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Abstract

The family of G-protein coupled receptors (GPCRs) is one of the largest protein fami-

lies in the human genome. GPCRs transduct chemical signals from extracellular to

intracellular regions via a conformational switch between active and inactive states

upon ligand binding. While experimental structures of GPCRs remain limited, high-

accuracy computational predictions are now possible with AlphaFold2. However,

AlphaFold2 only predicts one state and is biased toward either the active or inactive

conformation depending on the GPCR class. Here, a multi-state prediction protocol is

introduced that extends AlphaFold2 to predict either active or inactive states at very

high accuracy using state-annotated templated GPCR databases. The predicted

models accurately capture the main structural changes upon activation of the GPCR

at the atomic level. For most of the benchmarked GPCRs (10 out of 15), models in

the active and inactive states were closer to their corresponding activation state

structures. Median RMSDs of the transmembrane regions were 1.12 Å and 1.41 Å

for the active and inactive state models, respectively. The models were more suitable

for protein-ligand docking than the original AlphaFold2 models and template-based

models. Finally, our prediction protocol predicted accurate GPCR structures and

GPCR-peptide complex structures in GPCR Dock 2021, a blind GPCR-ligand complex

modeling competition. We expect that high accuracy GPCR models in both activation

states will promote understanding in GPCR activation mechanisms and drug discov-

ery for GPCRs. At the time, the new protocol paves the way towards capturing the

dynamics of proteins at high-accuracy via machine-learning methods.
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1 | INTRODUCTION

High-resolution protein structures provide detailed mechanistic infor-

mation at the atomistic level about biological function and serve as

starting points for structure-based drug design to develop small

molecules that control protein behavior.1,2 Such high-resolution struc-

tures have been acquired by experimental methods such as X-ray

crystallography, nuclear magnetic resonance spectroscopy, and cryo-

electron microscopy. An increasingly powerful alternative is computa-

tional protein structure prediction. Predictions based on homology
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templates have long provided confident models when there is an experi-

mentally determined structure for a close homolog.3,4 More recently,

protein structure prediction based on machine learning methods such as

AlphaFold2 (AF2)5 and RoseTTAFold6 has also become able to generate

accurate models for essentially any sequence, even when homologs are

not available. These methods mainly rely on neural network models that

have learned how to deduce inter-residue relationships based on co-

evolutionary couplings together with high-resolution structure genera-

tion modules trained on known experimental structures. The accuracy of

the resulting models may approach experimental accuracy, and at least

for some applications, the computational models may be sufficient for

further studies. However, limitations remain with respect to capturing

structural dynamics that can lead to multiple conformations. Proteins

often possess multiple conformational states to perform their biological

roles, whereas prediction methods are generally trained to predict a sin-

gle, native state for a given sequence. As may be expected, models pro-

duced by AF2 during CASP14 (14th critical assessment of protein

structure prediction) typically varied little, although different models for

one target could match multiple conformational states accurately.7,8

Given the overall success of AF2 in producing high-accuracy models, the

question of whether and how multiple states can be predicted for a

given protein needs further investigation and is the subject of this study.

G-protein coupled receptors (GPCRs) comprise one of the largest

protein families in the human genome.9 They are involved in various

biological roles such as behavior regulation and regulation of immune

system activity.1,2,10,11 They are subdivided into several classes

according to sequence homology and functional similarity: class A

(rhodopsin), B1 (secretin), B2 (adhesion), C (glutamate), F (frizzled), T

(taste 2).12 Dysregulation of GPCRs can cause diseases including car-

diovascular disease11 and Parkinson's disease.10 GPCRs are attractive

targets for drug discovery, and indeed, around one third of drugs

approved by the U. S. Food and Drug Administration (FDA) target

GPCRs.1,13 GPCRs are integral membrane proteins with a common

topology that consists of seven transmembrane helices. GPCRs gener-

ally function by transmitting chemical signals from the extracellular to

the intracellular region. The transmission is usually triggered by the

binding of agonists on the extracellular side. The binding alters the

conformation of a GPCR from the inactive to an active state. The

active state can then be sensed on the intracellular side via binding of

a transducer molecule, an active G-protein or a β-arrestin. The details

of the activation mechanism vary depending on the class of the GPCR

and they are still under investigation via experimental and computa-

tional approaches.14–20

Experimental structures of GPCRs are available since the first

GPCR structure, for bovine rhodopsin, was resolved in 2000.21 The

number of experimental GPCR structures has steadily increased

since.2 As of January 05, 2022, 689 GPCR structures have been

deposited to the protein data bank (PDB).22 However, a majority of

GPCR structures are still unknown. Known structures comprise only

112 out of 401 human non-olfactory receptors. Moreover, even

although GPCRs can have multiple conformational states, only 74 and

65 GPCRs were determined in active and inactive states, respectively,

and only 36 GPCRs have experimental structures in both activation

states. The lack of high-resolution GPCR structures has made it diffi-

cult to understand GPCR activation mechanisms and enable

structure-based drug design for GPCRs. Computational protein struc-

ture prediction methods targeted at GPCRs have been used to gener-

ated models where experimental structures are not available. Among

them, GPCR-I-TASSER,23 RosettaGPCR,24 GPCRdb,25,26 and Ros-

eTTAFold6 have resulted in structure databases of the whole GPCR

proteome via computational modeling. The Zhang group designed a

specialized version of I-TASSER27 for GPCRs.23 It was based on using

GPCR structure-specific features with I-TASSER's template-based and

template-free modeling pipeline. RosettaGPCR performed template-

based modeling using Rosetta to predict GPCR structures in the inac-

tive state.24 GPCRdb maintains multiple databases related to GPCRs

including experimental structures of GPCR with activation state anno-

tations.25,26 GPCRdb also contains predictions for GPCRs in active

and inactive forms via homology modeling by using templates in the

corresponding states. However, the accuracy of these GPCR models

has not been rigorously benchmarked, especially with respect to rep-

roducing differences between active and inactive states and in light of

the recent advances in structure prediction accuracy.25 Baek et al.

demonstrated that RoseTTAFold can model GPCRs in the active and

inactive states by providing activation-state specific templates.6 The

method generated reasonable models for both states. However, gen-

erating very accurate active state models was less likely unless there

were templates with high sequence identities, thus, there was still

room for improvements.

