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Dissipation induced by phonon 
elastic scattering in crystals
Guolong Li1, Zhongzhou Ren1,2,3 & Xin Zhang1

We demonstrate that the phonon elastic scattering leads to a dominant dissipation in crystals at low 
temperature. The two-level systems (TLSs) should be responsible for the elastic scattering, whereas the 
dissipation induced by static-point defects (SPDs) can not be neglected. One purpose of this work is to 
show how the energy splitting distribution of the TLS ensemble affects the dissipation. Besides, this 
article displays the proportion of phonon-TLS elastic scattering to total phonon dissipation. The 
coupling coefficient K of phonon-SPD scattering and the constant P0 of the TLS distribution are 
important that we estimate their magnitudes in this paper. Our results is useful to understand the 
phonon dissipation mechanism, and give some clues to improve the performance of mechanical 
resonators, apply the desired defects, or reveal the atom configuration in lattice structure of disordered 
crystals.

In recent years, mechanical resonators have been used to excite high frequency phonons at low temperatures for 
investigating the quantum regime. For instance, O’Connell et al.1 realized single mechanical quantum excitation 
(phonon) control coupled to a qubit. Besides, the elaborate mechanical resonators can be also applied in the 
opto-mechanical system2,3, quantum motion4, gravitational wave detection5, and other fundamental physics6. 
However, the low quality factor (Q) still limits the coherence time of these quantum systems and therefore, it is 
crucial to manufacture high-Q resonators for the application7. In particular, Goryachev et al.8 adopted a kind 
of cavity resonators manufactured from the highest quality alpha-synthetic quartz, and achieved high-Q at fre-
quencies from hundreds of megahertz to near 1 GHz. Therefore, these bulk acoustic wave (BAW) cavities bring a 
prospect to achieve operation in the equilibrium ground state of hybrid mechanical systems with longer coher-
ence time. More interestingly, the measurement results exhibit that Q obeys the Q ×  f 3 =  const law and tends to 
decrease with T reducing, with f and T denoting respectively the resonant frequency and the temperature. These 
new features manifest that there is another source limiting the quality factor of the BAW resonators made of 
piezo-crystals at low-temperature.

The understanding of dissipative mechanisms is of great importance for measuring, analyzing and design-
ing mechanical resonators9. At high temperature that ħω ≪  kBT, where ω ≡  2πf is the angular frequency of the 
resonant phonons, the limitation of Q-factor is caused mainly by the interaction of acoustic waves with thermal 
phonons, i.e., the anharmonic effect. At high temperature that the thermal phonon lifetime τ is in the ωτ ≪  1 
regime and even ωτ ~ 1 regime, the Boltzmann equation method, or Akheiser theory, can be used to calculate 
the dissipation from this thermal effect10,11. If τ is long enough at sufficiently low-temperature such that ωτ ≫  1 
but the thermal effect still dominates (i.e., in the ħω ≪  kBT regime), this anharmonic interaction can be described 
by phonon-phonon coupling which is regarded as a perturbation of the harmonic vibration (Landau-Rumer 
method)10,12,13. On the other hand, as temperature keeps dropping, this thermal perturbation becomes negligible 
and the phonon scattering by defects plays a dominant role in the dissipation. Klemens came up with a model 
where phonons are scattered by static-point defects (SPDs)14, and exhibited that the dissipation α is proportional 
to the forth power of frequency (i.e. Q ×  f 3 =  const from the relation Q =  f/2α) and independent of temperature. 
Except the static-point defects, the disordered parts of solids contain the ensemble of so-called two-level systems 
(TLSs)15–17, which has been verified experimentally18,19 and theoretically20. Similar with the photon-TLS interac-
tion21, the TLSs in solids should be coupled to the phonon as the excitation of mechanical vibration. This kind of 
dynamic defect, as well as the static one mentioned above, disturbs the resonant phonons via phonon-defect cou-
pling to cause the dissipation of mechanical resonators22,23. Instead of the resonant absorption, the phonon elastic 
scattering by TLSs results in a main dissipation in resonators if the energy of scattered phonons is sufficiently 
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lower than the energy splittings of most TLSs24. Actually, this kind of phonon-defect scattering has been proposed 
before25, but not derived from a specific perturbation term until recent work in ref. 24. Derived from the specific 
phonon-TLS interaction in the condition of elastic scattering, not only does Q obey the Q ×  f 3 =  const law, but 
also drops with the reduction of temperature. The model calculation is in agreement with the recent measurement 
result8.

