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Background. Hepatocellular carcinoma (HCC) is one of the most heterogeneous malignant tumors that have been discovered so
far, which makes the prognostic prediction difficult. The hypoxia, angiogenesis, and immunity-related genes (HAIRGs) are closely
related to the development of liver cancer. However, the prognostic and treatment effect of hypoxia, angiogenesis, and immunity-
related genes in HCC continues to be further clarified. Methods. The gene expression quantification data and clinical information
in patients with liver cancer were downloaded from the TCGA database, and HAIRG signature was built by using the least
absolute shrinkage and selection operator (LASSO) technique. Patient from the ICGC database validated the model. Then,
tumor immune dysfunction and exclusion (TIDE) algorithm was applied to estimate the clinical response to immunotherapy
and the sensitivity of drugs was evaluated by the half-maximal inhibitory concentration (IC50). Result. The HAIRGs were
identified between the HCC patients and normal patients in the TCGA database. In univariate Cox regression analysis,
seventeen differentially expressed genes (DEGs) were associated with overall survival (OS). An eight HAIRG signature model
was constructed and was used to divide the patients into two groups according to the median value of the risk score base on
the TCGA dataset. Patients in the high-risk group had a significant reduction in OS compared to those in the low-risk group
(P < 0:001 in the TCGA, P < 0:001 in the ICGC). For TCGA and ICGC databases of univariate Cox regression analyses, the
risk score was used as an independent predictor of OS (HR > 1, P < 0:001). Functional analysis showed that the relevant
immune pathways and immune responses were enriched, cellular component analysis showed that the immunoglobulin
complex and other related substances were enriched, and immune status existed a difference in the high- and low-risk groups.
Then, the tumor immune dysfunction and exclusion (TIDE) algorithm presented differences in immune response in the high-
and low-risk groups (P < 0:05), and based on drug sensitivity prediction, patients in the high-risk group were more sensitive to
cisplatin compared to those in the low-risk group in both the TCGA and ICGC cohorts (P < 0:05). Conclusions. HAIRG
signature can be utilized for prognostic prediction in HCC, while it can be considered a prediction model for clinical
evaluation of immunotherapy response and chemotherapy sensitivity in HCC.

1. Introduction

Liver cancer is the sixth most commonly diagnosed cancer
in terms of morbidity and the fourth leading cause of cancer
related to death [1]. According to the WHO prediction,
more than one million people will die of liver cancer in
2030, based on an annual projection [1]. Factors such as

chronic hepatitis B or C, alcohol addiction, metabolic liver
disease (particularly NAFLD), and dietary toxicosis, for
instance aflatoxin and aristolochic acid increase the risk of
liver cancer development [2]. Being a highly heterogenous
form of liver cancer, hepatocellular carcinoma (HCC) gener-
ates a low survival rate and increases the difficulty of overall
survival prediction for HCC patients. Therefore, developing
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a precise prognostic and therapeutic model will help to clin-
ical evaluation and prolong the survival time for HCC
patients.

Tumor microenvironment (TME) can be affected by
some important components, such as hypoxia, angiogenesis,
and immune cells, which can influence tumor growth [3].
For the development of HCC, hypoxic stimulation can cause
bone marrow cells enter to the TME; then, they differentiate
into tumor-associated macrophages or neutrocytes and
secrete cytokines and proangiogenic growth factors to pro-
mote tumor development [4]. Meanwhile, hypoxia can stim-
ulate the release of hypoxia-inducible factors (HIF), which
signal both natural immune cells and HCC cells. It is bene-
ficial to the recruitment and maintenance of prototumor
immune cells, inhibition of antitumor immune cells, and
promotion of immune escape [5]. Immune escape plays an
important role in the occurrence and metastasis of hepatic
carcinoma [6]. In a hypoxic environment, some suppressive
immune cells, like regulatory T cells and M2 macrophages,
are frequently recruited to cancer tissues to form the immu-
nosuppressive microenvironment in HCC, which can secret
some procancer inflammatory cytokines and activate the
STAT3 and NF-κB signaling pathways [6]. Therefore, hyp-
oxia, angiogenesis, and immune response act as critical roles
in the progression of HCC. Nevertheless, it is still unclear
whether hypoxia, angiogenesis, and immunity-related genes
(HAIRGs) were correlated with the prognosis and immune
checkpoint therapy response.

In our study, we first established a multigene prognostic
model base on HAIRGs in the TCGA database and validated
it in the ICGC database. Finally, we conducted functional
enrichment analysis and immune response prediction to
explore the underlining mechanism of the prognostic model.

2. Materials and Methods

2.1. Collecting the Data. Quantitative gene expression data
and clinical information of liver cancer patients were down-
loaded from the TCGA database (https://portal.gdc.cancer;
containing 374 liver cancer samples and 50 normal tissue
samples) and ICGC database (http://www.ncbi.nlm.nih
.gov/geo/; containing 231 liver cancer samples). The genetic
information about hypoxia, angiogenesis, and immunity was
downloaded from the GeneCards database (https://www
.genecards.org/). The TCGA and ICGC databases were used
for training queue and validation queue, respectively.

2.2. Screening and Identifying HAIRG Signature Associated
with LC Prognosis. The HAIRGs were matched (the top
500 genes of the three gene sets). DEGs between hypoxia,
angiogenesis, and immunity-related genes were recognized
by “limma” R package with the error discovery rate of <
0.05. The overlapping prognostic DEGs were incorporated
into the LASSO Cox regression using the “glmnet” R pack-
age. Univariate Cox analysis was accomplished for OS using
the “survival” R package to screen HAIRGs with prognostic
potential. According to the minimum criteria, the tenfold
cross-validation was used in the penalty parameter (λ).
Based on the expression of each gene and the corresponding

regression coefficient, a risk score was calculated for each
patient. The formula: Risk score = SUM ðexpression of each
gene × corresponding coefficientÞ. Patients with liver cancer
were divided into the high- and low-risk groups according
to the median value of the risk score. Principal components
analysis (PCA) was carried out by using the “prcomp” func-
tion of the “stats” R package based on signature gene expres-
sion in the the TCGA database. In addition, t-SNE was
implemented through the “Rtsne” R package to investigate
the distribution of the two groups.