Here, we focus on using AF2 for modeling GPCRs, especially with

respect to accurately predicting both active and inactive states for a

given GPCR. As described below in more detail, the regular AF2 pro-

tocol can predict accurate GPCR models, more accurate than

template-based modeling, but it was not possible to predict models in

multiple states for most of the benchmarked GPCRs. The predicted

models were in only one GPCR state with a preference for inactive

states. To overcome this limitation, we describe here a modified pro-

tocol that enables the modeling of multiple states via AF2. Briefly, this

was accomplished by using state-annotated structure databases

together with state specific structural templates and a modification of

the MSA input features. While the approach is general in principle, we

applied it here to generate accurate models of both, active and inac-

tive states of a given GPCRs. The protocol was tested for GPCRs

where experimental structures are available and the resulting GPCR

models were further examined in the context of predicting ligand

binding poses. The new protocol for multi-state modeling via AF2 and

results are described in more detail in the following.

2 | RESULTS AND DISCUSSION

2.1 | Modeling of GPCRs using AF2

The original AF2 showed outstanding performance in protein structure

prediction during CASP145,7,28,29 where target proteins were mostly

globular soluble proteins but also included three transmembrane
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proteins.8 As benchmarked here, we find that GPCRs, one of the major

transmembrane protein families, can also be predicted accurately using

AF2. For recently experimentally determined GPCR structures that were

not included during AF2 training, 34 out of 68 (50%) GPCRs were

predicted at an accuracy of better than 1.5 Å accuracy in terms of Cα-

RMSD (root-mean-square-deviation) for the transmembrane helices

(TM-RMSD) with respect to any experimental structures regardless of

their activation state; the median accuracy was 1.49 Å. (Figure S1) For

comparison, those GPCR structures were also modeled via template-

based modeling (TBM) with the same structural templates from the

PDB70 database30 used in the AF2 predictions. As expected, the

resulting models were less satisfactory than the AF2 predictions. Only

3 out of 68 (4%) structures had RMSD values below 1.5 Å for the TM

domain, and the median TM-RMSD was 2.71 Å.

AF2 only modeled either the active or inactive state for a given

GPCR sequence, though, not both. Interestingly, when its perfor-

mance was analyzed on human GPCRs that were experimentally

determined in both states, the top-ranked models were more likely to

be in the inactive state rather than the active state for all GPCR clas-

ses except for class B1. (Figures S2–S4 and Table S1) Out of 15 multi-

state human GPCRs, 11 models were closer to their inactive state

experimental structures than to their active structures. As a conse-

quence, when comparing AF2 models strictly against the experimental

structures, AF2 predictions were highly accurate for the inactive

structures with a median TM-RMSD of 1.33 Å while 19 out of

30 (63%) GPCRs were predicted within 1.5 Å in TM-RMSD. In con-

trast, the AF2 models were dissimilar to active state GPCR structures

with a median TM-RMSD of 1.86 Å. For comparison, the median TM-

RMSD between active and inactive state structures was 2.26 Å. This

bias may originate from the larger number of experimental GPCR

structures in inactive states (178) than active states (60) that were

available for training.

When multiple output models with different AF2 network

model parameters were generated, predictions for most GPCRs

remained very similar (Figure S5). However, for some cases, the

resulting models varied more. For example, AF2 predictions for the

human parathyroid hormone receptor (human PTH1R; UniProt ID

Q03431) generated a diverse ensemble of structures. While the top-

ranked model was in the active state with a TM-RMSD of 1.65 and

4.72 Å with respect to experimental structures in the active and

inactive states, lower-ranked models were in the middle of the

active and inactive states. The fifth-ranked model had structural

similarities of 2.46 and 2.66 Å in TM-RMSD with respect to the

active and inactive structures. Based on this analysis, we inferred

that although AF2 is not designed per se to generate ensembles

consisting of multiple, functionally relevant states, the AF2 neural

network model can in principle predict them.

Using either multiple sequence alignments (MSA) or structural

templates as input features was enough for high accuracy structure

prediction using AF2, based on an ablation study. (Figures S1–3).

When we excluded either MSA or structural template-based features,

there was little loss in accuracy when structural templates were not

used. The median TM-RMSD was 1.55 Å for recently determined

human GPCRs. versus 1.49 Å using the original AlphaFold protocol.

This finding is consistent with a previous analysis of AF2 for targets

where sufficiently deep MSAs are available.5 The proteins in our

benchmark sets have at least thousands of homologous sequences in

their MSA. On the other hand, when using input features from tem-

plates, but without MSAs - essentially this is “template-based model-

ing” via AlphaFold - it was still possible to predict overall high

accuracy models. The median TM-RMSD was 1.84 Å, better than

template-based models with the same templates using MODELLER31

with a median TM-RMSD of 2.71 Å. (Figures S1–S3). Based on these

tests, we found out that AF2 is capable of accurate modeling with a

subset of input features or less accurate structural inputs. However, a

bias towards more accurate modeling of inactive states versus active

states remained.