In this paper, we further discuss the phonon-TLS scattering mechanism under consideration of the PSD scat-
tering mentioned above, and obtain some quantitative results in comparison with the recent experiment8. In 
other words, this work is beyond the theoretical framework mentioned in ref. 24 that just discussed the effect 
from TLS without the static-point defeat, and relates with experiments that should be influenced by both effects. 
First, we show that the distribution of energy splitting of TLSs influences the Q dependence on temperature. It 
provides a method to infer the distribution of energy splitting of TLS ensemble via measuring the Q-factor at 
various temperature. Besides, now that the PSD contribution is taken into account, we also estimate the relative 
contribution from phonon-TLS scattering at several temperature after determining the distribution of energy 
splitting of TLSs. In the end, two parameters, including the coupling coefficient K  of phonon-SPD scattering and 
the constant P0 of the TLS distribution, that are crucial for yielding phonon dissipation also need to be estimated 
and discussed. Our results are available for improving and testing the phonon dissipation mechanism, and are 
helpful to improve the performance of mechanical resonators, apply the desired defects, or reveal the atom con-
figuration in lattice structure of disordered crystals.

Results
The models. For sound wave propagating in crystals, the mechanical harmonic vibration breaks since the 
microscopic impurities randomly distribute in crystals26. The details for quantizing mechanical waves are given 
in Methods. These static-point defects lead to phonon elastic scattering for two reasons, including (a) the different 
mass between lattice atoms and impurities, and (b) the different binding to neighbors between of lattice atoms 
and of impurities. This perturbation Hamiltonian Hi is described as27
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where akj ( †a jk ) is the annihilation (creation) operator of the mechanical mode with wave-vector k and polarization 
j, corresponding to the normal-mode frequency ωkj. The polarizations contain j =  l, t for a longitudinal and two 
transverse branches, depending on whether the polarization vector e(kj) is parallel or perpendicular to the 
wave-vector k. In the case of long-wavelength phonons with the linear dispersive relation, the coefficient Ckj,k′j′ for 
mode (k, j) scattered elastically to (k′ , j′ ) is given by14
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where M describes the change or the binding-force changes at impurity position r in crystals.
According to the previous works28–30, two-level systems (TLSs) have been suggested to exist in disordered part 

of crystals. Two parameters are needed to describe a TLS: the asymmetry Δ  and the tunneling Λ  between the two 
bound states (see Fig. 1(a)). The effective Hamiltonian of a TLS can be written as
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Figure 1. (a) A TLS including two stable states. Δ  and Λ  denote the separation and the tunneling between the 
upper state |u〉  and the lower one |d〉 , respectively. (b) Four elastic scattering processes due to the TLSs. Each 
dashed arrow with kj indicates incident or released phonon with wave vector k and polarization j.
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This is equivalent to a TLS with an energy splitting ε = ∆ + Λ = Ω2 2   (the angular transition frequency 
Ω =  2πν) between the eigen ground state |g〉  and exited state |e〉 . On the other hand, the coupling between strain 
field and a TLS happens mainly through the change of the asymmetry δ31,32. Therefore, the perturbation 
Hamiltonian for the coupling is given by

δ
δ

=
−
.( )H 1

2
0

0 (4)1

Here, δ is linear in the strain tensor field, δ =  2γijSij, where Sij =  (∂ iuj +  ∂ jui)/2 expresses the strain tensor with the 
displacement field (16), and γij indicates the linear coefficient. Once the Hamiltonian (3) is diagonalized17,33, we 
can obtain this phonon-TLS coupling in terms of phonon creation and annihilation operators,
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j  and the rasing and lowing operators for TLSs, i.e., b +  and b. Here, ρ and V 

denote respectively the mass density and volume. In the phonon-TLS interaction (5), we only consider the longi-
tudinal and transverse values of γij, denoted as γj with polarization j =  l or t.

