed relatively high levels of systemic
antiviral activity detectable as early as 6 hpi and lasting for
72 h. These results correlated with complete protection against
intradermal (ID) challenge with FMDV A24 at 24 h post Ad5-
poIFN-α inoculation (18). Furthermore, complete protection
lasted for 3–5 days, causing a delay in disease onset, reduced
severity of clinical signs, and a significant reduction in viremia
even when FMDV challenge was performed at 7 days post
inoculation (dpi) or 1 day prior to the treatment (19). Extensive
studies in swine using this vector or a modified proprietary
version of Ad5 (Adt-poIFN, GenVec R©) demonstrated that
delivery of poIFN-β was also effective against challenge with
FMDV at 1 dpi. Remarkably, depending on the administered
Adt-poIFN dose, treated animals could be sterilely protected
against FMD based on standardized parameters (20).

One of the advantages of using IFN against FMDV is the high
likelihood for viral clearance regardless of the specific serotype (1,
138). In fact, swine experiments in which animals were inoculated
with Ad5-pIFN-α and challenged intradermally (ID) 24 h later
with different FMDV serotypes, A24, O1 Manisa or Asia, showed
the same level of protection (20). Importantly, when the challenge
was performed using a contact challenge, a route of inoculation
that resembles the natural FMDV infection in swine (139–141),
similar results were obtained (20).

Studies to understand the mechanisms of protection induced
by type I IFN in swine demonstrated that protection of
swine inoculated with Ad5-poIFN-α correlated with recruitment
of partially mature skin DCs showing increased expression
of CD80/86 and decreased phagocytic activity (21, 22). At
the same time, an increase in the number of NK cells in
draining lymph nodes was noticeable (21). These findings
corresponded with upregulation of a number of ISGs, including
PKR and 2′-5′-oligoadenylate synthase (OAS), which block
FMDV replication in cell culture (17, 23). Other cytokines
and chemokines, including monocyte chemotactic protein-1
(MCP-1), macrophage inflammatory protein (MIP)-1α, and
IFN inducible protein 10 (IP-10) which are involved in
chemoattraction of DCs and NK cells (142), were also
upregulated. Interestingly, using amousemodel for FMDV (143),
it was shown that IP-10 is necessary for protection conferred by
murine IFN-α (muIFN-α), since C57Bl/6-IP-10 knockout mice
treated with muIFN-α prior to challenge were not protected
against disease, whereas C57Bl/6-WT mice pretreated in the
same way, were completely protected (24).

The effect of type II IFN has also been tested in swine using the
Ad5 platform for delivery of IFN-γ (30). Animals IM inoculated
with 1010 pfu of Ad5-poIFN-γ were protected against challenge
at 1 dpi. Interestingly, enhanced antiviral activity was observed
when a combination of Ad5-poIFN-α and Ad5-poIFN-γ was
administered, allowing for Ad5-IFN vector dose sparing to fully
protect swine against challenge with FMDV A24 at 1 dpi (30).
More recently, Kim et al. (35) used a similar approach against
FMDV O1 in swine. Enhancement of potency against FMD was
observed upon treatment with an Ad5 vector that expressed
bicistronically poIFN-α and IFN-γ, as compared to either IFN
alone (35).

The type III family of IFNs also has an antiviral effect
against FMDV in vivo. Swine inoculated with Ad5-poIFN-
λ3 and exposed 1 day later to FMDV by contact exposure
to infected swine were completely protected from clinical
disease, with no detectable viremia, viral RNA, or virus
shedding (34). Interestingly, protection was achieved even when
systemic antiviral activity or upregulation of ISGs in peripheral
blood mononuclear cells (PBMCs) were undetected. This was
consistent with previous reports indicating that expression of the
IFN-λ receptors (IFN-λR1) and sensitivity to IFN-λ are highest
in epithelial tissues and not in leukocytes (144, 145).

Additional IFN-based therapeutics have been used in vivo in
swine. These strategies were directed toward the use of synthetic
nucleic acids that would mimic viral PAMPs or could interfere
with the expression of specific viral genes without triggering
the IFN response. In addition, construction of Ad5 vectors that
deliver transcription factors or other antiviral factors involved in
the production of IFN has been tested.

