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Abstract

Background: The association of circulating lipids with clinical outcomes of drug-resistant castration-resistant
prostate cancer (DR-CRPC) is not fully understood. While it is known that increases in select lipids correlate to
decreased survival, neither the mechanisms mediating these alterations nor the correlation of resistance to drug
treatments is well characterized.

Methods: This gap-in-knowledge was addressed using in vitro models of non-cancerous, hormone-sensitive, CRPC
and drug-resistant cell lines combined with quantitative LC-ESI-Orbitrap-MS (LC-ESI-MS/MS) lipidomic analysis and
subsequent analysis such as Metaboanalyst and Lipid Pathway Enrichment Analysis (LIPEA).

Results: Several lipid regulatory pathways were identified that are associated with Docetaxel resistance in prostate
cancer (PCa). These included those controlling glycerophospholipid metabolism, sphingolipid signaling and
ferroptosis. In total, 7460 features were identified as being dysregulated between the cell lines studied, and 21 lipid
species were significantly altered in drug-resistant cell lines as compared to nonresistant cell lines. Docetaxel
resistance cells (PC3-Rx and DU145-DR) had higher levels of phosphatidylcholine (PC), oxidized lipid species,
phosphatidylethanolamine (PE), and sphingomyelin (SM) as compared to parent control cells (PC-3 and DU-145).
Alterations were also identified in the levels of phosphatidic acid (PA) and diacylglyceride (DAG), whose levels are
regulated by Lipin (LPIN), a phosphatidic acid phosphatase that converts PA to DAG. Data derived from cBioPortal
demonstrated a population of PCa patients expressing mutations aligning with amplification of LPIN1, LPIN2 and
LPIN3 genes. Lipin amplification in these genes correlated to decreased survival in these patients. Lipin-1 mRNA
expression also showed a similar trend in PCa patient data. Lipin-1, but not Lipin-2 or − 3, was detected in several
prostate cancer cells, and was increased in 22RV1 and PC-3 cell lines. The increased expression of Lipin-1 in these
cells correlated with the level of PA.
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Conclusion: These data identify lipids whose levels may correlate to Docetaxel sensitivity and progression of PCa.
The data also suggest a correlation between the expression of Lipin-1 in cells and patients with regards to prostate
cancer cell aggressiveness and patient survivability. Ultimately, these data may be useful for identifying markers of
lethal and/or metastatic prostate cancer.

Keywords: Drug resistance, Lipids, Lipidomics, Lipid metabolism, Lipid species, Mass spectrometry, Metastasis,
Prostate Cancer, Prostate

Introduction
Drug resistance is a major obstacle for the development
of PCa treatments. Although reports show that taxane-
mediated microtubule stabilization differentially affects
the androgen receptor, Docetaxel, a first-line chemother-
apy for metastatic CRPC, has a known associated mech-
anism of resistance [1, 2]. The actual mechanisms
linking changes in lipids levels to the generation of drug
resistance in prostate cancer cells are unclear. This is
despite several studies correlating unbalanced cellular
lipid composition and quantity to altered cellular func-
tions that contribute to drug resistance [3].
Cancer cells regulate their cellular lipids in a multifa-

ceted process. Extensive studies provide strong evidence
for the reprogramming of lipid metabolism in cancer
[4–6]. Many of these studies are fueled by advances in
mass spectrometry allowing for enhanced analysis of
changes in the cellular or blood lipidome. While these
studies have identified specific lipids, they have been
hampered by the fact that changes in these lipids have
not been put into context with changes in the regulation
of overall lipid metabolism pathways. Further, changes
in these lipids have not been correlated to changes in
androgen or drug resistance. One reason for this gap-in-
knowledge is that, unlike genomic and proteomics, ana-
lysis tools allowing for assessment of lipid regulation
pathways in tandem with lipidomic outcomes are not
common. Recent advances have resulted in the develop-
ment of such tools, such as the Lipid Pathway Enrich-
ment Analysis (LIPEA) a web-based tool for over-
representation analysis of lipid signatures detection and
enriched in biological pathways [7]. However, this ap-
proach has only seen limited application and has not
been applied to studies in cancer cells.
PCa cells, in part, obtain and employ lipids to meet in-

creasing energy demands for cell proliferation in a
nutrient-deprived tumor microenvironment [8–14].
Many of the mechanisms mediating changes in lipid
profiles during this process are not well understood. The
present study used LIPEA, in conjunction with data de-
rived from MetaboAnalyst to identify the underlying
regulatory lipid pathways associated with Docetaxel re-
sistance in PCa. Furthermore, lipidomic changes were
the focal point in multiple models, including non-

cancerous, hormone-sensitive, CRPC and Docetaxel re-
sistant cell lines. The pathway analysis was further vali-
dated using LC-ESI-MS/MS. These studies present a
comprehensive identification of differences in lipid pro-
files in drug resistant prostate cancer cell lines,
castration-resistant and hormone-sensitive cells and fur-
ther suggest novel links between select lipid metabolism
enzymes and prostate cancer aggressiveness and patient
survivorship.

Materials and methods
Cell culture
Cell lines used in this study were purchased from ATCC
and include PC-3, LNCaP, 22RV-1, DU-145, RWPE1
and PNT2 (Manassas, VA, USA). The Docetaxel resist-
ant human DU145-DR, PC3-Rx as well as a separate
batch of DU-145 and PC-3 cell lines were provided by
Dr. Begona Mellado’s laboratory in the Medical Oncol-
ogy Department, Hospital Clinic de Barcelona, Spain. A
second Docetaxel resistant human PC3-Rx cell line was
provided by Prof. Lisa G Horvath’s laboratory in the
Garvan Institute of Medical Research (Darlinghurst,
Australia). Cell supplements, including primary cell cul-
ture media and antibiotics, were purchased from ATCC
(Manassas, VA, USA). Standard cell culture media were
purchased from Corning Inc. (Corning, NY, USA). Hu-
man prostate cancer cells were cultured in 10% FBS
(Seradigm, Radnor, PA, USA) and 1% penicillin/strepto-
mycin supplemented RPMI-1640, respectively. Cell lines
were all incubated in 95% humidity and 5% CO2 at
37 °C. Resistance was maintained in Docetaxel resistant
cell lines by dosing cells with a range of nM concentra-
tions of Docetaxel at every 2nd and 4th passage. MTT
assays were conducted to generate dose response curves
to check Docetaxel resistance levels.