The phonon-TLS interaction leads to phonon elastic scattering, and four processes make contributions to 
the scattering amplitude Ak′j′,kj from mode (k, j) into mode (k′ , j′ ) (schematic diagram can be seen in Fig. 1(b) 
and calculation details in Methods). On the basis of second-order perturbation theory34, the amplitude Akj,k′j′ is 
equivalent to an effective Hamiltonian as
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For the small value of ωkj/Ω, this coefficient can be written approximately as
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The Q ~ ω−3 law. Applying fermi’s golden rule with equation (1), we can derive the dissipation of a phonon 
with frequency ω undergoing elastic scattering by static-point defects,

∑α ω ω ω= =K K( ) ,
(9)i

i1
4 4

where we have considered the sum of factors Ki of various impurity contributions, denoted by factor K . 
Nevertheless, the temperature independence of equation (9) means that this mechanism can not explain fully the 
measured results in ref. 8.

On the other hand, the dynamic defeats, i.e., TLS, should be taken into account. We obtain this dissipation of 
a longitudinal phonon (since the shear modes have larger dissipations and thus are difficult to couple to higher 
frequencies) scattered elastically by TLSs based on the Hamiltonian (6),
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with parameter u =  Λ /ε. We have introduced the function VP(ε, u) as the distribution density of parameters ε and 
u, and thus the total dissipation α is expressed by an integration if these parameters of the TLS ensemble are 
regarded as a continuous distribution. In standard tunneling model35,36, the distribution function has the form 
ε = −P u P u u( , ) /( 1 )0

2 , with the constant P0. Hence, the formula (10) becomes
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 and the lower and bounds Ωi,j =  2πνi,j. If Ωi is much larger than the 

resonant frequency ω, the attenuation becomes
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It means that, if TLSs with high energy splitting dominate in crystals, most of excited phonons undergo elas-
tic scattering by TLS ensemble and their dissipation formula (12) derived from phonon-TLS interaction (5) is 
proportional approximately to the fourth power of frequency. But unlike the static scattering mechanism, the 
dissipation resulted from TLSs drops with temperature rising. The physical interpretation for this anomalous 
T-dependence is that, at lower temperature, more TLSs are in their ground states to absorb resonant phonons and 
re-emit them in a random direction, leading to phonon dissipation. However, this anomalous temperature trend 
can not last at a higher temperature where phonon-phonon scattering prevails over the elastic scattering.

Finally, both independent dissipative mechanisms should be considered together, and then based on equa-
tions (9) and (11) the total quality factor Q is expressed as
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According to equations (8) or (12) in the condition ω ≪  Ωi, the above formula becomes
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Obviously, equation (14) follows the Q ×  f 3 =  const law at a given temperature, and due to the second term in 
curly braces, quality factor rises as temperature increases. This result is in agreement with the recent experiment8. 
Just as shown in Fig. 2, the measurement data obey the f−3 law, with const =  2.2 ×  1016 (4.2 ×  1015) [MHz]3 at 3.8 K 
(15 mK).

Temperature dependence influenced by the distribution of TLSs. As shown in Fig. 2, the constant 
of the product Q ⋅  f 3  changes with temperature. Back the formula (13), the term that is responsible for the influ-
ence of temperature also depends on the distribution of energy splitting of TLSs. However, this distribution has 
not been obtained from experiments yet, and we can therefore analyze how the range of energy splitting of the 
TLS ensemble affects the scattering rate so far.