2.3. The Predictive Nomogram Construction and Evaluation.
Univariate and multivariate Cox regression analyses were
executed to determine whether the risk score was an inde-
pendent prognostic predictor for OS compared to other clin-
ical features in the TCGA database. The “rms” R package
was utilized to construct a predictive nomogram and corre-
sponding calibration maps based on independent predictive
factors. To evaluate the predictive power of the nomogram, a
time-dependent receiver operating characteristic (ROC)
curve analysis was performed by using the “time ROC” R
package. Patients from ICGC were analyzed by using the
same formula as that for the TCGA database. The sensitivity
and specificity of the nomogram were tested by the ROC
curves.

2.4. Functional Enrichment Analysis and Immunotherapy
Response Predictions. Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses based on
the DEGs were analyzed by using the STRING database
ð∣log 2FC ∣ ≥1, FDR < 0:05) in the high- and low-risk
groups. The P value was regulated by the BH method. The
single-sample gene set enrichment analysis (ssGSEA) was
utilized to calculate the infiltrating score of 16 immune cells
and the activity of 13 immune-related pathways [7] in the
“gsva” R package.

2.5. Immunotherapy Response Predictions for HCC Patients.
TIDE (http://tide.dfci.harvard.edu/) is a combination model
of T cell dysfunction and exclusive expression characteristic
that can calculate and simulate the tumor immune escape
[8]. The TIDE algorithm was utilized for predicting the clin-
ical response to immunotherapy in the TCGA and ICGC
cohorts.

2.6. Evaluation of the Sensitivity of Drugs. The Genomics
of Drug Sensitivity in Cancer (GDSC; https://www
.cancerrxgene.org/) database was used to assess the sensitiv-
ity of chemotherapy drugs [9]. The half-maximal inhibitory
concentration (IC50) was assessed by using the pRRophetic
package in R.

2.7. Statistical Analysis of the Data. All statistical analyses
were processed by the R software (version 4.0.3). Student’s
two-sided t-test was used to compare the expression of genes
in HCC tissues and nearby nontumorous tissues. The
Kaplan-Meier analysis and log-rank test were used to com-
pare the difference of OS among groups. Univariate and
multivariate Cox regression analyses were used to determine
independent predictors of OS. SsGSEA score of immune
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Figure 1: Continued.
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Figure 1: Identification of the hypoxia, angiogenesis, and immune-associated genes in the TCGA queue. (a) The Venn diagram to recognize
DEGs between the hypoxia, angiogenesis, and immune genes that were associated with OS. (b) Forest plots showing the results about gene
expression and OS using univariate Cox regression analysis. (c) The 7 overlapping genes were all upregulated, and one gene was
downregulated in tumor tissue. (d) The correlation network of genes that had been selected. The correlation coefficients are showed in
different colors.
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pathways or cells were compared between the two groups by
Mann–Whitney test. P value < 0.05 were considered statisti-
cally significant if no specific requirement is made, and all P
values were double-tailed. Since the TCGA, ICGC, and Gen-
eCards databases are publicly available, this study strictly
followed access policies for databases and publication guide-
lines; thus, ethical approval from a local ethics committee
was not required.

3. Results

3.1. Identification of Prognostic HAIRGs in the TCGA
Cohort. All 44 DEGs between hypoxia, angiogenesis, and
immune-related genes were identified (Figure 1(a)). Univar-
iate Cox regression analysis showed 17 HAIRGs (VEGFA,
MMP9, TGFB1, MAPK1, SRC, CTNNB1, SPP1, PPARG,
HMOX1, RAC1, IGF1, HSP90AA1, BRAF, RELA, LGALS1,
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Figure 2: Prognostic analysis of the characteristic models of 8 genes in the TCGA cohort. (a) The distribution and median value of the risk
score in the TCGA cohort. (b) The distributions of OS condition, OS, and risk score in the TCGA queue. (e) Kaplan-Meier curves of OS in
the high- and low-risk TCGA cohorts for HCC patients. (c) PC plot of the TCGA cohort. (d) t-SNE analysis of the TCGA cohort. (f) The
area under the curve of time-dependent ROC curves validated the prognostic manifestation of the risk score in the TCGA.
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CASP8, and LGALS3) were significantly related to the OS
for HCC patients, sixteen of which were high hazard ratio
genes (HR > 1) and one was protective genes (HR < 1)
(Figure 1(b)). Then, we picked out 8 HAIRGs (VEGFA,
CTNNB1, PPARG, HSP90AA1, HMOX1, LGALS3, SPP1,
and RAC1) from the 17 HAIRG model through the LASSO
Cox regression, upregulated genes accounted for 7/8 in tumor
tissue, which was shown by a heat map (Figure 1(c)). The cor-
relation between above the 8 HAIRGs was shown in
Figure 1(d).