Bligh-Dyer lipid extraction
Cells were washed twice, harvested in 1x phosphate buff-
ered saline (PBS), and subsequently centrifuged. Phos-
pholipids from cells were then immediately extracted
using both chloroform and methanol/water according to
Bligh and Dyer method [15]. Cell lines were suspended
in 3 mL of each methanol/water and chloroform. Tubes
were vortexed for 30 s and sat under the hood on ice for
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10min, followed by centrifugation (300 x g; 5 min). The
bottom-most layer of chloroform was then transferred
to a new test tube and spiked with a mix of commercial-
ized SPLASH Lipidomix internal standards (Avanti Polar
Lipids, Inc., Alabaster, Alabama, USA). SPLASH Lipido-
mix Mass Spec standards include all major lipid classes
at ratios similar to those of human plasma. This extrac-
tion procedure was repeated three times and the chloro-
form layers from each extraction were combined.
Collected chloroform layers were dried under nitrogen,
reconstituted with 50 μL of methanol: chloroform (3:1 v/
v), and stored at 80 °C until analysis.

Liquid phosphorus assay
Lipid content was quantified by determining the level of
inorganic phosphorus using the Bartlett Assay [16]. Sul-
furic acid 400 μL (5M) was added to lipid extracts
(10 μL) in a glass test tube and heated at 180–200 °C for
1 h. H2O2 (100 μL of 30% v/v) was then added while vor-
texing and the extract heated at 180–200 °C for 1.5 h.
Reagent (4.6 mL of 1.1 g ammonium molybdate tetrahy-
drate in 12.5 mL sulfuric acid and 500 mL ddH2O) was
added followed by vortexing. Then, 100 μL of 15% ascor-
bic acid (v/v) was added, followed by further vortexing.
The solution was then heated for 7–10 min at 100 °C. A
150 μL aliquot was used to measure the absorbance at
830 nm.

ESI-MS/MS analysis of cells
Samples were run in triplicate (n = 3) and the most
abundant species were defined as the core lipid pool
[17]. Lipid extracts (500 pmol/μL) were prepared by re-
constitution in chloroform: methanol (2:1, v/v). ESI-MS
was performed as previously described [18–20] using an
LCQ Deca ion-mass spectrometer (LCQ Finnigan mass
spectrometer (Thermo Fisher-Fenning Institute, CA,
USA)) with a nitrogen drying gas flow-rate of 81/min at
350 °C and a nebulizer pressure of 30 psi. The scanning
range was from 200 to 1000m/z on 5 μL of the samples
scanned in the positive and negative mode for 2.5 min
with a mobile phase of acetonitrile; methanol; water (2:3:
1) in 0.1% ammonium formate.

NanoHRLC-LTQ-Orbitrap MS
Lipid extracts were also analyzed using a Thermo-Fisher
LTQ Orbitrap Elite Mass Spectrometer coupled with a
Proxeon Easy NanoLC system (Waltham, MA, USA) lo-
cated at Proteomics and Mass Spectrometry Facility
(University of Georgia, Athens, GA, USA) [21].
Personnel running samples were blinded to sample

conditions. Mass spectra were acquired in the positive
ion mode. Mass spectrometry specifications for lipid ex-
tracts were as follows: spray voltage: 1.7–1.8 kV, ion
transfer tube (or capillary); temperature: 200 °C,

respectfully. Full scan, data-dependent MS/MS (top8-
ddMS2), were collected at m/z 150–2000 (350–1800),
corresponding to the mass range of most expected cellu-
lar lipids. Each run was externally calibrated before be-
ginning to allow for LC-HRMS analysis at 120,000
resolution (at m/z 400) and MS/MS at 15,000-30,000.
Lipids were separated on a nanoC18 column (length,

130 mm; i.d., 100 μm; particle size, 5 μm; pore size, 150
Å; max flow rate, 500 nL/min; packing material, Bruker
Micron Magic 18). Mobile phase A was 0.1% formic
acid/water; mobile phase B was 0.1% formic acid/aceto-
nitrile. 1.5 μL of each sample was injected for analysis. A
constant flow rate of 450–500 nL/min was applied to
perform a gradient profiling with the following propor-
tional change of solvent A (v/v): 0–2min at 98% A, in
40min from 100% A to 5% A, kept at 5% A for 10 min,
then lowered to 50% A in 10min. A wash run with a
high-organic gradient and an equilibrium run were
inserted between runs to minimize carryover. The auto-
sampler temperature was maintained at 7 °C for all ex-
periments. Solvent extraction blanks and samples were
jointly analyzed throughout each batch (10–15 samples).

Data processing
Full scan raw data files were acquired from Xcalibur™
(Thermo Fisher Scientific (Waltham, MA, USA)), cen-
troided and converted to a usable format (mzXML)
using MSConvert. Data processing and peak area inte-
gration were performed using MZmine [22], and XCMS
[23], resulting in a feature intensity table. Feature tables
and MS/MS data were placed into a directory for each
substrate analyzed. Each folder contained each sample
type, feature tables end in “pos.csv” for positive mode.
Features were identified using LipidMatch [24, 25]. Peak
areas were normalized to a mixture of deuterium labeled
internal standards for each sample (SPLASH® LIPI
DOMIX® Mass Spec Standard).