It is necessary to take the parameters for formula (14), including both longitudinal and transverse cou-
pling parameters γl =  0.6 eV and γt =  0.4 eV, both longitudinal and transverse sound speeds cl ≈  7 ×  103 m/s and 
ct ≈  4 ×  103 m/s7, and the mass density of quartz ρ =  2.6 ×  103 kg/m3 37. In addition, the undetermined constant of 
the u-distribution P0 is discussed below. In Fig. 3, we display the product constant of Q ⋅  f 3  as a function of tem-
perature from 0.01 to 10 K with different ranges of transition frequency of the TLS ensemble. We take νi =  3 GHz, 
10 GHz and 20 GHz corresponding respectively to the upper panels (a–c). The lower panels (i–iii) are chosen 
by the lines in panels (a–c), respectively. Besides, the curves in three lower panels are fixed partly by two meas-
ured points exhibited in Fig. 2. All panels in this figure show that the constant and thus the quality factor turn 
higher with temperature rising, in the situation where thermal-induced dissipation is still restricted at such low 
temperature.

For low νi [at least νi ≤  10 GHz, see Fig. 3(a,b)], the constant with highly narrow-ν range increases with tem-
perature and maintains larger than the one with relatively wide-ν range. Nevertheless, whether the ν range is 
narrow or wide, the temperature trend stops rising and the magnitude of the constant turns to a same value at 
several Kevin [see Fig. 3(i,ii)]. Besides, as the νf is up to high enough, the temperature trend nearly exhibits same 
behaviour even if the ν range is wider. In other words, the magnitude of νi plays a decisive role in the constant for 
the wide ν range. On the other hand, in high νi regime [see Fig. 3(c)], the constant with highly narrow-ν range 
still rises with temperature and keeps larger than the one with relatively wide-ν range in the temperature region 
of near 1 K, whereas the the latter exceeds the former at several Kelvin [see Fig. 3(iii)]. It seems that the TLS 
ensemble with wider transition frequency spectrum leads to more rapid increase of the constant with temperature 
rising at several Kelvin. In the relatively low temperature region of 10−2 − 10−1 K, the lines of panels (ii) and (iii) 
in Fig. 3 hardly change with keeping a stable value. Compared with these cases of high νi, the panel (i) displays 
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Figure 2. The comparison between our formula (13) and the experimental data8, which are denoted by 
solid lines and points, respectively.
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that the constant starts rising in this low temperature region. Apart from this, the comparison between panels (ii) 
and (iii) also shows this feature that the stable situation is in a wider range in low temperature region for higher 
νi situation.

The above analysis provides a clue for future experiments to reveal the distribution of energy splittings of TLS 
ensemble in crystals. In future measurements for Q-factor, if the line of the frequency behaviour of Q at T >  3.8 K 
is higher than the one at T =  3.8 K in Fig. 2, it will mean that the energy splittings of most TLSs lie in higher 
energy range. When the difference between these two lines is larger, the transition frequencies have a wider range 
from lower limit νi to upper limit νf. On the contrary, if the line at higher temperature is close to the one at 3.8 K, 
it is reasonable to infer that there are considerable TLSs with low energy splittings. In this situation, the Q-factor 
at medium temperature should be measured to determine the energy splitting range of the TLS ensemble, based 
on the temperature behaviour in Fig. 3(a,b) and (i,ii). However, once the range is wide enough, the νf can not be 
determined by this means, but the only decisive value νi.

The contribution from phonon-TLS scattering RTLS. Now that both TLSs and PSDs participate in the 
phonon elastic scattering, it is necessary to analyze and discuss their proportion to the phonon dissipation. Even 
though the parameters K  and P0 are unknown, the relative contribution of phonon-TLS elastic scattering can be 
estimated via comparing the formula (14) with the experiment in ref. 8. In this paper, we take the ratio of the 
inverse of Q ⋅  f 3  product only considering the TLS contribution to the total one including the both contributions 
of these scattering mechanisms mentioned above, denoted by RTLS, as the relative contribution of phonon-TLS 
scattering.