3.2. Building a Prognostic Model in the TCGA Cohort. Based
on LASSO Cox regression analysis, eight genes of HAIRG
prognostic model related to OS in patients with HCC
were constructed (VEGFA, CTNNB1, SPP1, PPARG,
HMOX1, RAC1, HSP90AA1, and LGALS3). They were
subjected to construct a hypoxia, angiogenesis, and
immune-related prognostic model by using the following
formula: Risk score = SUM ð0:097 ∗ expression of VEGFA
+ 0:093 ∗ expression of CTNNB1 + 0:070 ∗ expression of
SPP1 + 0:129 ∗ expression of PPARG + 0:021 ∗ expression
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Figure 3: 8-gene characteristic model prognostic analyzed in ICGC cohort. (a) The distribution and median value of the risk score in the
ICGC cohort. (b) The distributions of OS condition, OS, and risk score in the ICGC queue. (e) Kaplan-Meier curves of OS in the high- and
low-risk TCGA cohorts for HCC patients in the ICGC cohort. (c) PC plot of the ICGC cohort. (d) t-SNE analysis of the ICGC cohort. (f)
The area under the curve of time-dependent ROC curves validated the prognostic manifestation of the risk score in the ICGC queue.
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of HMOX1+0:117∗expression of RAC1+ 0:151∗expression
of HSP90AA1 + 0:060 ∗ expression of LGALS3Þ. Utilizing
median value of the risk score, the patients were classified
into the high-risk group (n = 212) and the low-risk group
(n = 212) (Figure 2(a)). From Figure 2(b), we could see
that patients in the high-risk group were likely to have
a shorter lifespan than those in the low-risk group
(Figure 2(e)). Through PC and T-SNE analyses, the two
subgroups showed the discrete distribution (Figures 2(c)
and 2(d)). In addition, AUC values of 1, 2, and 3 years
for the 8-gene signature were 0.771, 0.681, and 0.654 by
ROC analysis (Figure 2(f)).

3.3. Verifying the HAIRG Signature in the ICGC Database.
To examine the stability of the model established in the
TCGA database, we used the same formula as the TCGA
database to calculate the risk score for each patient in the
ICGC database. Similar to the TCGA database, patients were
also classified into high-risk group (n = 115) or low-risk
group (n = 116) in the ICGC according to the median value
of the risk score (Figure 3(a)). The results were similar to the
TCGA cohort, PC and T-SNE analyses verified the reliable
aggregation ability of risk score in ICGC database
(Figures 3(c) and 3(d)). It was known that patients in the
high-risk group were likely to die earlier and had a shorter
lifespan compare to those in the low-risk group
(Figures 3(b)–3(e)). Besides, after completing the ROC anal-
ysis, AUC values of 1, 2, and 3 years were 0.654, 0.673, and
0.657, respectively (Figure 3(f)).

3.4. Independent Prognostic Value of the HAIRG Signature.
Univariate and multivariate Cox regression analyses were
performed to determine whether risk score was an indepen-
dent prognostic predictor of OS. Univariate Cox regression
analysis showed there was a significant correlation between
risk score and OS in the TCGA database (HR = 3:778, 95%
CI = 2:431-5.871, P < 0:001, Figure 4(a)) and in the ICGC
database (HR = 2:988, 95%CI = 1:296-5.593, P < 0:001,
Figure 4(c)). Multivariate Cox regression analysis showed
there was a meaningful relationship between the risk score
and OS in the TCGA database (HR = 3:408, 95%CI = 2:189

-5.305, P < 0:001, Figure 4(b)) and in the ICGC database
(HR = 2:309, 95%CI = 1:230-4.333, P = 0:009, Figure 4(d)).

3.5. Establishment and Validation of Nomogram. Univari-
able Cox regression analysis showed the higher cancer stage
and risk scores were independent risk factors for prognosis
(P < 0:05). Based on the multivariate analysis, tumor stage
and risk score were also served as independent predictors
for OS (P < 0:05). Later, these two variables were utilized
to build a nomogram of OS, including the tumor stage and
risk score (Figure 5(a)). The scores for each variable were
added up, and the total was projected to the bottom of the
scale, making it easy to calculate estimated 1-, 2- and 3-
year probabilities of OS. The time-dependent ROC curves
and calibration curves were performed to clear and definite
the discriminant advantages of nomogram. The AUC values
of the 1-, 2-, and 3-year nomogram for OS in the TCGA
cohort were 0.785, 0.700, and 0.708 (Figure 5(e)). In the
ICGC database, the AUC values of 1-, 2-, and 3-year nomo-
gram for OS were 0.778, 0.732, and 0.722, respectively
(Figure 5(f)).

3.6. Functional Analysis in the TCGA and ICGC Queues. To
explore the potential molecular mechanism of the signature,
we used the DEGs to perform GO enrichment and KEGG
pathway analyses in the high- and low-risk groups. As we
expected, the DEGs were significantly enriched in many
immune-related biological processes, such as phagocytosis
and leukocyte migration in the TCGA cohort (Figure 6(a)).
DEGs were also gathered in a few hypoxia and immune-
related molecular functions in the TCGA and ICGC data-
bases, for instance, heme binding and antigen binding
(P < 0:05, Figures 6(a) and 6(c)). For KEGG analysis, the dif-
ferentially expressed HAIRGs were gathered in essential
pathways associated with immune and cancer progression,
for example, proteoglycans in cancer, phagosome, comple-
ment and coagulation, and PI2K-Akt signaling pathway
(P < 0:05, Figures 6(b) and 6(d)).

We quantified the enrichment score of different immune
cell subsets, associated functions or pathways using ssGSEA
to further investigate the correlation between risk score and
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Figure 4: Results of the univariate Cox regression analyses about OS. (a, b) Univariate and multivariate Cox regression analyses about OS in
the TCGA cohort. (c, d) Univariate and multivariate Cox regression analyses about OS in the ICGC cohort.
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immune status. In the TCGA cohort, there were significant
differences in the antigen recognition process (including
the score of T cell coinhibition, HLA, APC coinhibition,
IDCs, and ADCs) between the high-risk group and the
low-risk group (Figures 7(a) and 7(b)). The immunobiologi-
cal processes in the GO analyses scored higher in the high-
risk group in the TCGA cohort (P < 0:05, Figure 6(a)).
However, scores of the type I IFN response, type II IFN
response, NK cells, and mast cells were lower in the high-
risk group, compared to that in the low-risk group. In con-
trast, scores of macrophages, Treg cell, TIL, and HLA were
higher in the high-risk group (P < 0:05, Figures 7(a) and
7(b)). The differences of aDCs, DCs, iDCs, pDCs, Th2 cells,
Treg, APC costimulation or inhibition, checkpoint, and type
II IFN response between the two groups through compari-
sons in the ICGC database (P < 0:05, Figures 7(c) and
7(d)). In the TCGA and ICGC cohorts, the macrophage
and ADC score existed the greatest statistical difference in

the high- and low-risk groups, which were also consistent
with the results from the GO analysis.