Multivariate statistical analysis of cells
Multivariate principal component analysis (PCA) was
performed using MetaboAnalyst 3.0 [26]. Automatic
peak detection and spectrum deconvolution was per-
formed using a peak width set to 0.5. Analysis parame-
ters consisted of interquartile range filtering and sum
normalization with no removal of outliers from the data-
set. Volcano plot analysis was used to select features,
and MS/MS analysis was used to further identify fea-
tures. Significance for volcano plot analysis was deter-
mined based on a fold-change threshold of 2.00 and P
0.05. Following identification of each feature, the parent
lipid level was normalized using total ion count, and the
change in the relative abundance of that phospholipid
species compared to its control was determined. This is
a standard method for lipidomic analysis as reported in
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previous studies [20, 27]. A schematic diagram of analyt-
ical strategy and sequence of analysis using the different
LC/MS instruments and software is presented in Supple-
mental Figure 1.

Pathway enrichment analysis
Pathway enrichment analysis of metabolites was per-
formed using LIPEA software [7]. Total lipid compounds
from all the pathways were extracted and the over-
representation analysis (ORA) starts in parallel for each
pathway. The server computes the Benjamini and Bon-
ferroni P-value corrections when all the ORA analyses
are completed. Once finished, the server returneda list
of enriched pathways sorted by P-value. The final results
were presented in an interactive table. The significance
of the pathway fit is calculated with comparison to Fish-
er’s exact test performed on numerous permutations of
random features within the total feature list. Hierarchical
clustering of these data identified differentially expressed
lipid pathways from the set of lipids identified in this
study. The module predicted biological activity directly
from the mass spectrometric peak list data and imple-
mented the mummichog algorithm, which was cross ref-
erenced with the KEGG database. Biochemical pathways
were derived from transformed KEGG IDs, using the in-
ternal mapping process (connected to Swiss Lipids, Lipid
Maps, HMDB and KEGG databases) [7]. Columns repre-
sent individual sample types; rows refer to distinct me-
tabolites, lipids and genes. Shades of green represent low
levels and shades of red represent high levels (P < 0.05).

Alterations in LPIN genes in human patients
Sixteen prostate studies were identified in the cBioPortal
for Cancer Genomics (Table 2) [28, 29]. The three lipin
genes (LPIN1, LPIN2, and LPIN3) were queried. Alter-
ations in lipin genes within four types of prostate cancer
were generated under the Cancer Types Summary
through the selection of Cancer Type Detailed and Al-
teration Frequency. The overall survivability in prostate
cancer patients with or without lipin gene alteration was
determined using the Comparison/Survival tab and
selecting survival. Within GEPIA 2, Single Gene Analysis
and Boxplots were selected [30]. Variation in expression
levels of lipin genes were observed in patients with and
without prostate cancer (PRAD). The method for differ-
ential analysis was a one-way ANOVA, using disease
state (Tumor or Normal) as the variable for calculating
differential expression. The expression data are first
log2(TPM + 1) transformed for differential analysis and
the log2FC is defined as median (Tumor) - median (Nor-
mal). Genes with higher |log2FC| values and lower q
values than pre-set thresholds are considered differen-
tially expressed genes [28]. Multiple Gene Analysis and
Correlation Analysis were selected. Pair-wise gene

expression correlations, using the Pearson method, of
the lipin genes were analyzed based on TCGA and pros-
tate GTEx databases.

Western blotting
Anti-rabbit primary antibodies for Lipin-1 (Abcam,
ab181389) and Lipin-2 were purchased from Abcam
(Cambridge, UK). The anti-rabbit primary antibody for
Lipin-3 was purchased from Biorbyt (Cambridge, UK).
The anti-mouse primary antibody for GAPDH was pur-
chased from Sigma-Aldrich (St. Louis, MO). The anti-
mouse and anti-rabbit secondary antibodies were pur-
chased from Promega (Madison, WI) (Supplemental
Table 2). HepG2 cells were purchased from Sigma-
Aldrich (St. Louis, MO) and used the same standard cell
culture media and care as the prostate cell lines. Whole-
cell lysates were prepared using RIPA buffer (50 mM
Tris-HCl [pH 7.4], 1M NaCl, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS, and ddH2O) and 1% protease
inhibitor cocktail from Cell Signaling Technology (Dan-
vers, MA). Lysates were then vortexed and frozen at −
80 °C. Samples were run in triplicate (n = 3). Proteins
(5 μg) were resolved by 10% SDS-PAGE and transferred
onto nitrocellulose membranes with a pore size of
0.45 μm (Thermo Scientific). Membranes were blocked
with 5% milk powder (AppliChem) in 1X TBST for 1 h
at room temperature. Incubations with primary anti-
bodies at 4 °C overnight were followed by incubations
with the appropriate secondary antibodies at room
temperature for 1 h and detection by Pierce™ Super-
Signal™ West Pico PLUS Chemiluminescent Substrate
from Thermo Scientific (Waltham, MA). Images were
captured using the FluorChem® HD2 Imager from Alpha
Innotech (San Leandro, CA). Densitometry to quantify
protein expression was performed using the software
FluorChem® HD2 software from Alpha Innotech (San
Leandro, CA). Lipin expression was normalized to
GAPDH expression.

Statistical analyses
All statistical analyses were compiled using GraphPad
Prism for windows version 8.2.1 (GraphPad Software,
Inc., La Jolla, CA, USA). For all analyses, the experimen-
tal unit was individual samples obtained from a mini-
mum of 4 (n = 4) groups were assessed. One passage of
cells was equivalent to one group of samples (n). The ef-
fect of multiple testing was controlled for by measuring
the statistical significance of each association using both
the P-value and the q-value. Using FDR of q < 0.05, the
q value quantifies significance in terms of the false dis-
covery rate (FDR) rather than the false positive rate and
forms a measure of how likely a particular P-value is to
represent a genuine association. For all analyses, signifi-
cance was set at P 0.05 where data are expressed as
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mean ± SEM based on t-test for pairwise analysis and/or
ANOVA analysis (with Kruskal-Wallis post hoc test).