As illustrated in Fig. 4, its panels (a) and (b) depict the situation for fixing νi =  3 GHz and 10 GHz, respectively. 
Whether the TLS ensemble lies in low- or high-transition frequency region, the relative contribution RTLS is 
higher at lower temperature. Especially at dozens of milli-kelvin, the phonon-TLS elastic scattering is the dom-
inative dissipation mechanism. Just because of the different ratios at various temperature, the experiment in 
ref. 8 displays the temperature dependence of elastic scattering rate which results from phonon-TLS scattering. 
Additionally, all lines at different temperature rises with νf increasing. The line at 0.1 K is close to the one at 0.01 K 
in the Fig. 4(b), in comparison with the two lines in the Fig. 4(a). At several Kelvin, while it seems that the TLS 
ensemble hardly takes part in the dissipation processes in the Fig. 4(a), the Fig. 4(b) shows that the contribution 
from the TLS ensemble is considerable. This difference of these two panels manifests that the TLSs with high 
transition frequency lead to the major contribution of phonon-TLS scattering at a given temperature.

The coupling strength of phonon-SPD scattering K. The above analysis reveals that quality factor at a 
given temperature is determined by the distribution of energy splitting of TLSs. Apart from the TLS scattering 
which is responsible for the temperature dependence, the static-point defects also make a contribution to the 

Figure 3. The dependence of the constant for the product Q · f 3  on temperature, influenced by the range of 
frequency splitting. The upper panels (a–c) indicate the situations for the lower bound νi =  2 GHz, 10 GHz and 
20 GHz, respectively. The lower panels (i)–(iii) respectively correspond to the upper panels (a–c), and each of 
them contains two lines for displaying the temperature dependences at two kinds of upper bound νf indicated 
via two lines in each of upper panels (a–c). Besides, the circle points in the lower panels are fixed due to the 
experiment8, i.e., const =  4.2 ×  1015 at 15 mK and 2.2 ×  1016 at 3.8 K in Fig. 2.
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phonon elastic scattering. The coupling strength K  of this kind scattering can be determined at fixed lower bound 
νi and range Δ ν =  νf −  νi, according to formula (13) and the parameters given above, as shown in Fig. 5.

In Fig. 5, the elastic scattering can not occur in the colorless region, otherwise the coefficient K  enters the 
unallowed negative region. As a consequence, it manifests that, at a specific range Δ ν, the lower bound νi has a 
maximum magnitude that decreases with Δ ν increasing. Besides, if the lowest transition frequency νi is about 
several gigahertz, the coefficient K  is nearly unchanged no matter if the range Δ ν is extremely narrow or wide as 
dozens of gigahertz. However, the stable state of K  can not last as long as νi exceeds the several gigahertz region, 
which makes an obvious difference between the narrow and wide ranges Δ ν at a given high νi. On the other hand, 
the coefficient K  turns out to be more sensitive to νi and decreases to zero more rapidly if the range Δ ν is wider, 
also leading to the obvious difference of K  for various Δ ν in high-νi regime. In a conclusion, the distribution of 
the transition frequencies that responds to the largest K  concentrates narrowly on low νi region. In other words, 
the TLSs with higher transition frequency result more possibly in their scattering with phonons, and thus the 
contribution from SPD scattering becomes less as well as coupling coefficient K .

Figure 4. The relative contribution from phonon-TLS scattering, RTLS, for various ranges of transition 
frequency ν of TLS ensemble. (a,b) Depict the situation for νi =  3 GHz and 10 GHz, respectively. In each figure, 
the lines from upper to lower indicate the various trends at T =  0.01, 0.1, 0.2, 0.3, 0.5 and 1 K, respectively. In 
particular, the lines for T =  0.01 and 0.1 K nearly overlap each other in panel (b).