3.7. Prediction of Immunotherapeutic Response and Immune
Checkpoint Expression Pattern in HCC Patients. There are
six main immune checkpoints PD1, PDL1, PDL2, CTLA4,
CD80, and CD86; their expression level of HCC were
detected and compared in the TCGA and ICGC databases.
All six immune checkpoints were over expression in the
high-risk group in the TCGA database (Figures 8(a)–8(f)).
Besides, the six immune checkpoints, PD1, PDL1, PDL2,
CTLA4, CD80, and CD86, were also over expression in the
high-risk group in the ICGC database (Figures 8(g)–8(l)).
So, the expression of immune checkpoint PD1, PDL1,
PDL2, CTLA4, CD80, and CD86 in the high-risk group
was significantly higher than the one in the low-risk group.

Later, the possibility of predicting immunotherapeutic
responses is based on the tumor immune dysfunction and
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rejection (TIDE) algorithm in the TCGA-ICGC cohort.
Then, we found that high TIDE value was related to the
high-risk group, while low TIDE value was related to the
low-risk group in the TCGA database (P < 0:05,
Figure 9(a)) and ICGC cohort (P < 0:05, Figure 9(c)). The
proportion of immunotherapy response was significantly
higher among patients in the low-risk group than the
patients in the high-risk group in TCGA (P < 0:05,
Figure 9(b)) and ICGC cohort (P < 0:05, Figure 9(d)), which
indicated that immunotherapy has a better response rate on
the low-risk group.

3.8. Sensitivity of Chemotherapy Drugs between TCGA and
ICGC Cohorts. Adjuvant chemotherapy is an alternative
treatment of HCC. Thus, it is important to predict the sensi-
tivity of chemotherapy, which can help clinicians to choose
the best chemotherapy regimen. The calculated IC50 levels
of Cisplatin (P = 4:3e − 05) were lowered in the high-risk

group than in the low-risk group. AMG 706 (P = 3:8e − 16),
gefitinib (P = 2:3e − 05) and docetaxel (P = 1:9e − 11) was
lowered in the low-risk group in the TCGA database
(Figures 10(a)–10(d)), indicating the high-risk group was
more susceptible to cisplatin while the low-risk group was
more sensitive to AMG 706, gefitinib, and docetaxel drugs.
The estimated IC50 levels of cisplatin (P = 0:026) were lowered
in the high-risk group, but AMG 706 (P = 2:7e − 13) and
docetaxel (P = 2:6e − 06) was lowered in the low-risk group
in the ICGC database (Figures 10(e)–10(h)). In brief, the
high-risk group was more susceptible to cisplatin, but the
low-risk group was more susceptible to AMG 706 and
docetaxel.

4. Discussion

In our study, 17 HAIRGs were firstly identified to be related
to overall survive in HCC patients. Then, basing on the
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LASSO Cox regression analysis, 8-gene of prognostic model
of HAIRGs related to OS in patients with HCC was con-
structed, which is based on the LASSO Cox regression anal-

ysis. At the same time, the model was validated in the ICGC
cohort. In the present study, we used GO and KEGG to ana-
lyze the differentially expressed HAIRGs between liver
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Figure 7: Comparing the ssGSEA scores in high- and low-risk groups in the TCGA cohort and ICGC cohort. (a, b) The scores of sixteen
immune cells and thirteen immune-related functions are showed in boxplots in TCGA cohort. (c, d) Results of ssGSEA scores in the ICGC
cohort. Adjusted P values were presented, as follow: ns: not significant; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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cancer patients and normal controls. The GO results showed
differentially expressed HAIRGs were significantly enriched
in phagocytosis, leukocyte migration, immune response-
activating cell surface receptor signaling pathway, neutrophil
activation, heme binding, and antigen binding (in terms of
BP and MF). These results suggested that differentially
expressions of HAIRGS were related to the development of
liver cancer. Moreover, for KEGG analysis, it showed differ-
entially expressed HAIRGs were involved in the develop-
ment of liver cancer, which also indicated HAIRGs may
regard as a potential biomarker for HCC. Then, immuno-
therapy response predication exhibited that the low-risk
group was associated with low TIDE score and had a better
immunotherapy effect in the TCGA and ICGC cohorts. Fur-

thermore, for drug sensitivity analysis in HCC patients, we
found that the high-risk group was more susceptive to cis-
platin, compared to the low-risk group in the TCGA and
ICGC cohorts. Therefore, our result firstly provides a
HAIRG signature model which can be utilized for prognos-
tic, immunotherapy response, and chemotherapy sensitivity
prediction in HCC.

Currently, the most commonly use of the method for
predicting liver cancer is Okuda System Staging. However,
this model has some limitations. Over time, the early diag-
nosis of HCC has changed due to improved diagnostic
methods. At the same time, Okuda staging is insufficient to
stratify patients prior to radical or palliative treatment [10].
A new and reliable prognostic model is an urgent needed
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Figure 8: The expression patterns of immune checkpoint for HCC patients. (a–f) There are six major immune checkpoint molecules
expressed in the violin plots, namely, PD1, PDL1, PDL2, CTLA4, CD80, and CD86, in the TCGA cohort. (g–l) correlation between
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to predict OS in HCC patients. In our study, we found the
potential role of the HAIRGs in HCC patients and the pos-
sibility of constructing a prognostic model with these
HAIRGs. Besides, the 3-year predictive ability of the nomo-
gram for OS was 0.708 in the TCGA cohort and 0.722 in the
ICGC database for the model.