2.2 | Multi-state modeling of GPCRs

Activation state-annotated GPCR databases could be simply used

instead of the standard template database, PDB70, to model GPCRs

in a desired functional state. However, using such curated template

databases was not sufficient to make meaningful changes.

(Figures S2–S4) For all the multi-state GPCRs, there was little change

from the result with the standard template database. This suggests

that simply using templates according to a conformational state as

input to AF2 has little impact when deep MSAs were provided as

inputs.

On the other hand, when MSA input features were removed

and state-annotated GPCR databases were used, it became possible

to generate highly accurate models for both active and inactive

state structures of GPCRs (Figure 1 and Figures S1–S3 and S6). In

this manner, the activation state-annotated structural template

databases could be used to guide the AF2 modeling network

towards a specific activation state based on homology, but without

interference from MSA-based contacts that are still biased by con-

formational state preferences according to training. This strategy

led to greatly improved active state predictions while maintaining

the previously achieved high accuracy for inactive state structures

(Figure 1A). Many of the GPCRs (35 out of 49, 71%) were predicted

within 1.5 Å TM-RMSD, and the median of the active state model-

ing accuracy in TM-RMSD was 1.12 Å. For inactive states, struc-

tures were predicted with a median TM-RMSD of 1.41 Å, and

17 out of 30 models predicted at high-accuracy (i.e., <1.5 Å TM-

RMSD; c.f., 19 high-accuracy models and 1.33 Å for the original

AF2). The performance difference between two methods was eval-

uated using a paired t-test with the null hypothesis that two

methods had identical performance. We found that differences

were statistically significant only for the active state predictions

according to p-values for the active and inactive states of

8.2 � 10�8 and 0.37, respectively. Moreover, for 10 targets among

the 15 multi-state GPCRs, our protocol successfully modeled the

correct activation states based on the active state model being

closer to the active state experimental structures than to the
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inactive experimental structure and vice versa for the inactive state

model.

Furthermore, we analyzed the modeling performance as a func-

tion of the GPCR class. (Table S1) The multi-state modeling protocol

was successful for predicting class A GPCRs in both active and inac-

tive states. For class F GPCRs, it was satisfactory as well, however,

there were only three targets in the benchmark set. It also generated

high-accuracy models for class B1 GPCRs in the active state. Model

qualities of inactive state class B1 GPCRs were slightly less satisfac-

tory than the active state models, but they were still better than the

original AF2 models. Similarly, for class C, modeling was successful

for the inactive states but less successful for the active state. A poor

model was generated for a class B2 GPCR, but based on only one

example we cannot draw more general conclusions about modeling

class B2 GPCRs. On the other hand, the original AF2 protocol

showed biases towards a certain activation state depending on the

GPCR class. It showed strong preferences for the inactive state for

class A, C, and F, while it generated active state conformations for

class B1 GPCRs. For those classes for which the original AF2 had

biases toward the inactive state, models in the state by our multi-

state protocol were comparable to the AF2 models (class A) or

slightly worse than AF2 (class C and F). In the AF2 training set, there

were both active and inactive conformations for class A, while there

were only inactive state structures for classes C and F. Because of

these, AF2 may have stronger preference in the inactive state for

classes C and F than class A, and as a result, it showed much better

accuracy for these classes. Since we sacrificed information that can

be inferred from the MSA for modeling both states, it was less likely

that we could predict better models for these states, and thus we

could obtain similar performance to AF2, at best. For class B1, our

protocol predicted more accurate active state models than AF2 even

although AF2 was likely to predict the active state for this class.

Regardless of the GPCR class, our multi-state modeling protocol

produced better models than AF2 for states that were not favored

by the AF2.

We further assessed whether detailed aspects of structural

changes upon activation of the GPCR could be captured with the

multi-state modeling protocol. For example, rearrangements of TM

helices during activation for the human C-X-C chemokine receptor

type 2 (UniProt ID P25025, CXCR2_HUMAN) were accurately

described. On the extracellular side, the movement of TM1, TM5,

and TM6 when transitioning between active and inactive states was

successfully modeled. (red arrow in Figure 1B) Also, structural

changes of TM6 on the intracellular side, which enables G-protein

binding, was described very accurately. (red arrow in Figure 1C).

Beyond TM helix rearrangements, other detailed structural features

correlated with the activation mechanism could be captured as well.

In the example of the same protein, the changes during activation

were captured very accurately up to atomistic detail in the predicted

active and inactive states when compared to the experimental struc-

tures (Figure 2). The CXCR2 receptor has a unique activation initia-

tion process. Movement of TM5 helix induces rearrangement of the

PIF motif (P5�50, I3�40, F6�44) and W6�48. (Figure 2A,B)32 Our active

and inactive state models for the receptor captured the change very

F IGURE 1 Modeling of active and inactive states of human G-protein coupled receptor structure (GPCR). (A) Modeling accuracies for human
GPCRs that have both active and inactive state experimental structures using various modeling protocols based on AlphaFold and template-based
modeling (TBM). Cα-RMSDs are measured with respect to active and inactive forms of transmembrane helices. (TM-RMSD) Distributions of
modeling accuracies are shown as violin plots with black lines indicating three quartiles. (B and C) Multi-state modeling of human C-X-C
chemokine receptor type 2 (UniProt ID P25025, CXCR2_HUMAN). (B) View from the extracellular region; (C) Side-view. Models predicted as
active and inactive forms using customized GPCR databases via AF2 without MSA input features are shown in blue. A predicted model using AF2
with MSA input features and the standard PDB70 database is shown in red. Experimental structures of active state (yellow, PDB ID 6lfo_R) and
inactive state (gray, PDB ID 6lfl_A) are compared to the predictions. Selected conformational differences between states are highlighted by red
arrows
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accurately. In addition, our models described common structural

changes for the class A GPCR correctly for the NPxxY motif (N7�49,

P7�50, and Y7�53) and the DRY motif (D3�49, R3�50, and Y3�51).19,32

(Figure 2C).