Results
Comprehensive LC-ESI-MS/MS analysis between PCa cells
While it is well known that the development and pro-
gression of prostate cancer is associated with abnormal
changes in lipids, the association of these lipids with spe-
cific signaling pathways has not received as much atten-
tion. Further, even less attention has been given to
identifying these lipids, or the signaling pathways in-
volved, with the development of drug resistance. This
gap-in-knowledge was addressed by constructing a heat
map using MS Peak to Pathway-MetaboAnalyst [26]
comparing changes in lipid levels, as determined by LC-
ESI-MS/MS, between non-cancerous (PNT2 and
RWPE1), hormone-sensitive (LNCaP and 22RV1),
castration-resistant (PC-3 and DU-145) and Docetaxel
resistant (PC3-Rx and DU145-DR) prostate cell lines
(Fig. 1). Pathway analysis was also conducted using the
MS Peaks to Pathway Activities module from MetaboA-
nalyst, which generated a heat map-specific pathway
visualization [31, 32]. This analysis resulted in several
common dysregulated metabolic pathways including gly-
cerophospholipid and sphingolipid metabolism. These
data were confirmed with a LIPEA analysis, which
showed that glycerophospholipid and sphingolipid me-
tabolism were highly ranked and significantly associated
with the set of lipids identified in this study. Other path-
ways identified included ferroptosis (20%) and choline

Fig. 1 Heat map of differentially altered metabolites associated with non-cancerous (PNT2 and RWPE1), hormone-sensitive (LNCaP and 22RV1),
castration-resistant (PC-3 and DU-145) and Docetaxel resistant (PC3-Rx and DU145-DR) prostate cell lines and media as determined by LC-ESI-MS/
MS. Data were derived from a minimum of 3 extractions from 3 different passages per cell line

Fig. 2 LIPEA pathway analysis. Identification of lipids pathways enriched in
prostate cancer cells (LNCaP, 22RV1, PC-3, DU-145, PC3-Rx and DU145-DR) as
compared to non-cancerous cells (PNT2 and RWPE1). Data were derived
from a minimum of 3 extractions from 3 different passages, where increases
in lipids were mapped to genes identified in the KEGG database
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Table 1 Prostate Cell Line Characteristics

Fig. 3 Alterations of phospholipid and acyl glycerol classes were observed in non-cancerous prostate cells (blue), hormone-sensitive (dark red),
castration-resistant (CR) (green), and Docetaxel resistant (DR) (red) prostate cancer cells. LC-ESI-MS/MS analysis of these classes in comparison to the
Kennedy Pathway demonstrates alterations of the lipid abundance within progressing prostate cancer cells. The enzymes mediating the remodeling
are shown in blue along the arrows. CHPT1 Cholinephosphotransferase 1, CEPT1 Choline/ethanolaminephosphotransferase 1, DAG diacylglycerol,
DGAT diacylglycerol acyltransferase, PA phosphatidic acid, PAP phosphatidic acid phosphatase, PC phosphatidylcholine, PLD Phospholipase D, PE
phosphatidylethanolamine, PEMT Phosphatidylethanolamine-N-methyltransferase, PG phosphatidylglycerol, PGP phosphatidylglycerol phosphatase, PS
phosphatidylserine, PSS1/ PSS2 phosphatidylserine synthase, PISD Phosphatidylserine decarboxylases, TAG triacylglycerol
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metabolism in cancer (20%) (Fig. 2, Supplemental
Table 1) [7].
Some studies have shown an alteration in lipid diver-

sity in the blood and serum. Unfortunately, the conse-
quence of this change in lipid diversity still remains
unknown, but the current consensus is that changes in
lipid composition is associated with altered behavior of
cancer cells. Extensive studies have provided strong evi-
dence for reprogramming of lipid metabolism in cancer
through the Kennedy Pathway [4–6] (Supplemental Fig-
ure 2). To validate these data, and to further analyze
lipid changes, an additional LC-ESI-MS/MS analysis was
conducted comparing changes in lipid levels between
hormone-sensitive, castration-resistant and drug resist-
ant human prostate cancer cell lines in comparison to
non-cancer prostate cell lines (Table 1). LC-ESI-MS/MS
of phospholipid and acyl glycerol classes demonstrated
alterations of abundance in prostate non-cancerous,
hormone-sensitive, and metastatic CRPC cells (Fig. 3).
This resulted in the identification of 7460 dysregulated
ion features, encompassing 21 different lipid species
(Fig. 4a). This was supported by a heat map analysis
(Fig. 4b). Furthermore, OPLS-DA comparing hormone-
sensitive cell lines to control cells in the positive mode
(ESI+) showed distinct separation of each prostate cell
line (Supplemental Figure 3A). This is further analyzed
in (Supplemental Figure 3B), which presents a cloud plot
demonstrating directional fold changes, significance, re-
tention times and m/z values. This analysis identified 84
altered lipidomic features between hormone-sensitive
cells as compared to normal cells. These lipids were also
identified via heat map analysis (Supplemental Figure
3C). OPLS-DA showed clear separation between

castration-resistant and non-cancerous prostate cancer
cell lines (Supplemental Figure 4A), suggesting differen-
tial lipidomic profiles with the cell types. This was sup-
ported by a cloud plot analysis (Supplemental Figure 4B)
that identified 45 lipids whose levels differed between
castration-resistant cell-lines and non-cancer control
cells. The relative abundance of each lipid species levels
varied significantly across all samples identified in CRPC
cell lines in comparison to normal cells (Supplemental
Figure 4C).