Use of nucleic acid-based molecules including the
synthetic double-stranded polyriboinosinic-polyribocytidylic
acid molecule stabilized with poly-L-lysine and
carboxymethylcellulose (polyICLC) in combination with
Ad5-poIFN-α protected swine against FMDV challenge as these
animals developed the highest levels of antiviral activity along
with detectable poIFN-α in the blood (36). This is in contrast
with original studies done in pigs where intravenous inoculation
of polyIC alone did not result in protection (146), highlighting
the importance of the route of administration and immunity.
Other studies have demonstrated that inoculation of mice with
in vitro-transcribed RNAs mimicking some structural domains
contained within the 5’ and 3’ non-coding FMDV UTRs can
induce stable and robust production of systemic type I IFN
(147). Moreover, the same group showed that delivery of a
synthetic RNA, corresponding to 470 nt of the FMDV internal
ribosome entry site (IRES), improves the immune response
induced in mice in terms of timing, magnitude, and endurance
of specific antibody titers (148). More recently, the same
approach was evaluated in swine. Inoculation with the synthetic
IRES transcript in combination with an adjuvanted type-O
FMD vaccine resulted in an improved immune response and
protection against FMDV challenge as compared to inoculation
with the same vaccine alone (40). Interestingly, administration
of this vaccine combination resulted in enhanced specific B and
T cell-mediated immune responses as compared to suboptimal
doses of the vaccine alone (40).
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Additionally, Ad5 delivery of small interfering RNAs (siRNAs)
targeting FMDV structural and NS coding regions protected
swine against FMDV (149), even when animals were treated 3
days after the challenge (150).

Due to the high mutation rate inherent to RNA viruses (151,
152), use of antivirals can result in virus adaptability. Studies
by Kim et al. (35, 37, 153) have proposed that the combination
of antivirals including siRNA, viral polymerase inhibitors (i.e.,
ribavirin), and IFNs is better suited to minimize the generation
of FMDV-resistant mutants. For instance, combination of Ad5-
poIFN-α/γ with an Ad5 expressing three different siRNAs (Ad5-
3siRNA) targeting FMDV NS coding regions (2B and 3C)
was effective against all serotypes of FMDV in swine cells
(37). Thus, a combined treatment with Ad5-poIFN-α/γ and
Ad5-3siRNA could work as a fast-acting antiviral treatment to
induce protection prior to the induction of vaccine-mediated
adaptive immunity.

Another approach known to induce an early broad innate
immune response is the use of replicon vaccine vector systems,
such as the Venezuelan equine encephalitis virus (VEE) replicon
particles (VRPs) (154). Treatment with this biotherapeutic
platform results in the upregulation of a number of ISGs and
the production of type I IFN protein (155) and has been tested
successfully against FMDV in vitro and in vivo using a mouse
model (24).

Baculovirus-based strategies have also proved successful in
mice against FMD based on their robust IFN induction capacity.
Molinari et al. (156) demonstrated that pretreatment of C57Bl/6
mice with a single injection of Autographa californica nuclear
polyhedrosis virus (AcNPV) at 3 h or 3 days before FMDV
challenge prevented animal death and decreased symptoms
of disease and viremia. Further, treatment of mice with a
combination of AcNPV and vaccine conferred early and full
protection against lethal FMDV challenge (157).

More recently, a constitutively active transcription factor,
IRF7/3(5D) fusion protein was explored as a means to induce
innate responses against FMDV. In vivo delivery of IRF7/3 (5D)
using the Ad5 vectored expression system resulted in potent
induction of IFN-α and complete protection against FMDV in
mice and swine (38, 39).

Interferon Treatment Protects Cattle
Against Foot-And-Mouth Disease
Although the use of type I IFN using the Ad5 platform has
been proven very successful in swine, preventive therapy only
had limited efficacy in cattle. Inoculation of bovines with high
doses of Ad5-poIFN-α or Ad5-bovine IFN-α (Ad5-boIFN-α)
induced a relatively low level of systemic antiviral activity (100–
200 U/ml), and challenge of these animals with FMDV A24
by intradermolingual (IDL) inoculation only resulted in a short
delay and reduced severity of disease as compared to control
animals (158).

In contrast, in preliminary experiments, the use of the type III
IFN in bovine proved to be more successful than the use of type
I IFN (32), although inoculation of cattle with Ad5-boIFN-λ3
resulted in low levels of systemic antiviral activity. Interestingly,

induction of several ISGs was detected in tissues of the upper
respiratory tract, known targets of FMDV. An enhanced effect in
ISG upregulation was detected when animals were treated with
a combination of Ad5 vectors expressing type I and III IFNs.
Inoculation of cattle with high doses of Ad5-boIFN-λ3 followed
by FMDV IDL challenge at 24 hpi resulted in a significant delay
(6–12 days) and reduced severity of disease (33). Furthermore, a
stronger effect was detected when treated cattle were challenged
by aerosolization of FMDV using a method that best resembles
the natural route of infection (140). No clinical signs of FMD,
viremia, or viral shedding were found in the Ad5-boIFN-λ3-
treated animals for at least 9 days post-challenge, and one of
three inoculated animals remained free of disease during the
entire experiment (33). These results indicated that boIFN-λ3
plays a critical role in the innate immune response of cattle
against FMDV, and treatment with Ad5-boIFN-λ3 is an effective
biotherapeutic approach to control FMD in bovines.