In addition to the transmembrane bound regions, modeling accu-

racies of three intra- and three extra-cellular loops (ICLs and ECLs)

were evaluated. (Figure S8) Overall, loop structures predicted by the

multi-state modeling protocol were accurate. The accuracy was

mostly comparable to the original AF2 except for a few examples

especially for very long ECL2s. Those unsatisfactory loop modeling

mostly occurred when the sequence identity between the target pro-

tein and templates were low and loop structures were very dissimilar.

As discussed above, AF2 modeling network can generate accurate

models from roughly accurate input features. Thus, moderately accu-

rate loop structure information from templates could be refined by

the network as for transmembrane helices. However, substantially

incorrect loop structures in the input features could not be rescued

and remained incorrect.

The model accuracy with the tested modeling protocols was com-

pared with other methods, GPCRdb25 and RoseTTAFold.6 (Figure S9)

To be comparable with our benchmark test, GPCRdb models were

retrieved from an archive (2018 April) of the method's model data-

base. Among the benchmark set, there were 41 and 22 common

GPCRs for the active and the inactive states, respectively. For the

comparison with RoseTTAFold, we ran RoseTTAFold according to its

multi-state modeling protocol with the same templates that we used

for our protocol. As we ran the protocol by ourselves, there were the

same number of targets for the comparison. Regardless of the activa-

tion state, models predicted by the multi-state modeling protocol

were better than the compared methods. In comparison with Ros-

eTTAFold, our protocol performed especially well for active state

modeling. RoseTTAFold generated high-accuracy models for only

2 out of 49 targets with a median TM-RMSD of 2.16 Å. (c.f.,

35 high-accuracy models and 1.12 Å for our protocol) AF2 gener-

ated better inactive state conformations than GPCRdb and Ros-

eTTAFold. There were two poor predictions, and they were class B1

GPCRs that were predicted in the active state. On the other hand,

for the active state, AF2 performed marginally better than the com-

pared methods as it tended to predict in the inactive state for most

of the GPCR classes.

Finally, we also predicted all human non-olfactory GPCRs in

active and inactive states using our multi-state modeling protocol. We

could evaluate the model accuracy for GPCR models that have experi-

mentally determined structures as a function of the predicted local

distance difference test score (pLDDT) by the AF2 network model

and the maximum sequence identity of the used templates. (Figure 3)

There was a clear relationship between the accuracy and the pLDDT

as presented in Jumper et al.5 For a model that had a pLDDT higher

than 90, it was likely to be accurate; 83% (29 out of 35) and 74%

(14 out of 19) of the active and inactive state models had less than

1.5 Å in TM-RMSD, respectively. Among the GPCRs without experi-

mental structures for each state, 72% (209 out of 289) and 64%

(189 out of 289) of the active and inactive models are expected to be

accurate as they had predicted pLDDTs higher than 90. In contrast,

F IGURE 2 Detailed structural changes upon activation of human C-X-C chemokine receptor type 2 (UniProt ID P25025, CXCR2_HUMAN).
Experimentally determined active (PDB ID 6lfo_R) and inactive (PDB ID 6lfl_A) state structures are shown in yellow and gray, respectively.
Predicted active and inactive state model structures are shown in blue and magenta, respectively. Key sidechains for the activation mechanisms
are shown as sticks with their residue numbers and the GPCRdb numberings, and the direction of changes is indicated by red arrows.
CXCR2-specific rearrangement of (A) W6�48 and (B) the PIF motif (P5�50, I3�40, F6�44) induced by movement of the TM5 helix. (C) Common
structural changes for the class A GPCRs at the NPxxY motif and DRY motif
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the pLDDT for models by original AF2 was less informative for the

simultaneous assessment of multiple states. (Figure S10) Presum-

ably this is because these models were similar to one of the states

but not the other one. Model accuracy is also related to the maxi-

mum template sequence identity. We observed that modeling with

an active state template that has a sequence identity higher than

20% usually resulted in a high quality model; 83% (30 out of 36) of

the active state models had less than 1.5 Å in TM-RMSD. The met-

ric has been widely used to assess what is likely successful

template-based modeling. For example, GPCR models predicted

using templates with sequence identities higher than 20%–40%

were assumed to be confident.24,33,34 Likewise, it may be used to

infer the success of modeling prior to the active state modeling via

our multi-state modeling protocol, and the sequence identity

criteria may be lowered because the AF2 network can model accu-

rately even with approximate information. The structural template

dependence was introduced here because information from struc-

tural templates was one of the most important input features for

our protocol as MSA information was discarded. For the inactive

state models, we could not conclude that there is a clear template

similarity dependence since there were not enough GPCRs that had

low template homology. We note, that there was no such template-

accuracy relationship for the original AF2 protocol. The reason is

likely that structural templates have little effect when there are

enough sequences in the input MSA as shown in the ablation study.

2.3 | Sampling intermediate conformations

We examined a protocol for sampling intermediate conformations with

the human type-1 angiotensin II (AT1) receptor (UniProt ID P30556,

AGTR1_HUMAN; Figure S11). Rather than utilizing experimental struc-

tures in either active or inactive state templates as input structural fea-

tures, a model generated by linear interpolation between predicted

active and inactive state models were fed to the AF2 network model.

Input models at different points along the interpolation were used to

sample various conformations between the active and inactive states.