Alterations in PC lipids
In agreement with the LIPEA analysis, PC lipids were
augmented in all six PCa cell lines analyzed, when com-
pared to non-cancerous RWPE1 and PNT2 cells (Fig. 5a).
Amongst the PC lipids, 36:1 PC was significantly in-
creased in the PC3-Rx Docetaxel resistant cell type ana-
lyzed (Fig. 5b). Both 12:0–24:1 PC and 14:0–22:2 PC
were also identified as a dominant PC species (Figs. 5c
and d). Interestingly, 38:4 PC (Fig. 6a) was significantly
enriched in both Docetaxel resistant cell types, as com-
pared to the content level in both PC-3 and DU-145
parent and non-cancer control cells. 18:0–22:6 PC (Fig.
6b) was another dominant PC species that was increased
in select cells. Most interestingly, LPC were enriched
specifically in PC-3 parent cells, with 16:0 and 20:4 LPC
being particularly prominent in this cell line (Fig. 7).
These data support the LIPEA results, which suggested
increased glycerophospholipid metabolism in prostate
cancer cells.
LIPEA also suggested increased pathways correlating

to ferroptosis. This may correlate to an increase in oxi-
dative stress and metabolism, among other events, in

Table 2 Prostate Cancer Population Studies from cBioPortal

Prostate Study Number of Samples

Prostate Cancer (DKFZ, Cancer Cell 2018) 324

Prostate Cancer (MSK, 2019) 18

Metastatic Prostate Adenocarcinoma (MCTP, Nature 2012) 61

Metastatic Prostate Adenocarcinoma (SU2C/PCF Dream Team, PNAS 2019) 444

Metastatic Prostate Cancer (SU2C/PCF Dream Team, Cell 2015) 150

Metastatic castration-sensitive prostate cancer (MSK, Clin Cancer Res 2020) 424

Neuroendocrine Prostate Cancer (Multi-Institute, Nat Med 2016) 114

Prostate Adenocarcinoma (Broad/Cornell, Cell 2013) 57

Prostate Adenocarcinoma (CPC-GENE, Nature 2017) 477

Prostate Adenocarcinoma (MSKCC, 2020) 1465

Prostate Adenocarcinoma (MSKCC, Cancer Cell 2010) 240

Prostate Adenocarcinoma (SMMU, Eur Urol 2017) 65

Prostate Adenocarcinoma (TCGA, Cell 2015) 333

Prostate Adenocarcinoma Organoids (MSKCC, Cancer Cell 2014) 12

Prostate Cancer (MSKCC, JCO Precis Oncol 2017) 504

The Metastatic Prostate Cancer Project (Provisional, November 2019) 75
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these cells. In support of this hypothesis, the levels of
oxidized PC (OxPC) were enriched in prostate cancer
cells as opposed to non-cancer cells (Fig. 8a). While a
specific lipid species was not identified, the data did
demonstrate an increase in oxidized LPC (OxLPC) in
some cancer cells, especially PC-3 cells from both the
parent and Docetaxel resistant strain. This correlates
very well with data suggesting that LPC-species are spe-
cifically increased in PC-3 cells (Fig. 7).

Alteration in PE lipids
PCs are not the only glycerophospholipids. As such,
changes in PE, PG, PI and PS lipids were investi-
gated as well. Overall, there was not any observable
significant enrichments of Phosphatidylserine PS or
Phosphatidylinositol (PI) lipid species between non-

cancer and cancerous prostate cancer cells, with the
exception of increased PA and PG in PC-3 cells
when compared to PNT2 and RWPE1 cells (Supple-
mental Figure 5A and 5B). This trend was only ob-
served when comparing androgen-insensitive cells to
non-cancer cells and was not observed between par-
ent PC-3 and DU-145 cells and their Docetaxel re-
sistant counterparts (data not shown). A general
enrichment of plasmalogens was also observed in
most prostate cancer cells when compared to non-
cancer cells (Supplemental Figure 5C); however, no
observable trend was identified between the cancer
cell lines.
In contrast to other glycerophospholipids, PE was sig-

nificantly enriched in 22RV1, DU-145 and PC3-Rx cells
as compared to non-cancer cells (Fig. 9a). Further,

Fig. 4 a Differential cloud plot demonstrating dysregulated features between hormone-sensitive, castration-resistant, Docetaxel resistant cells and
non-cancerous cells (PNT2 and RWPE1) as determined by LC-ESI-MS/MS (P-value < 0.05 threshold, fold change > 1.5 threshold). b Differential
expression of lipid features in non-cancerous prostate cells (b) as compared to hormone-sensitive (HS), castration-resistant (CR) and Docetaxel
resistant (DR) prostate cancer cells. Only those features whose levels vary significantly (P < 0.05) are projected on the heat map. Each row
represents a metabolite feature and each column represents a sample
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significant enrichment of PE species was observed in
PC3-Rx cells as compared to its parent cell lines, or even
to all other cells. 38:4 PE identified as 18:0–20:4 PE, was
the most dominant of the PE lipid species in PC3-Rx
cells, as compared to PC-3 parent control (Figs. 9b and
c). Similar to PC lipids, OxPE was also significantly
enriched in PC-3 and PC3-Rx cells, as compared to non-
cancerous cells (Fig. 9b). A similar trend was seen for
LPE, which similar to LPC, was enriched in PC-3 and
PC3-Rx cells (Supplemental Figure 6).

Alterations in sphingolipids
LIPEA also suggested an increase in sphingolipids me-
tabolism and within the sphingolipid signaling pathways.
In support of this, SM was significantly enriched in PC3-
Rx cells as compared to PC-3 parent control and non-
cancerous cells (Fig. 10a). 34:1 + H was the dominant
SM species identified in PC3-Rx cells (Fig. 10b). None-
theless, these data support LIPEA suggesting that

sphingolipid metabolism and signaling are enriched in
prostate cancer cells.