The prognostic model consisted of HAIRGs in the pres-
ent study, including VEGFA, CTNNB1, SPP1, PPARG,
HMOX1, RAC1, HSP90AA1, and LGALS3. VEGFA, also
called vascular endothelial growth factor-A, is not the only,
major factor driving tumor vascular bed dilation [11].
Angiogenesis in HCC depends mainly on VEGFA-driven
response, which leads to vascular system dysfunction to a
large extent. The reason for this is not clear, although it
seems that some aspects of the angiogenic environment
stimulated by VEGFA-stimulated angiogenic milieu (high

levels of microvascular permeability and density) are capable
of promoting tumor expansion [11]. CTNNB1 may play a
vital role in metabolic reprogramming and cell proliferation
in HCC. Phosphorylation sites associated with CTNNB1
mutations were confirmed on key metabolic enzymes,
including ALDOA, and the function of phosphate-ALDOA
about promoting metabolic reprogramming and cell prolif-
eration was demonstrated [12]. Secreted phosphoprotein-1
(SPP1) is a secreted arginine-glycine-aspartate (RGD) con-
taining phosphoprotein [13]. SPP1 may play a role as a
miR-181c-targeted growth promoter of HCC [14]. PPARG
had three subtypes, namely, PPARG1, PPARG2, and
PPARG3 [15]. The susceptibility to HCC may be affected
by PPARG gene polymorphism [16]. The expression of
PPARG was upregulated in lung, prostate, colorectal, blad-
der, and breast tumors [17]. Heme oxygenase-1 (HMOX-
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Figure 9: Prediction of reaction to immunotherapy in patients with HCC. The violin plots show the distribution of the TIDE value in
immunotherapy response between the TCGA (a) and ICGC cohort (c). The proportion of patients with response/no response to
immunotherapy based on the two risk stratifications, in TCGA cohort (b) and in ICGC cohort (d).
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1), an important catalytic enzyme in heme degradation, is
increased under stressful conditions [18]. The elevated
expression of HMOX-1 in a variety of malignant tumors is
related to the tumor microenvironment resistance to tumor
cell growth, angiogenesis, metastasis, chemotherapy, and
radiotherapy [19]. It suggested that HMOX-1 is a protective
gene in liver cancer. HSP90AA1 had the vital functions in
the process of the assembly, manipulation, folding, and deg-
radation of its customer proteins [20]. It had been shown to

be overexpressed in multifarious human cancer, including
liver, breast, endometrial, ovarian, colon, lung, and prostate
cancers [21–24]. LGALS3 (galectin-3) is a multifunctional
protein, which has a variety of biological functions, includ-
ing tumor cells proliferation and differentiation, angiogene-
sis, tumor progression, and metastasis [25]. Galectin-3 is
associated with a lot of cancers, such as mesothelioma,
breast, HCC, and colon cancers [26–28]. In summary, seven
of the genes (VEGFA, CTNNB1, SPP1, PPARG, RAC1,
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Figure 10: Boxplots present the estimated IC50 value of chemotherapy drugs in two risk groups. (a) AMG 706, (b) gefitinib, (c) cisplatin,
and (d) docetaxel in the TCGA. (e) AMG 706, (f) gefitinib, (g) cisplatin, and (h) docetaxel in the ICGC.
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HSP90AA1, and LGALS3) were highly unregulated in
patients with liver cancer. Only one gene (HMOX-1) was
downregulated, hinting which may be a protective gene for
HCC. Whether these genes affect the prognosis of HCC
patients by influencing hypoxia, angiogenesis, and immune
processes remained to be elucidated.

In functional analysis, we found that different HAIRG
signatures of HCC shown a significantly distinguished
immune microenvironments, such as immune infiltration
levels which including aDCs, DCs, iDCs, pDCs, Th2 cells,
and Treg. Moreover, the functional differences that T cell
costimulation or inhibition, checkpoint, and type II IFN
response were also found in the different groups of
HAIRG signature in HCC. The IFN pathway was closely
related to the progression of HCC patients. The inter-
ferons are divided into three types, type I (IFN-α and
IFN-β), type II (IFN-γ), and type III. Currently, it is
known that interferon- (IFN-) α is one of the vital treat-
ment options for patients with liver cancer [29]. IFN-α
activates interferon-stimulating gene (ISG) transcription
by binding to the receptor and mediating its signal trans-
duction. These genes determine the biological conse-
quences of STAT1 signaling and mediate immune
functions, inhibit cell proliferation, and induce apoptosis
[30]. Moreover, a recent study showed that IFN-α can
inhibit growth and induce apoptosis of HCC [31]. IFN-γ
is mainly released by T cells that are recognized and acti-
vated by antigens [32], which can induce the expression of
B7-H1 gene in lung cancer cells, bile duct cancer cells,
head and neck cancers, and HCC through JAK/STAT1
pathway [32–35]. More mechanisms between HAIRGs
and IFN pathway regulation in HCC need to be further
explored.