COMBINATION OF INTERFERON AND
FOOT-AND-MOUTH DISEASE VACCINE AS
AN APPROACH TO FULLY PROTECT
LIVESTOCK AGAINST FOOT-AND-MOUTH
DISEASE VIRUS

A complete control strategy would ideally include both, a rapid-
acting approach to immediately limit disease spread, and a long-
lasting preventive measure to protect livestock from further
exposure to FMDV. Therefore, it is reasonable to consider that
a combination treatment of IFN and vaccine would be the
best strategy to control FMD. In proof-of-concept studies in
swine, a combination of Ad5-poIFN-α and an Ad5 vaccine that
delivers structural and capsid processing proteins of FMDV A24
(Ad5-FMD-A24) resulted in complete protection when animals
were challenged at 1–5 dpi while a strong adaptive immune
response was induced (19). Using a comparable platform, a
combination of Ad5-boIFN-λ3 and Ad5-FMD-O1M had a
similar performance in cattle. In this experiment, complete
protection was achieved after animals were exposed to FMDV
by aerosol (42). Remarkably, protection of animals treated with
the combination occurred despite the absence of detectable
neutralizing antibodies or antiviral activity in serum at the time
of the challenge (42). Although not proved in this study, it is
possible that the remaining antiviral activity at the mucosal level
was able to block FMDV replication, as described for type III
IFN during rotavirus infection (159). However, exploring other
protective mechanisms such as cellular immunity should also be
considered to understand this protection. Other strategies that
have been explored in vivo include the simultaneous treatment
with an Ad5 that delivers poIFN-α and FMDV VP1, but
this study was performed in mice and it was not followed
up with experiments in the natural FMDV host (160). More
recently, You et al. (41) tested in swine the efficacy of the
combined treatment with three antivirals, Ad5-poIFNα/γ co-
administered with Ad5-siRNA, and a commercial inactivated
FMD vaccine, however, only partial protection was observed
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when challenge was performed at 1, 2, or 7 days post-
vaccination (dpv) (41). All together, these results indicate that
a combination treatment of IFN and vaccine is a desirable
strategy that could be used to fully protect cattle and swine
from FMD.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Over the past 20 years, considerable progress has been made
in the development of IFN-based biotherapeutics to control
FMD. The use of different delivery technologies, such as the
Ad5 vector, highlighted the ability of IFN to confer protective
immunity against FMDV in swine and cattle. Importantly, the
identification of different cellular factors and cellular immune
responses that are targeted during FMDV infection and affect
the IFN system furnished our knowledge of FMDV virulence
and pathogenesis. These discoveries permitted the development
of new intervention strategies to improve IFN-based therapies
such as proper selection of IFN type, evaluation of the
route and site of inoculation, and utilization of synthetic IFN
inducers that could act as potential adjuvants, augmenting
the intrinsic biotherapeutic effect, and also improving FMD
vaccine performance. Such strategies seem ideal for application
in endemic regions to potentially reduce the number of exposed
or at high risk of exposure animals. On the other hand, a similar
strategy could be applied in the unfortunate event of outbreaks
in FMD-free countries that opt for a vaccination-to-kill policy.

In this case, by using an antiviral/vaccine combination approach,
disease spread would be more limited, hopefully reducing the
economic burden.

However, before IFNs could be used as a gold standard
therapeutic agent against FMD, several considerations must be
taken. For instance, metabolic rate of absorption and toxicity
should be carefully evaluated to finely tune therapeutic doses for
each animal species of interest. Study of specific IFN expression
profiles and intrinsic antiviral activities in different tissues may
also help to improve and optimize treatments for specific
animal hosts.

Some of these shortcomings could be aided by selecting
the right type and subtype of IFN, depending of the specific
animal species of interest. In addition, novel advancements in
protein engineering have demonstrated that IFN potency and
bioavailability could be improved. In this regard, chemically
modified IFN molecules (i.e., PEGylation) or other protein
fusions deserve being evaluated as possible interventions for
animal diseases. Finally, continuing studies to better characterize
innate immune responses during FMDV infection in vitro and
in vivo will help refine our understanding of the anti-FMDV
properties of IFN and hopefully develop improved therapeutics
for effective FMD control and disease eradication.
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