Alterations in LPIN genes
Based on the LIPEA analysis performed in this study,
glycerophospholipid metabolism was ranked the highest
abnormal pathway and significantly associated with the
set of lipids identified (Fig. 2). We further analyzed the
alterations of phospholipid abundance and acyl glycerol
classes between the PCa and non-cancer cell lines by
studying lipin, one of the first enzymes involved in the
Kennedy Pathway. There are three lipin proteins respon-
sible for the regulation of PA to diacylglycerol (DAG).
This conversion is a divergent point for the synthesis of
triacylglycerol (TAG) and other phospholipids (PL).
cBioPortal and GEPIA 2 were used to assess the possible
contribution of lipins to prostate cancer. From the stud-
ies selected from cBioPortal, alterations in the LPIN1,
LPIN2 and LPIN3 genes within prostate cancer, prostate

Fig. 5 Comparison of phosphatidylcholine (PC) in non-cancerous (PNT2 and RWPE1) and hormone-sensitive (LNCaP and 22RV1), castration-
resistant (PC-3 and DU-145) and Docetaxel resistant (PC3-Rx and DU145-DR) prostate cell lines. Data are indicative of 6 samples (6 distinct
passages) per group and are expressed as mean ± the SEM (*q < 0.05 **q < 0.01*** q < 0.001). Each symbol represents an individual lipid feature
as identified by MS/MS. Normalized peak areas between all cells are shown for a phosphatidylcholine (PC), b 36:1 PC c 12:0–24:1 PC and d
14:0-22:2 PC
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adenocarcinoma, castration-resistant prostate cancer and
prostate neuroendocrine carcinoma resulted in amplifica-
tion being the major form of alteration (Fig. 11a). Overall
survivability of patients within these studies differed with
and without lipin gene alteration. For those with alterations,
the median months survived after diagnosis was 29.7,
whereas this was elongated to 96months for those without
alterations in these genes (Fig. 11b). mRNA expression for
LPIN1 also showcases an overall higher amount of amplifi-
cation occurring (Fig. 11c). Results from GEPIA 2 show ex-
pression levels of lipin genes varying between patients with
and without prostate cancer, with higher significance in
LPIN1 and LPIN3 (Fig. 11d). Additionally, gene expression
between the three lipin genes demonstrate a strong correl-
ation between LPIN1 and LPIN3 (Fig. 11d).

Alterations in Lipin protein expression
To directly correlate the lipid alterations with the LIPEA
pathway results, western blots with the lipin proteins
were conducted. Lipin has a molecular weight of about

99 kDa but predicted bands around 125 kDa. With lipin-
1 antibody, strong bands were noted at the predicted
125 kDa (Fig. 12b). The expression of lipin-1 in most cell
lines correlated to the level PA, excluding the Docetaxel
resistant ones (Figs. 3 and Fig. 12a). The decrease in
lipin-1 expression in both PC3-Rx and DU145-DR is
particularly perplexing as there appears to be an increase
in DAG in PC3-Rx cell line, compared to PA (Fig. 3).
Antibodies for lipin-2 and lipin-3 were tested alongside
lipin-1, but these antibodies were unable to detect lipin-
2 or lipin-3, despite the use of multiple antibodies. Fur-
ther studies will be conducted to determine the other
enzymatic effects of the Kennedy pathway.

Discussion
Drug resistance in prostate cancer remains an unsolved
challenge and is one of the primary drivers of low sur-
vivability among prostate cancer patients. While studies
have identified lipid species as biomarkers in various
cancers, fewer attempts have been made for drug resist-
ance prostate cancer, due to the high complexity and di-
versity among lipid molecules. Recent evidence suggests
elevated plasma levels of phospholipids are associated with
an increased risk of PCa [33]. Unfortunately, these studies
did not link individual lipids to the generation of drug re-
sistance. The initial MS Peak to Pathway-Metaboanalyst
approach identified multiple pathways altered in the panel
of prostate cancer cells analyzed. Hierarchical clustering
found several nodes that correlated to glycerophospholi-
pid and sphingolipid metabolism. This is not surprising as
the extraction methods used may be biased in this analysis
towards glycerophospholipids. Further, Metaboanalyst is
not perfected for lipids species. The later limitation was
addressed by using the LIPEA pathway analysis, which
was recently identified to mine pathways significantly as-
sociated with select lipid species. LIPEA, which works with
compound IDs for lipids found in KEGG, also identified
glycerophospholipid metabolism as being significantly
enriched in PCa cells compared to non-cancer cells.
The enrichment of glycerophospholipid metabolism

aligned with the fact that lipids generated from glycero-
phospholipid metabolism are also increased in PCa cells,
including LPC and LPE. Metabolites from these mole-
cules regulate many signaling pathways, as well as cell
growth.
LIPEA also identified sphingolipid metabolism as be-

ing enriched in PCa cells, which agrees with the analysis
generated by MetaboAnalyst and hierarchical clustering.
Several studies have shown that sphingolipid-mediated
gene expression plays a critical role in cancer by several
mechanisms [34–36]. This includes the regulation of
lipid-lipid interaction, membrane structure and/or regu-
lation of the interaction of membrane proteins with the
membrane bilayer [37].

Fig. 6 Comparison of a 38:4 and b 18:0–22:6 PC levels in non-
cancerous (PNT2 and RWPE1), hormone-sensitive (LNCaP and 22RV1),
castration-resistant (PC-3 and DU-145) and Docetaxel resistant (PC3-
Rx and DU145-DR) prostate cell lines. Data are indicative of 6
samples (6 distinct passages) per group and are expressed as
mean ± the SEM (*q < 0.05 **q < 0.01*** q < 0.001). Each symbol
represents an individual lipid feature as identified by MS/MS
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The identification of ferroptosis as being enriched in
PCa cells was unexpected. Ferroptosis is a regulated
form of iron-dependent, non-apoptotic cell death [38].
Ferroptosis can be driven by extensive lipid peroxidation
that alters the physical properties of the membrane or
degrades reactive compounds that cross-link DNA or
proteins [39–41]. Ferroptosis is linked to numerous
diseases of the kidney, heart, liver and brain [38, 42].
To date, only a few studies have linked changes in
ferroptosis specifically to prostate cancer. Mechanis-
tically, blocking enzymes such as DECR1, PANX2 and
GPX4 can inhibit tumor growth with universal impli-
cations in understanding both resistance and meta-
bolic events [42, 43]. Excitingly, one recent study did
identify that certain cancer cells were vulnerable to
ferroptic cell death induced by inhibition of a lipid
peroxidase pathway as a feature of therapy-resistant
cancer cells [42–46]. As such, these data support this
study by demonstrating that an enrichment of lipids
corresponding to ferroptosis aligns with drug-
resistance PCa cells. Further, these data suggest that
targeting ferroptosis may alter the sensitivity of PCa
cells to Docetaxel.
Data demonstrating the significant enrichment of