Our study also found out different HAIRG signatures
correlated with immune checkpoints expression in HCC,
which include PD1, PDL1, PDL2, CTLA4, CD80, and
CD86. The high expression of CTLA-4 on Tregs in HCC
patients was negatively correlated with the cytolytic gran-
zyme B produced by CD8+ T cells [36]. Meanwhile, both
tumors and peritumoral cells (LSECs and HSCs) express
the ligands PDL1 and PDL2, resulting in inactivation of
CD8+ T cells that adhere to hepatic sinusoidal cells, which
promotes immune tolerance. Besides, PDL1 expression in
HCC also leads to follicular helper T cell failure and impairs
the expression of cytokines and the help of B cells, therefore,
promoting the development process to advanced tumor
stage [36]. PD-1 may play an important function in promot-
ing cancer development. PD-1 blocking combined with tar-
geting mTOR pathway may enhance the antitumor
curative effect in cancer [37, 38]. Erin et al. found that PD-
1 blocking and IL-2 combined therapy could synergistically
increase CD8+ T cell response [39]. Thus, there may be a
mechanism between calcineurin inhibitors and PD-1 block-
ades that can serve as therapeutic sites for anti-HCC immu-
nity [36]. However, due to the overexpression of miR-221,
the expression of CD86 and CD40 on the surface of DCs
downregulated, and miR-221 could delay the maturation of
DCs in the microenvironment of HCC cells [40]. As the
HAIRG signatures can predict immune checkpoint expres-

sion in HCC, our result also found that HAIRG signatures
could predict the immunotherapy response in HCC patients.
Therefore, our finding indicated the HAIRG signature could
be a potential biomarker for the prediction of immunother-
apy in HCC.

At last, we also explored the chemotherapeutic sensitiv-
ity of HCC patients based on HAIRG signature with tradi-
tional chemotherapeutic agents (cisplatin, AMG 706,
gefitinib, and docetaxel). This study indicated that the
high-risk patients might do better with cisplatin drug than
the low-risk patients. However, when using the other drugs
(AMG 706 and docetaxel), the low-risk patients did better
as well as the high-risk patients. Cisplatin is a frequently
used first-line chemotherapy drug for the treatment of liver
cancer, ovarian cancer, small cell lung cancer, and other can-
cers [41]. Docetaxel has been widely utilized to relieve symp-
toms of breast, prostate, bladder, and ovarian cancers
[42–44]. Furthermore, docetaxel has been recognized for
its low toxicity and high efficacy in the treatment of liver
cancer. Compared with previous studies [45–47], although
had reported the hypoxic signatures, which included genes
that PDSS1, SLC7A11, CDCA8, and angiogenesis-related
immune signatures, such as BIRC5, KITLG, PGF, SPP1,
and SHC1. These signatures of HCC had been reported
can be used as potential biomarkers for diagnosis, prognosis,
and recurrence of HCC. In our model, which had included
more key tumor biological characteristics, included hypoxic,
angiogenesis, and immune. More key tumor biological
characteristics genes included in our model may construct
a more accurate model for predicting the prognosis and
treatment sensitivity in HCC. Our results also conducted
immunotherapy response and chemotherapy sensitivity
prediction in HCC. Therefore, we believe our model may
be more novel and accurate. Therefore, our study firstly
provides an effective and novel model to evaluate the che-
mosensitivity for HCC

5. Conclusion

In a word, our study defined a new prognostic model of
HAIRGs in HCC patients. In the TCGA and ICGC cohorts,
this model was shown to be independently associated with
OS and can be considered a biomarker for prognosis predic-
tion, clinical immunotherapy evaluation, and chemotherapy
selection for HCC.

Data Availability

The data and materials used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

25Disease Markers



Acknowledgments

This research was supported by the Shenzhen Municipal
Health and Family Planning System Scientific Research Pro-
ject (szfz2018022).

References

[1] A. Villanueva, “Hepatocellular Carcinoma,” The New England
journal of medicine., vol. 380, no. 15, pp. 1450–1462, 2019.

[2] J. D. Yang, P. Hainaut, G. J. Gores, A. Amadou, A. Plymoth,
and L. R. Roberts, “A global view of hepatocellular carcinoma:
trends, risk, prevention and management,” Nature reviews
Gastroenterology & hepatology., vol. 16, no. 10, pp. 589–604,
2019.

[3] Y. Zhao, X. Huang, T. W. Ding, and Z. Gong, “Enhanced
angiogenesis, hypoxia and neutrophil recruitment during
Myc-induced liver tumorigenesis in zebrafish,” Scientific
Reports, vol. 6, no. 1, p. 31952, 2016.

[4] S. M. Weis and D. A. Cheresh, “Tumor angiogenesis: molecu-
lar pathways and therapeutic targets,” Nature medicine.,
vol. 17, no. 11, pp. 1359–1370, 2011.

[5] V. W. Yuen and C. C. Wong, “Hypoxia-inducible factors and
innate immunity in liver cancer,” The Journal of clinical inves-
tigation., vol. 130, no. 10, pp. 5052–5062, 2020.

[6] Q. Wen, T. Han, Z. Wang, and S. Jiang, “Role and mechanism
of programmed death-ligand 1 in hypoxia-induced liver can-
cer immune escape,” Oncology Letters, vol. 19, no. 4,
pp. 2595–2601, 2020.

[7] M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, and N. Hacohen,
“Molecular and genetic properties of tumors associated with
local immune cytolytic activity,” Cell, vol. 160, no. 1-2,
pp. 48–61, 2015.

[8] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,”
Nature medicine., vol. 24, no. 10, pp. 1550–1558, 2018.

[9] W. Yang, J. Soares, P. Greninger et al., “Genomics of drug sen-
sitivity in cancer (GDSC): a resource for therapeutic biomarker
discovery in cancer cells,” Nucleic Acids Research, vol. 41, no. -
Database issue, pp. D955–D961, 2013.

[10] S. Tellapuri, P. D. Sutphin, M. S. Beg, A. G. Singal, and S. P.
Kalva, “Staging systems of hepatocellular carcinoma: a
review,” Indian journal of gastroenterology: official journal of
the Indian Society of Gastroenterology., vol. 37, no. 6,
pp. 481–491, 2018.

[11] L. Claesson-Welsh and M. Welsh, “VEGFA and tumour
angiogenesis,” Journal of Internal Medicine, vol. 273, no. 2,
pp. 114–127, 2013.