None of the sequences in the MSA was used except for the target pro-

tein sequence. Output models were physically realistic in terms of pro-

tein stereochemistry even though they were modeled from unphysical

input models. While the input models had continuous structures

between the active and inactive models, the output models showed

F IGURE 3 Estimated model accuracies for the multi-state modeling protocol. Relationships between TM-RMSD and the pLDDT or the
maximum sequence identity of the structural templates are shown as red circles for the benchmarked GPCR structures. Blue dashed lines
represent moving averages of TM-RMSDs with a window of 2.5 for the pLDDT and 5% for the maximum sequence identity. Pearson correlation

coefficient for each relationship is shown in the box and denoted as “r=”. A model that has a pLDDT higher than 90 or is predicted using a
template with a sequence identity of more than 20% was likely to be accurate (TM-RMSD < 1.5 Å). Those selection criteria are shown as yellow
background color, and the ratios of accurate models among the selected models are noted at lower right corner. For human GPCRs without
experimentally determined structures for each state, distributions of the pLDDT and the maximum sequence identity of the structural templates
are shown as gray histograms. The percentages of models that are likely to be accurate assessed by each selection criteria are noted at the top
right corner
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discontinuous structural transitions (Figure S11A,B). Some of these con-

formations may be considered as representative structures for interme-

diate states. As we ignored interpolated coordinates for sidechains

(except for Cβ atoms), sidechains in intermediate conformations were

properly modeled via optimization through the AF2 network.

(Figure S11C) The sidechain orientations also showed discontinuous

transitions. The output models were further validated by mapping the

structure onto a potential of mean force (PMF) map generated by a pre-

vious MD simulation study.35 (Figure S11D) The intermediate conforma-

tions possessed lower free energy via optimization by the AF2 network

from the initially interpolated conformations at higher free energy

regions and formed non-trivial pathways. Moreover, some conforma-

tions were located at lowest free energy saddle points between the

active and intermediate states or between the intermediate and inactive

states. It was also possible to generate a few models (colored in cyan in

the figure) that closely resemble the intermediate state identified from

the MD simulation study.

Recently, Del Alamo et al. argued that the AF2 network model can

be used for conformational sampling if a shallow MSA is given as input

to the model.36 Using the protocol, diverse conformations were gener-

ated from diverse randomly selected sequences from a deep MSA. It

was possible because different combinations of sequences provided dif-

ferent information to the network model and shallow MSAs were not

enough to generate a converged structure due to insufficient informa-

tion. The models also mapped onto higher free energy regions rather

than basins, with some models unfolded partially, presumably because of

insufficient coevolutionary information from very shallow MSAs with as

few as 16 sequences. Randomly selected sequences seem to impose ran-

dom perturbations to free energy minima structures, which may be anal-

ogous to thermal fluctuations around free energy minima structure that

can be observed from MD simulations. In contrast, our protocol seems

to generate ensemble-averaged models with free energies as low as pos-

sible for a given input, that is, different structural features rather than

randomness in the MSAs.

We applied both protocols to the multi-state GPCR targets to

generate intermediate conformations (Figures S12 and S13). They

often generated a range of conformations that spanned between the

active and inactive states. However, our protocol occasionally could

not generate diverse conformations when active and inactive state

models showed little structural difference (e.g., CASR/P41180). On

the other hand, modeling with shallow MSAs also occasionally failed

to sample conformations (e.g., MTR1A/P48039) or generated partially

unfolded structures (e.g., CASR/P41180) when there were very few

sequences in MSA. Moreover, in contrast to class A GPCRs, the acti-

vation of class B GPCRs involve significant structural changes such as

a break of the TM6 helix with a high-energy barrier.37 In the case of

such complex pathways, it was difficult to capture intermediate states

with our protocol (e.g., PTH1R/Q03431). In this case, even although

input models in our protocol spanned uniformly between the active

and inactive state models, the optimized models ended up in either

active or inactive state-like conformations with little information

about possible intermediate structures.

2.4 | Applications of high-accuracy modeling of
multiple states

An important question is how higher accuracy translates into practical

advantages when models are used further. One application of high-

accuracy GPCR models is for the prediction of protein-ligand com-

plexes. GPCRs are one of the major target proteins for approved

drugs and remain extremely attractive targets for new drugs.1,13 Dur-

ing the initial steps of drug development, computer-aided drug design

relies on the prediction of accurate ligand poses and the estimation of

ligand binding affinities. This requires the structure of the target pro-

tein for being able to dock potential ligands. Because protein-ligand

docking is very sensitive to the structure of the binding pocket, high-

accuracy models are essential for docking success. In GPCRs the

ligand pockets have a different shape depending on its activation

state. Therefore, to design a ligand that targets a certain activation

state of a GPCR, a high-accuracy protein model for that state is

required. To validate the effectiveness of the high-accuracy state-

specific GPCR models resulting from the multi-state protocol for

protein-ligand docking, ligands from experimental structures were

docked to the corresponding GPCR models. (Figure 4) Two sidechains

at the binding site were set to be flexible because computational

model structures were predicted without consideration of binding

ligands and resulted in apo structures. Otherwise, the success ratios

dropped significantly for them because misoriented sidechains

prevented a ligand from docking (Figure S14). For active state confor-

mations, using sidechain flexible docking, the protein-ligand docking

success with models predicted by our protocol was the highest among

all computational models. For around one third of the active state

receptors, it was possible to dock ligands within 3 Å in terms of ligand

heavy-atom RMSD. However, ligand docking to active state confor-

mations is intrinsically a difficult problem considering that self-docking

to less than half of the experimental structures was successful. Dock-

ing results for the other computational models were much less satis-

factory with less than 10% success. As discussed above, many original

AF2 models were more similar to inactive-state structures than

active-state structures. and this diminished the accuracy of binding

site predictions. (Figure S15) Because protein-ligand docking is vulner-

able to binding site errors even as low as 1 Å, accurate modeling of

the correct activation state structures at the binding site was critical

for docking. As an example, in Figure 4B,C, an endogenous agonist

ligand (serotonin, 5-hydroxytryptamine, SRO from PDB ID 7e2y) is

shown after docking to receptor model structures for human

5-hydroxytrypamine receptor 1A (UniProt ID P08908, 5HT1A_HUMAN).