three lipid classes (namely, PC, PE, and SM) in

hormone-sensitive cells in comparison to normal control
cells is consistent with previous reports in plasma from
PCa patients [33, 43, 44]. Elevated concentrations of SM
in plasma were previously reported in patients with PCa
in comparison to the control group [45]. These data fur-
ther support the previously stated hypothesis that sphin-
golipids have a potential role in regulating PCa cells
response to chemotherapy [46]. Further, these data sup-
port that these lipids may serve to identify drug-
resistance prostate cancer. Finally, these data show that
at least part of the lipidomic profile seen in PCa patients
can be recapitulated in vitro (see below). This allows for
a model to begin to investigate the molecular mechan-
ism involved in changes in lipids during prostate cancer
progression and the development of drug resistance.
Data from this study also showed elevated levels of

plasmalogens in PCa cells as compared to non-
cancerous cells. An increase in plasmalogens in these
cell lines has not been previously reported. However, a
previous study reported increased levels of plasmalogen
phospholipids in neoplastic human breast tissue as com-
pared to benign tissue and correlated this with meta-
static properties of human cancer [47]. The significance
of these data to prostate cancer progression or drug re-
sistance is not known.

Fig. 7 Comparison of a lysophosphocholine (LPC), b LPC and c 20:4 LPC levels in non-cancerous (PNT2 and RWPE1), hormone-sensitive (LNCaP
and 22RV1), castration-resistant (PC-3 and DU-145) and Docetaxel resistant (PC3-Rx and DU145-DR) prostate cell lines. Data are indicative of 6
samples (6 distinct passages) per group and are expressed as mean ± the SEM (*q < 0.05 **q < 0.01*** q < 0.001). Each symbol represents an
individual lipid feature as identified by MS/MS

Ingram et al. Lipids in Health and Disease           (2021) 20:15 Page 11 of 17



The increase in specific PC lipids, such as 36:1 and 12:
0–24:1 in PC-3 cells, but not in DU-145 cells mirrored
data seen for LPC, OxPC and OxLPC. Elevated PC in
plasma has been associated with prostate cancer pro-
gression. For example, 20:4 LPC was suggested as a top
biomarker for prostate cancer [48]. LPC has also been
shown to be elevated in tissues exposed to radio/chemo-
therapy treatments [49–51]; however, it is not known if
chemotherapy increased LPC levels, or if LPC was ele-
vated prior to treatment [52]. Other reports have

demonstrated that the LPC is increased in ovarian can-
cer patients and the fatty acid composition of this LPC
is changed [53].
The elevation of PE in prostate cancer cells agrees

with the findings of increased PE in patient plasma sam-
ples [43, 54], as well as in prostate cancer cells (LNCaP,
22RV-1 and DU-145), as compared to PNT2 cells [44].
PE has also been detected in high abundance in exo-
somes derived from PC-3 cells [55]. Similar to LPC
levels in PC-3 cells, enrichment in LPE was primarily

Fig. 8 Comparison of oxidized phosphatidylcholines (OxPC) levels in non-cancerous (PNT2 and RWPE1), hormone-sensitive (LNCaP and 22RV1),
castration-resistant (PC-3 and DU-145) and Docetaxel resistant (PC3-Rx and DU145-DR) prostate cell lines and media. Data are indicative of 6
samples (6 distinct passages) per group and are expressed as mean ± the SEM (*q < 0.05 **q < 0.01*** q < 0.001). Each symbol represents an
individual lipid feature as identified by MS/MS. Normalized peak areas between all cells are shown for a oxidized phosphatidylcholine (OxPC), b
oxidized lysophosphatidylcholine (OxLPC)
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seen in PC-3 cells from both parent and Docetaxel re-
sistant cell lines. Previous studies also compared PE
plasmalogens in normal, benign and neoplastic samples
from human prostate, breast, and lung tissues, and sug-
gested that these are lipid tumor markers for distin-
guishing between benign vs. neoplastic tissue and
identifying in-vivo metastatic progression.
While this study represents one of the most com-

prehensive analyses of lipid composition in prostate
cells to date, it is limited by the fact that the actual
concentrations for lipid species were not provided.
This was in part intentional and these data are meant
to springboard further studies focusing on how spe-
cific lipids identified are being altered in these cells.
Further, it is important to note that standards for
many of the specific lipid species, as opposed to gen-
eral classes, are not commercially available. Future

studies will focus on quantifying these specific lipids
in these cells as well as validating their existence in
human plasma.
These data, as well as previous studies demonstrate

that there are fundamental differences between the lipi-
dome of cancer and non-cancer cells [44, 56–58]. Non-
cancer cells typically exhibit neutral total membrane
charge due to the presence of zwitterionic phospholipids
(PC and SM) on the outer leaflet of the membrane and
PS and PE located in the inner leaflet of the membrane
[59–61]. Unlike normal cells, cancer cells typically lose
their capacity to maintain asymmetrical distribution
leading to abnormal exposure of (PS and PE) to the cell
outer membrane and/or PC and SM to cytosolic leaflet
causing changes in cell signaling and downstream gene
expression. Although lipids are not encoded by the gen-
ome, targeting lipid enzymes is one way to control lipid
homeostasis. For example, lipins catalyze the dephos-
phorylation of phosphatidic acid to diacylglycerol, which

Fig. 9 Comparison of phosphatidylethanolamine (PE) levels in non-
cancerous (PNT2 and RWPE1), hormone-sensitive (LNCaP and 22RV1),
castration-resistant (PC-3 and DU-145) and Docetaxel resistant (PC3-
Rx and DU145-DR) prostate cell lines and media. Data are indicative
of 6 samples (6 distinct passages) per group and are expressed as
mean ± the SEM (*q < 0.05 **q < 0.01*** q < 0.001). Each symbol
represents an individual lipid feature as identified by MS/MS.
Normalized peak areas between all cells are shown for
phosphatidylethanolamine (PE), b OxPE