Figure 5. The phonon-PSD coupling coefficient K  as a function of the lower bound νi and the range 
Δν = νf − νi. The unit of K  is 10−17 MHz−3, while the units of νi and Δ ν are both GHz. The color indicates the 
magnitude of K . There is an unallowed region of the νi −  Δ ν plane, otherwise the coefficient K  enters the 
negative region.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:34148 | DOI: 10.1038/srep34148

The distribution constant P0. Just as the coupling coefficient K  mentioned in above section, the constant 
P0 is also crucial for obtaining the model results and can be determined on the basis of the experiment in ref. 8 
once νi and Δ ν are measured.

The Fig. 6 plots the magnitude of constant P0 and its dependence on both νi and Δ ν. If νi is low with narrow or 
wide range Δ ν, P0 is turned out to be suppressed highly, especially in wide range case. Despite all this, P0 still gets 
large with νi rising, and this increase is highly rapid for extremely narrow spectrums of transition frequency ν.  
On the other hand, as the density of the transition frequency, the constant P0 also tends to be larger in the case 
that the spectrum of transition frequency ν is narrower at a given νi, and this parameter increases more steeply as 
νi enter higher region. In general, the magnitude of P0 increases rapidly as the transition frequencies of the TLS 
ensemble turn to highly concentrate in high regime.

Discussion
In this paper, we first combine both the mechanisms of phonon dissipation, including the elastic scattering with 
two-level systems (TLSs) and point-static defects (PSDs), to obtain the quality factor (Q) formula (13) at low 
temperature. We then find that Q follows the Q ⋅  f 3 =  const law, expressed by equation (14), in bulk mechanical 
resonators made of piezoelectric quartz. The phonon-TLS scattering reveals that the Q-factor rises with T increas-
ing until, at a higher temperature, the anharmonic effect plays a considerable role in the mechanical dissipation. 
These frequency and temperature features of quality factor conform to the recent cryogenic measurement in ref. 8  
(see Fig. 2). In conclusion, this work improves the theoretical framework in ref. 24 with full consideration (con-
taining both static and dynamic defeats), and provides direct comparison with experiment and more quantitative 
analysis.

The detail of this paper is our quantitative results on the basis of the theoretical model. First of all, the distri-
bution of energy splitting of the TLS ensemble should be considered to obtain the explicit T-dependency (see 
Fig. 3). These results are obtained via combining our formula equation (14) with the measurement in ref. 8.  
If there are considerable TLSs having low transition frequency ν (i.e. several gigahertz), the constant of Q ⋅  f 3  
product, as well as Q, rises from low to high temperature with larger magnitude for the narrower ν spectrum. 
When the temperature is up to several Kelvin, the constant stops increasing and keeps a stable value. On the con-
trary, if transition frequencies of the TLS ensemble concentrate in higher regime (i.e. dozens of gigahertz), the 
temperature curve goes up more steeply and keeps this increase at several Kelvin. This situation becomes more 
obvious as the quartz crystal contains more TLSs with higher ν. This behaviour can be applied to infer the distri-
bution of the transition frequency of the TLS ensemble. Once the distribution of the transition frequency is 
determined via experiments, the relative contribution of the phonon-TLS scattering to the total scattering rate can 
be estimated (see Fig. 4). As the temperature is lower, this relative contribution RTLS is larger and thus the 
phonon-TLS scattering is more dominant for the phonon dissipation. At a given temperature, the higher νi leads 
to larger proportion of the phonon-TLS scattering which still continues rising with νf increasing. It manifests that 
the TLSs with high transition frequency lead to the major contribution of phonon-TLS scattering at a given tem-
perature. Furthermore, now that we have included the phonon elastic scattering induced by static-point defects, 
its effective coupling coefficient K  can be estimated from the Q formulas (13) and (14) via comparing with the 
experimental results (see Fig. 5). The distribution of the transition frequencies that responds to the largest K  
concentrates narrowly on low νi region. At last, it is also important to estimate the contribution constant P0 for the 
final dissipation, and the Fig. 6 illustrates the magnitude of constant P0 and its dependence on both νi and Δ ν. In 
general, the value of P0 increases rapidly as the transition frequencies of the TLS ensemble turn to highly concen-
trate in high regime.