The experimental structure of the target protein is in the active state.

With a model in the active state from our multi-state modeling proto-

col, it was possible to dock the ligand with very high accuracy based

on a ligand heavy-atom RMSD of 0.55 Å. The protein model has a

very accurate binding site structure with 1.05 Å heavy-atom RMSD in

the binding site. On the other hand, the AF2 model was modeled in

the inactive state, and the docking result to this model was poor with

a ligand heavy-atom RMSD of 4.38 Å. As the model was in the
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inactive state, some of the binding pocket residues were misplaced.

Especially W3586�48 (indicated by a red arrow in Figure 4B,C), which

acts as the transmission switch activated by agonist binding, was in its

position of inactive state. This misplacement altered the ligand binding

pocket, so that the ligand could not be docked into the correct binding

pocket.

For antagonist ligands bound to inactive GPCR states, perfor-

mance of the protein-ligand docking results with predicted models

were similar between our multi-state modeling protocol and the origi-

nal AF2 with around 30% success, but overall, they were less than

80% success when docking to experimental structures. The lower suc-

cess rates with inactive state docking for models compared to experi-

mental structures may be because antagonists in the benchmark set

are bigger than agonists, so that clashes due to errors at the binding

site are more likely.

As another blind test of application of our multi-state modeling,

we participated in GPCR Dock 2021. Five GPCR-ligand complexes

were given as targets with activation state information. As of March

01, 2022, experimentally determined structures were available for

two targets, T02 (GPR139) and T04 (NPY1R), and they were in the

active state. For both targets, our protocol predicted more accurate

GPCR models than AF2, which predicted models in the inactive

state. Especially, for target T04, our active state model was very

close to the experimental structure in the active state (PDB ID:

7vgx_R)38 with a TM-RMSD of 1.14 Å. (Figure 5) Several structural

changes upon activation of the protein were successfully modeled.

In contrast, AF2 predicted the inactive structure with a TM-RMSD

of 0.93 Å with respect to an experimental structure in the inactive

state (PDB ID: 5zbh_A), which was included in the AF2 training set,

whereas the model deviated from the active state structure with a

TM-RMSD of 2.17 Å. Furthermore, our active state model was suc-

cessful for predicting the complex structure with its endogenous

peptide-agonist neuropeptide Y (NPY; Figure 5B,C). The bound pep-

tide was correctly placed with a Cɑ-RMSD of 2.00 Å. Especially, for

the C-terminal residues (residue numbers 32–36), which are impor-

tant for the binding,38 our prediction captured the binding pose well

with a heavy atom-RMSD of 1.88 Å. As exemplified here, our high

accuracy multi-state modeling of GPCRs offers important practical

advantages for predicting ligand-bound structures over other

methods.

F IGURE 4 Protein-ligand docking on predicted GPCR models. (A) Protein-ligand docking success ratios for GPCR model structures using
various modeling protocols. Docking simulations were performed five times independently for each structure using AutoDock Vina. Success
ratios and their standard errors are shown as bar charts for top 1 (opaque) and top 3 (transparent) predictions and overlaid error bars,
respectively. An example of protein-ligand docking using different models is presented: (B) the original AlphaFold model and (C) multi-state
model. An endogenous agonist ligand (serotonin, 5-hydroxytryptamine, SRO from PDB ID 7E2Y) was docked to protein structure models for
human 5-hydroxytrypamine receptor 1A (UniProt ID P08908, 5HT1A_HUMAN). Protein structures are shown in transparent cartoon
representations, while docked ligand conformations are depicted as sticks. The experimental protein-ligand complex structure is shown in yellow.
Key structural differences between the two protein models that contributed to the different docking performance are indicated by red arrows.
The binding site heavy-atom RMSD, the lDDT for the transmembrane region, and the resulting docking accuracy in terms of ligand heavy-atom
RMSD are shown under the model names
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3 | CONCLUSIONS

Here, we examined AF2 for the modeling of GPCRs in active and inac-

tive conformations. While AF2 clearly generates more accurate

models of GPCRs than template-based modeling, the models typically

only model one functional state, usually the inactive state, presumably

as a result of training based on the PDB where inactive state GPCR

structures are overrepresented. A modified protocol is described here

that can guide AF2-based high-accuracy modeling towards a specific

activation state. In this multi-state modeling protocol, AF2 was used

with activation state-annotated GPCR structure databases instead of

a general PDB structure database and without MSA input features to

avoid learned biases towards inactive GPCR states. With this protocol,

it became possible to model both active and inactive states at the

same high accuracy as the original AF2 models for just one GPCR

state, usually the inactive conformation. The resulting models capture

key structural changes upon activation/deactivation of the GPCR at

the atomic level. Moreover, we tested a protocol for modeling inter-

mediate states based on interpolated input structures between

predicted active and inactive state models. The interpolated struc-

tures are used in lieu of templates from a structural database and AF2

network is then used essentially as a refinement program. This

resulted in plausible intermediate conformations that may form activa-

tion pathways. However, the general applicability of this approach still

needs further investigation.

The multi-state models expanded the applicability of AlphaFold.