[12] Q. Gao, H. Zhu, L. Dong et al., “Integrated proteogenomic
characterization of HBV-related hepatocellular carcinoma,”
Cell, vol. 179, no. 2, pp. 561–577.e22, 2019.

[13] H. D. Shin, B. L. Park, H. S. Cheong, J. H. Yoon, Y. J. Kim, and
H. S. Lee, “SPP1 polymorphisms associated with HBV clear-
ance and HCC occurrence,” International journal of epidemi-
ology., vol. 36, no. 5, pp. 1001–1008, 2007.

[14] J. Wang, F. Hao, X. Fei, and Y. Chen, “SPP1 functions as an
enhancer of cell growth in hepatocellular carcinoma targeted
by miR-181c,” American Journal of Translational Research,
vol. 11, no. 11, pp. 6924–6937, 2019.

[15] B. Bandera Merchan, F. J. Tinahones, and M. Macias-Gonza-
lez, “Commonalities in the association between PPARG and

vitamin D related with obesity and carcinogenesis,” PPAR
Research, vol. 2016, 15 pages, 2016.

[16] S. Zhang, J. Jiang, Z. Chen et al., “Relationship of <em>P-
PARG</em>, <em>PPARGC1A</em>, and <em>P-
PARGC1B</em> polymorphisms with susceptibility to
hepatocellular carcinoma in an eastern Chinese Han popula-
tion,” Oncotargets and Therapy, vol. Volume 11, pp. 4651–
4660, 2018.

[17] M. J. Campbell, C. Carlberg, and H. P. Koeffler, “A role for the
PPAR in cancer therapy,” PPAR research., vol. 2008, article
314974, pp. 1–17, 2008.

[18] C. S. Park, D. W. Eom, Y. Ahn, H. J. Jang, S. Hwang, and S. G.
Lee, “Can heme oxygenase-1 be a prognostic factor in patients
with hepatocellular carcinoma?,” Medicine, vol. 98, no. 26,
article e16084, 2019.

[19] S. K. Chiang, S. E. Chen, and L. C. Chang, “A dual role of heme
oxygenase-1 in cancer cells,” International Journal of Molecu-
lar Sciences, vol. 20, no. 1, p. 39, 2019.

[20] W. Shi, L. Feng, S. Dong et al., “FBXL6 governs c-MYC to pro-
mote hepatocellular carcinoma through ubiquitination and
stabilization of HSP90AA1,” CCS., vol. 18, no. 1, p. 100, 2020.

[21] Q. Xu, J. Tu, C. Dou et al., “HSP90 promotes cell glycolysis,
proliferation and inhibits apoptosis by regulating PKM2 abun-
dance via Thr-328 phosphorylation in hepatocellular carci-
noma,” Molecular cancer., vol. 16, no. 1, p. 178, 2017.

[22] G. H. Kang, E. J. Lee, K. T. Jang et al., “Expression of HSP90 in
gastrointestinal stromal tumours and mesenchymal tumours,”
Histopathology, vol. 56, no. 6, pp. 694–701, 2010.

[23] Y. Li, T. Zhang, S. J. Schwartz, and D. Sun, “Sulforaphane
potentiates the efficacy of 17-allylamino 17-
demethoxygeldanamycin against pancreatic cancer through
enhanced abrogation of Hsp 90 chaperone function,” Nutri-
tion and Cancer, vol. 63, no. 7, pp. 1151–1159, 2011.

[24] J. Soroka, S. K. Wandinger, N. Mäusbacher et al., “Conforma-
tional switching of the molecular chaperone Hsp90 via regu-
lated phosphorylation,” Molecular Cell, vol. 45, no. 4,
pp. 517–528, 2012.

[25] D.-S. W. Shan-Shan Jiang, Q.-J. Wang, K. Pan et al., “Galectin-
3 is associated with a poor prognosis in primary hepatocellular
carcinoma,” Journal of Translational Medicine, vol. 12, no. 1,
2014.

[26] C. Blanquart, F. Gueugnon, J. M. Nguyen et al., “CCL2, galec-
tin-3, and SMRP combination improves the diagnosis of
mesothelioma in pleural effusions,” Journal of Thoracic Oncol-
ogy: Official Publication of the International Association for the
Study of Lung Cancer, vol. 7, no. 5, pp. 883–889, 2012.

[27] Y. Matsuda, Y. Yamagiwa, K. Fukushima, Y. Ueno, and
T. Shimosegawa, “Expression of galectin-3 involved in prog-
nosis of patients with hepatocellular carcinoma,” Hepatology
research: the official journal of the Japan Society of Hepatology.,
vol. 38, no. 11, pp. 1098–1111, 2008.

[28] M. A. Mayoral, C. Mayoral, A. Meneses et al., “Identification of
galectin-3 and mucin-type O-glycans in breast cancer and its
metastasis to brain,” Cancer investigation., vol. 26, no. 6,
pp. 615–623, 2008.

[29] T. Li, Z. R. Dong, Z. Y. Guo et al., “Aspirin enhances IFN-α-
induced growth inhibition and apoptosis of hepatocellular car-
cinoma via JAK1/STAT1 pathway,” Cancer Gene Therapy,
vol. 20, no. 6, pp. 366–374, 2013.

[30] N. N. Khodarev, B. Roizman, and R. R. Weichselbaum,
“Molecular pathways: interferon/stat1 pathway: role in the

26 Disease Markers



tumor resistance to genotoxic stress and aggressive growth,”
Clinical cancer research: an official journal of the American
Association for Cancer Research., vol. 18, no. 11, pp. 3015–
3021, 2012.