The model describes the phonon dissipation, as well as Q, at low temperature due to the existence of various 
defects in crystals. Based on our results, further quantum experiments which are coupled with the mechanical 

Figure 6. The distribution constant P0 as a function of νi and Δν. The unit of P0 is 1050 J−1 m−3, while the 
units of νi and Δ ν are both GHz. The color indicates the magnitude of P0.
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systems with TLS defects1,18,38 can test whether our theory fits the physical facts. Moreover, we believe that our 
results give some clues to improve the performance of mechanical resonators7,8,39,40, apply the desired defects41, or 
reveal the atom configuration in lattice structure of disordered crystals.

Methods
The quantized method for mechanical waves. Our calculations are on basis of the quantization of the 
sound wave propagating in crystals. The quantized noninteracting phonon Hamiltonian of an ideal harmonic 
crystal can be expressed as

∑ ω= +†H a a( 1/2),
(15)j

j j j
k

k k k0 

where akj ( †a jk ) is the annihilation (creation) operator of the mechanical mode with wave-vector k and polarization 
j, corresponding to the normal-mode frequency ωkj. The theory is quantized via the standard commutation rela-
tion δ δ′= −′ ′ ′

†a a k k[ , ] ( )j j jjk k . The quantized displacement field at position r is then written as a sum of trave-
ling waves,

∑ ρ ω
= + ⋅−

†u
V

e j a a ir k k r( )
2

( )( )exp( ),
(16)

i
j j

i j j
k k

k k


where ei(kj) is the i-component of the unit polarization vector e(kj) for given k and j, and ρ and V indicate respec-
tively the mass density and the volume of crystals. For long-wavelength acoustic wave, the dispersion relation can 
be expressed linearly as ωkj =  cjk, where cj is the sound velocity with polarization j in solids and k =  |k|.

The perturbation method for obtaining equation (6). Let Akj,k′j′ denote the total amplitude of pho-
non elastic scattering by a TLS with energy splitting ε ≡  ħΩ. On the basis of the perturbation term (5) and the 
second-order perturbation theory34, the contributions of processes (i)–(iv) in Fig. 1(b) to the total amplitude 
Akj,k′j′ are respectively as following:
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where nkj denotes the phonon population of mode (k, j), and the factors fg and fe are as the probability for TLSs in 
ground and excited states, respectively. Obviously, The sum of above four formulae is the total amplitude


χ χ

ω
=

Ω
− Ω

+ − .′ ′ ′′ ′ ′
⁎A n n f f2

( )
( 1) ( )

(17)
j j j j

j
j j g ek k k k

k
k k, 2 2

Take fg −  fe =  tan h(βħΩ/2) for thermal equilibrium atoms in solid.

Fermi’s golden rule of perturbation method. According to Fermi’s golden rule of perturbation theory14, 
the attenuation for mode (k, j) is written as

∑α π δ ω ω= − ′ − ′ −
′

′ ′ ′
′

′ ′ ′( )n
H H1 2 ( ),

(18)
j

j
j j j j j jk

k
k k k k k k2 ,

2
,

2



where H′  is the perturbation term of Hamiltonian, i.e., the equations (1) and (6) in this paper, and both ′′ ′H j jk k,  and 
′ ′ ′H j jk k,  indicate the matrix elements 〈 − + | ′| 〉′ ′′ ′n n H n n1, 1 ,j j j jk k k k  and 〈 nkj +  1, nk′j′ −  1|H′ |nkj, nk′j′〉  respectively. 

Besides, n is defined as deviation from equilibrium for mode (k, j) in the above equation, i.e., ≡ −n n nj jk k  with 
the Bose-Einstein distribution β ω= − −n [exp( ) 1]j jk k

1. Then taking the perturbation terms (1) and (6), the 
attenuation formulae (9) and (10) can be obtained respectively.
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