Fig. 10 Comparison of sphingomyelin (SM) levels in non-cancerous
(PNT2 and RWPE1), hormone-sensitive (LNCaP and 22RV1),
castration-resistant (PC-3 and DU-145) and Docetaxel resistant (PC3-
Rx and DU145-DR) prostate cell lines and media. Data are indicative
of 6 samples (6 distinct passages) per group and are expressed as
mean ± the SEM (*q < 0.05 **q < 0.01*** q < 0.001). Each symbol
represents an individual lipid feature as identified by MS/MS.
Normalized peak areas between all cells are shown for a
sphingomyelin (SM) and b 34:1 + H SM

Ingram et al. Lipids in Health and Disease           (2021) 20:15 Page 13 of 17



is a precursor of triacylglycerol and phospholipids [62,
63]. As such, lipins also function as co-transcriptional
regulators of lipid homeostasis. Lipin-1 protein expres-
sion was detected in multiple cancer cell lines in this
study, agreeing with at least one other study that showed
lipin-1 expression in select cells [64]. Previous studies
also demonstrated that the Lipin-1 knockdown repressed
proliferation of prostate and breast cancer cells [65].
However, there is still a gap in knowledge as to how
these processes shape the progression of drug-resistant
cancer or mediate lipid levels in prostate cancer cells.
Our data demonstrates a correlation between the ampli-
fication of lipins in prostate cancer patients and

decreased survivability. Our data further show that de-
creased expression of lipins correlate to prostate cancer.
Data in cells suggest a link between drug resistance and
lipin-1 levels as well as to differences in the levels of PA
and DAG, at least in one cell line.
Lipin-1 is a key enzyme in the Kennedy Pathway,

which is a primary pathway for glycerophospholipid syn-
thesis. The alterations in lipin-1, -2 and -3 expression in
prostate cancer patients, and correlation between lipin-1
expression and PA and DAG in some select cell lines,
suggest that these enzymes may regulate lipid levels in
prostate cancer. Further, lipin alterations may indicate
aggressiveness and drug resistance.

Fig. 11 a Alterations in lipin genes LPIN1, LPIN2 and LPIN3 within four types of prostate cancer from sixteen studies. Amplification is the major
alteration in all types, excluding general prostate cancer. b Overall survivability in prostate cancer patients with (red) or without (blue) lipin gene
alteration. There are 28 samples with alterations in LPIN1, 37 samples from 30 patients with alterations in LPIN2 and 27 samples out of 26 patients
with LPIN3 alterations. c mRNA expression, accurate transcript quantification from RNA-Seq data (RSEM) as a function of putative copy-number
alterations in mutation type. There are 10,712 samples from 32 studies on the horizontal axis, 6961 samples from 16 studies on the vertical axis
and 6909 samples from 16 studies at the intersection of the two axes. The figures were generated from cBioPortal for Cancer Genomics. d
Variation in expression levels of lipin genes were observed in patients with (red) and without (green) prostate cancer. The method for differential
analysis was a one-way ANOVA, using disease state (Tumor or Normal) as variable for calculating differential expression. Pair-wise gene expression
correlations, using the Pearson method, of the lipin genes were analyzed based on TCGA and GTEx databases. The non-log scale for calculation
and use the log-scale axis for visualization. The figures were generated from GEPIA 2. PRAD prostate adenocarcinoma, T tumor, N normal, TPM
transcripts per million
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Study strengths and limitations
The overall key findings from this study are the: (1)
identification of a unique lipid signature for drug resist-
ant prostate cancer, (2) determination of aberrant lipid
pathways in drug resistant CRPC progression and (3) the
correlation in lipin expression in prostate cancer patient
and cells to aggressiveness and survivability. These find-
ings are strengthened by the use of multiple cell lines,
multiple analysis (Shotgun and Targeted Lipidomics), a
pathway analysis and subsequent analysis correlated to
patient samples that identified a potential lipid metabol-
ism enzyme. The limitation of this study is that there is
no consensus on proper data processing protocols. For
lipidomics to be implemented in a clinical setting, one
must account for factors perturbing lipid measurements.
With these are numerous sample preparation protocols,
and many factors that reduce the accuracy and precision
of lipid measurements that are not fully understood.
Thus, the data in cells are limited by the fact their rele-
vance to clinical data is not known. Nevertheless, these
data lay the groundwork for future studies assessing

changes in the specific lipids and proteins identified in
this study. The data are also limited in that the lipid
levels are semi-quantitative. Lipid concentrations mea-
sured across labs are often drastically different. Further-
more, quantification is problematic due to unavailable
lipid standards to cover the diverse species within a
given lipidome. Therefore, strategies to select the best
internal standards for the pertinent lipids identified in
this study are needed. A final limitation is that we were
unable to detect lipin-2 and -3, despite the use of mul-
tiple antibodies. Further, lipin activity was not accessed.
As such, a complete understanding of the role of lipin in
mediating the PA/DAG axis in prostate cancer is not
possible.

Conclusion
Global lipid pathway analysis suggested glycerophospho-
lipid metabolism is the bottleneck contributor to the
tumorigenic lipids that drive drug resistant prostate can-
cer progression, with an integrated lipidomic/transcrip-
tomic high gene signature score correlated to poor
survival. These data further identify the novel finding
that the lipidomic profile of drug-resistant prostate can-
cer cells also differs, even from their parent cells. Thus,
the use of lipid profiling in cell culture is critical in
assessing the function of various lipid species.
An abundance of lipid species can be collected via

non-invasive procedures and easily monitored using hu-
man biological fluids, which include blood and urine. As
such, these lipids may be useful for identifying drug-
resistant prostate cancer in vivo. These findings are im-
portant as understanding lipidomics, including the
underlying molecular machinery of lipid metabolism,
would assist in the discovery of novel and potential tar-
gets and develop new predictors for personalized cancer
treatments. Finally, these data support the conclusion
that changes in these lipidomic profiles mirror those re-
ported in patient samples.
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