[31] K. Herzer, T. G. Hofmann, A. Teufel et al., “IFN-alpha-
induced apoptosis in hepatocellular carcinoma involves pro-
myelocytic leukemia protein and TRAIL independently of p
53,” Cancer research., vol. 69, no. 3, pp. 855–862, 2009.

[32] N. Li, J. Wang, N. Zhang et al., “Cross-talk between TNF-α and
IFN-γ signaling in induction of B7-H1 expression in hepato-
cellular carcinoma cells,” Cancer immunology, immunother-
apy: CII., vol. 67, no. 2, pp. 271–283, 2018.

[33] F. Concha-Benavente, R. M. Srivastava, S. Trivedi et al., “Iden-
tification of the cell-intrinsic and -extrinsic pathways down-
stream of EGFR and IFNγ that induce PD-L1 expression in
head and neck cancer,” Cancer Research, vol. 76, no. 5,
pp. 1031–1043, 2016.

[34] S. J. Lee, B. C. Jang, S. W. Lee et al., “Interferon regulatory
factor-1 is prerequisite to the constitutive expression and
IFN-gamma-induced upregulation of B7-H1 (CD274),” FEBS
letters., vol. 580, no. 3, pp. 755–762, 2006.

[35] A. Y. Gong, R. Zhou, G. Hu et al., “MicroRNA-513 regulates
B7-H1 translation and is involved in IFN-gamma-induced
B7-H1 expression in cholangiocytes,” Journal of immunology.,
vol. 182, no. 3, pp. 1325–1333, 2009.

[36] Y. Zongyi and L. Xiaowu, “Immunotherapy for hepatocellular
carcinoma,” Cancer letters., vol. 470, pp. 8–17, 2020.

[37] S. Munker and E. N. De Toni, “Use of checkpoint inhibitors in
liver transplant recipients,” United European gastroenterology
journal., vol. 6, no. 7, pp. 970–973, 2018.

[38] H. Li, X. Li, S. Liu et al., “Programmed cell death-1 (PD-1)
checkpoint blockade in combination with a mammalian target
of rapamycin inhibitor restrains hepatocellular carcinoma
growth induced by hepatoma cell-intrinsic PD-1,”Hepatology,
vol. 66, no. 6, pp. 1920–1933, 2017.

[39] E. E. West, H. T. Jin, A.-U. Rasheed et al., “PD-L1 blockade
synergizes with IL-2 therapy in reinvigorating exhausted T
cells. Research article,” vol. 123, no. 6, pp. 2604–2615, 2013.

[40] Y. Fu, F. Li, P. Zhang et al., “Myrothecine Amodulates the pro-
liferation of HCC cells and the maturation of dendritic cells
through downregulating miR-221,” International Immuno-
pharmacology, vol. 75, article 105783, 2019.

[41] Y.Wang, Y. Liu, Y. Liu et al., “A polymeric prodrug of cisplatin
based on pullulan for the targeted therapy against hepatocellu-
lar carcinoma,” International Journal of Pharmaceutics,
vol. 483, no. 1-2, pp. 89–100, 2015.

[42] C. Albany and G. Sonpavde, “Docetaxel for the treatment of
bladder cancer,” Expert opinion on investigational drugs.,
vol. 24, no. 12, pp. 1657–1664, 2015.

[43] J. Belz, N. Castilla-Ojo, S. Sridhar, and R. Kumar, “Radiosensi-
tizing silica nanoparticles encapsulating docetaxel for treat-
ment of prostate cancer,” Methods in molecular biology.,
vol. 1530, pp. 403–409, 2017.

[44] C. Seguin, N. Kovacevich, and I. A. Voutsadakis, “Docetaxel-
associated myalgia-arthralgia syndrome in patients with breast
cancer,” Breast Cancer, vol. 9, pp. 39–44, 2017.

[45] Z. Mo, D. Liu, D. Rong, and S. Zhang, “Hypoxic characteristic
in the immunosuppressive microenvironment of hepatocellu-
lar carcinoma,” Frontiers in Immunology, vol. 12, article
611058, 2021.

[46] B. Zhang, B. Tang, J. Gao, and J. Li, “A hypoxia-related signa-
ture for clinically predicting diagnosis, prognosis and immune
microenvironment of hepatocellular carcinoma patients,”
Journal of Translational Medicine, vol. 18, no. 1, p. 342, 2020.

[47] Y. Yang, G. Wu, Q. Li et al., “Angiogenesis-related immune
signatures correlate with prognosis, tumor microenvironment,
and therapeutic sensitivity in hepatocellular carcinoma,” Fron-
tiers in molecular biosciences., vol. 8, article 690206, 2021.

27Disease Markers


	A Novel Hypoxic-Angiogenesis-Immune-Related Gene Model for Prognostic and Therapeutic Effect Prediction in Hepatocellular Carcinoma Patients
	1. Introduction
	2. Materials and Methods
	2.1. Collecting the Data
	2.2. Screening and Identifying HAIRG Signature Associated with LC Prognosis
	2.3. The Predictive Nomogram Construction and Evaluation
	2.4. Functional Enrichment Analysis and Immunotherapy Response Predictions
	2.5. Immunotherapy Response Predictions for HCC Patients
	2.6. Evaluation of the Sensitivity of Drugs
	2.7. Statistical Analysis of the Data

	3. Results
	3.1. Identification of Prognostic HAIRGs in the TCGA Cohort
	3.2. Building a Prognostic Model in the TCGA Cohort
	3.3. Verifying the HAIRG Signature in the ICGC Database
	3.4. Independent Prognostic Value of the HAIRG Signature
	3.5. Establishment and Validation of Nomogram
	3.6. Functional Analysis in the TCGA and ICGC Queues
	3.7. Prediction of Immunotherapeutic Response and Immune Checkpoint Expression Pattern in HCC Patients
	3.8. Sensitivity of Chemotherapy Drugs between TCGA and ICGC Cohorts

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