These models improved the correct prediction of ligand binding poses

using protein-ligand docking. Especially with active state models, they

outperformed other computational models in terms of the docking suc-

cess rate, reaching almost the same success rate as with experimental

structures. Furthermore, GPCR–ligand complex structures were success-

fully predicted in a blind test, GPCR Dock 2021. The multi-state model-

ing approach introduced here can be extended in principle to other

protein families such as kinases as long as experimental structures in

multiple states are available to form state-specific template databases

and we expect that the approach described here is a first step towards

capturing not just native structures but conformational dynamics at high

accuracy via machine learning-based approaches.

4 | METHODS

4.1 | Multi-state protein modeling protocols

Several protein structure prediction protocols were tested to model

GPCRs as active and inactive states. First, the original pipeline of

AF25 was used to predict GPCR structures. The input consists of tar-

get protein sequences, MSAs, and structure templates; as output five

models are predicted. We checked whether AF2 can model both

active and inactive states. For a GPCR, structural similarities to active

F IGURE 5 An example of successful GPCR Dock 2021 prediction for target T04, complex of human neuropeptide Y receptor type 1 (UniProt
ID P25929, NPY1R_HUMAN) and its endogenous peptide-agonist neuropeptide Y (NPY). The target is in the active state. (A) Active state model
using our prediction protocol (blue) and AF2 model (red): (top) view from the extracellular region, (bottom) side-view. Experimental structures of
active state (yellow, PDB ID 7vgx_R) and inactive state (gray, PDB ID 5zbh_A) are compared to the predictions. Structural differences due to the
activation state difference are pointed by red arrows. (B and C) Neuropeptide Y (NPY) bound to the receptor: (B) overview and (C) focused view
on C-terminal residues (residue numbers 32–36). The experimental structure (PDB ID 7vgx_R for the receptor and 7vgx_L for the peptide) and
our model are shown in yellow and blue, respectively
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and inactive experimental structures were evaluated. The ability of

being able to model multiple states was judged based on some of the

five models being closer to active state than inactive state while

others were closer to the other state. In addition, we intended to

guide AF2 to model a specific activation state structure using activa-

tion state-annotated GPCR structure databases. A database was built

for each active or inactive state. The details about how databases

were constructed are described in the following section. Protein struc-

ture prediction for a state was guided by the input database for the

state, as a replacement of the PDB70 database.30 Databases were

used in two ways. One approach was to simply replace the PDB70

database for the structure template search. In another approach, resi-

dues in the input MSAs were modified to gaps for sequence positions

which were aligned to selected structure templates from the activa-

tion state-annotated databases. (Algorithm S1) Furthermore, an abla-

tion study was performed to better understand the role of each input

feature. The original AF2 method was compared with three variants:

one without MSAs, one without structure templates, and one without

both MSAs and structure templates. Finally, as a reference, structure

prediction was performed via template-based modeling using MOD-

ELLER31 with the identical structure templates and the sequence

alignments used for the AF2 predictions.

4.2 | Building activation state-annotated GPCR
structure databases

Template structure databases for each active and inactive state

GPCRs were built based on the GPCRdb25,26 activation state annota-

tion. The database building procedure was based on the official proce-

dure of building customized HHsearch30 database. A list of PDB IDs

was collected from the GPCRdb for either active or inactive states.

GPCR sequences were extracted from mmCIF files of each PDB entry.

If there were multiple chains of GPCRs for a PDB entry, a preferred

chain selected by the GPCRdb was used. To remove redundant

sequences, the extracted sequences were clustered by MMseqs239

with a sequence identity cutoff of 100% and a sequence coverage of

100%. For each representative sequence for a cluster, a multiple

sequence alignment was generated using HHblits30 by searching

homologous sequences against the UniClust30 database with two

iterations and HHblits default options. The generated multiple

sequence alignments were postprocessed to build a HHsearch data-

base for a given state. As of July 29, 2021, there were 224 and

309 experimentally determined structures for active and inactive state

structures, respectively. And, they resulted in 161 and 206 unique

entries for the activation state-annotated GPCR structure databases

after removing proteins with identical sequences.

4.3 | Benchmark tests

A benchmark set of human GPCRs was used to evaluate the different

protocols for multi-state modeling of proteins. The set was composed

of human GPCRs that were experimentally first determined after May

01, 2018 and before January 05, 2022. Since AF25 was trained pro-

tein structures determined by April 30, 2018, thus, none of the GPCR

structures that were used for the training were included in the bench-

mark set. There were 68 GPCRs in the set, and they are summarized

in Table S2. Among them, there were 49 and 30 GPCRs for the active

and inactive states, and 15 GPCRs were determined in both active

and inactive states. For the benchmark test, close homologous struc-

tures that have a sequence identity higher than a cutoff of 70% were

excluded from the template lists. For the model accuracy evaluation in

terms of TM-RMSD, the Cα-RMSD was evaluated using transmem-

brane helices, whose definition was taken from the GPCRdb.25,26 An

experimental structure was considered as a reference structure if it

had a resolution of 4.0 Å or higher. If there were multiple experimen-

tal structures for an activation state of a GPCR, the closest result was

reported. For the evaluation of loop model qualities, Cα-RMSDs of

three intracellular loops (ICLs) and three extracellular loops (ECLs)

were calculated. A loop is defined as a region from the last residue of

a TM helix to the first residue of its next TM helix. Loop residues that

have B-factors higher than 100 Å2 were excluded from the loop anal-

ysis because of the associated structural uncertainties.

All human non-olfactory GPCRs were modeled as active and inac-

tive state structures. The list of the GPCRs was retrieved from

GPCRdb.25,26 (https://gpcrdb.org/alignment/targetselection) Since some

of the GPCRs have non-transmembrane domains, we modeled the trans-

membrane (TM) domain only to focus on its activation state. The UniProt

topology annotations were used to define the TM domains. Up to

100 residues towards N- and C-termini from the first and seventh TM

helices were additionally considered for modeling not to lose any of their

interactions with the TM domain and relevant TM helix residues because

the annotations are based on a TMHMM prediction.40

4.4 | Sampling intermediate conformations

Intermediate conformations are modeled based on the identical

approach that we used for modeling of the active and inactive state

models. Rather than searching structural templates against activation

state-annotated GPCR databases, artificial input templates were gen-

erated and were fed to the AF2 network model. After superposing

predicted active and inactive state models, atom coordinates were lin-

early interpolated between the models with ranges of the degree of

activation, d (Equation 1).

r
!

d ¼ r
!Inactiveþ r

!Active� r
!Inactive

r
!Active� r

!Inactive
�
�
�

�
�
�

�d ð1Þ

In this work, we interpolated backbone atoms (N, Cα, C, and O) and Cβ

atoms (for non-Glycine residues), so that sidechains were freely opti-

mized by the AF2 network model according to changes in their neigh-

boring atoms. For the degree of activation, d, we used equally spaced

values from 0% to 100% with an incremental of 5%; it resulted in
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21 input models. For each input model with a different degree of activa-

tion, one output model was predicted by the AF2 network model.

Various conformations were sampled by following the protocol

described in Del Alamo et al.36 For a target GPCR, a MSA was gener-

ated by the ColabFold MMseqs2 API.41 From the original MSA, shal-

low MSAs were subsampled by modifying the AF2 network

parameters, max_msa_clusters and max_extra_msa. In this work,

according to the suggested values in the original work, we used

16, 32, 64, and 128 for max_extra_msa and set max_msa_cluster to

half of the value. For each depth of MSA, 20 models were generated

for a target with different random seeds.

4.5 | Protein-ligand docking using AutoDock Vina

To validate the usefulness of high-accuracy GPCR models, protein-

ligand docking tests were performed. Target GPCR-ligand complexes

were among the experimental structures for the benchmark set

described above. We selected ligands that have not too many rotat-

able torsion angles (<15) and heavy atoms (<25) because the docking

procedure described below may not effectively handle such high

degrees of freedom and lead to docking failures. The tested GPCR-

ligand complexes are summarized in Table S3. As protein structures,

we used the original AF2 models, multi-state models in the

corresponding activation states that of the experimental structures,

and template-based models in addition to the experimental structures.

Protein-ligand docking was performed five times independently for a

given protein structure. Ligand heavy-atom RMSDs with consider-

ation of symmetry were calculated to evaluate the accuracy of

protein-ligand docking using GalaxyDock.42 A docking simulation was

considered successful if the ligand heavy-atom RMSD was lower

than 3 Å.

AutoDock Vina43 was used to perform protein-ligand docking

on the predicted GPCR structures. Protein structures were prepared

using the “prepare_receptor” tool of the ADFR suite.44 Ligand struc-

tures were extracted from the experimental structures and prepared

for docking. They were first converted to the Tripos Mol2 File for-

mat by adding hydrogens at pH = 7 and converted to the PDBQT

file for AutoDock Vina. All torsion angles were set to be rotatable

except for torsion angles around amide and guanidinium bonds,

which are the default option for the “prepare_ligand” tool of ADFR

suite. In addition to the ligand flexibility, two protein sidechains

were set to be flexible to consider conformational changes upon

ligand binding. These sidechains were selected among the binding

pocket sidechains that were in close contact with the ligand (heavy-

atom distance < 3 Å). If there were more than two sidechains met

the criteria, the two closest ones were selected. Atomic charges of

ligand atoms were assigned using the Gasteiger charge model.45

Protein-ligand docking was carried out at the binding pocket for a

ligand. For an experimental protein structure, the center of the cubic

search space of docking was located at the geometrical center of

the ligand from its bound structure, and the width of the search

space was 20 Å for each axis. For predicted GPCR structures, the

same search space was used after superimposition to the experi-

mental structure. Protein-ligand docking was performed using

AutoDock Vina with an exhaustiveness of 32 and repeated five

times for a protein structure and a ligand pair.

The protein-ligand docking success ratio was related to protein

model qualities for each protein structure prediction protocol and

each activation state of the GPCR. We used TM-RMSD and lDDT46

as the overall protein model accuracy metrics for backbone atoms and

additional consideration of sidechains, respectively. In addition to

them, the binding site heavy atom-RMSD was used to measure the

binding site accuracy. The binding site residues were defined as resi-

dues whose atoms were within 8 Å from the ligand in the experimen-

tal structure.

4.6 | GPCRDock2021 using multi-state prediction
protocol

GPCR-ligand complex structures for GPCRDock2021 were predicted

using a two-stage modeling protocol. First, receptor structures were

modeled using the multi-state prediction protocol. The activation

state of target GPCRs were determined based on the given informa-

tion of G-protein binding. Then, GPCR-ligand complexes were

modeled using AutoDock Vina for organic ligand molecules or

AlphaFold-Multimer47 for peptide ligands. For organic ligand mole-

cules, we mostly followed the docking protocol described above

except for ligand structure preparation and positioning of the docking

search space. Ligand structures were generated from SMILES strings

using UCSF Chimera.48 The center of the docking search space was

manually set at the canonical class A GPCR binding pocket. For pep-

tide ligands, we utilized a modified AlphaFold-Multimer protocol. The

modification enabled AlphaFold-Multimer model to take any structure

as a template rather than performing template search so that we could

feed the predicted GPCR structures as input. We did not use our

multi-state prediction protocol for peptide docking because that

approach removes MSA information while coevolutionary information

from MSA was essential for predicting inter-protein contacts.
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