
Article

Designing a SARS-CoV-2 T-Cell-Inducing Vaccine for
High-Risk Patient Groups

Hans-Georg Rammensee 1,2,3,4,* , Cécile Gouttefangeas 1,2,3 , Sonja Heidu 1, Reinhild Klein 5 , Beate Preuß 5,
Juliane Sarah Walz 1,3,6,7 , Annika Nelde 1,3,6 , Sebastian P. Haen 1,2,8,†, Michael Reth 9 , Jianying Yang 9,
Ghazaleh Tabatabai 2,10,11 , Hans Bösmüller 12, Helen Hoffmann 1, Michael Schindler 13 , Oliver Planz 1,
Karl-Heinz Wiesmüller 14 and Markus W. Löffler 1,2,3,15,16

����������
�������

Citation: Rammensee, H.-G.;

Gouttefangeas, C.; Heidu, S.; Klein,

R.; Preuß, B.; Walz, J.S.; Nelde, A.;

Haen, S.P.; Reth, M.; Yang, J.; et al.

Designing a SARS-CoV-2

T-Cell-Inducing Vaccine for

High-Risk Patient Groups. Vaccines

2021, 9, 428. https://doi.org/

10.3390/vaccines9050428

Academic Editor: Olga Borges

Received: 23 March 2021

Accepted: 19 April 2021

Published: 24 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15,
72076 Tübingen, Germany; cecile.gouttefangeas@uni-tuebingen.de (C.G.);
sonja.heidu@uni-tuebingen.de (S.H.); juliane.walz@med.uni-tuebingen.de (J.S.W.);
annika.nelde@uni-tuebingen.de (A.N.); helen.hoffmann@uni-tuebingen.de (H.H.);
oliver.planz@uni-tuebingen.de (O.P.); markus.loeffler@uni-tuebingen.de (M.W.L.)

2 German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen,
72076 Tübingen, Germany; ghazaleh.tabatabai@uni-tuebingen.de

3 Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”,
University of Tübingen, 72076 Tübingen, Germany

4 Cluster of Excellence CMFI (EXC2124) “Controlling Microbes to Fight Infections”, University of Tübingen,
72076 Tübingen, Germany

5 Department of Hematology, Oncology, Clinical Immunology and Rheumatology,
University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
reinhild.klein@med.uni-tuebingen.de (R.K.); beate.preuss@med.uni-tuebingen.de (B.P.)

6 German Cancer Consortium (DKTK), Clinical Collaboration Unit Translational Immunology, University
Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany

7 Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology (IKP) and Robert Bosch Center for Tumor
Diseases (RBCT), Auerbachstr. 112, 70376 Stuttgart, Germany

8 Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology,
University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany

9 Signaling Research Centres BIOSS and CIBSS, Institute of Biology III, Department of Molecular Immunology,
University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; michael.reth@bioss.uni-freiburg.de (M.R.);
yang@biologie.uni-freiburg.de (J.Y.)

10 Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart,
University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany

11 Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research,
University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany

12 Institute of Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstr. 8,
72076 Tübingen, Germany; hans.boesmueller@med.uni-tuebingen.de

13 Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen,
Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany; michael.schindler@med.uni-tuebingen.de

14 EMC microcollections GmbH, Sindelfinger Str. 3, 72070 Tübingen, Germany;
karl-heinz.wiesmueller@uni-tuebingen.de

15 Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Hoppe-Seyler-Str. 3,
72076 Tübingen, Germany

16 Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8,
72076 Tübingen, Germany

* Correspondence: rammensee@uni-tuebingen.de
† Deceased.

Abstract: We describe the results of two vaccinations of a self-experimenting healthy volunteer with
SARS-CoV-2-derived peptides performed in March and April 2020, respectively. The first set of
peptides contained eight peptides predicted to bind to the individual’s HLA molecules. The second
set consisted of ten peptides predicted to bind promiscuously to several HLA-DR allotypes. The
vaccine formulation contained the new TLR 1/2 agonist XS15 and was administered as an emulsion
in Montanide as a single subcutaneous injection. Peripheral blood mononuclear cells isolated from
blood drawn before and after vaccinations were assessed using Interferon-γ ELISpot assays and
intracellular cytokine staining. We detected vaccine-induced CD4 T cell responses against six out of
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11 peptides predicted to bind to HLA-DR after 19 days, following vaccination, for one peptide already
at day 12. We used these results to support the design of a T-cell-inducing vaccine for application
in high-risk patients, with weakened lymphocyte performance. Meanwhile, an according vaccine,
incorporating T cell epitopes predominant in convalescents, is undergoing clinical trial testing.

Keywords: peptide vaccine; adjuvant; lipopeptide; high-risk patient; COVID-19; SARS-CoV-2

1. Introduction

After the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the
coronavirus disease 2019 (COVID-19), was first sampled and described in December 2019 in
Wuhan, China [1] and declared a pandemic by the World Health Organization on 11 March
2020 [2], the global scientific community responded to this urgency in several resourceful
ways. For example, hitherto unapproved approaches and vaccine platforms initially
intended for immune oncology applications and other diseases were swiftly repurposed,
which enabled the development of COVID-19 vaccines at an unprecedented pace [3,4].
Meanwhile various vaccines to prevent COVID-19 are approved and are available all over
the world. However, appropriate vaccines for specifically inducing T cell responses are
still lacking. Currently, for most approved vaccines, evaluations of immune correlates for
protection primarily focused on humoral immune responses, providing only very limited
data on T cell induction [5].

Thus far, millions of people worldwide are affected by SARS-CoV-2 in part with
devastating consequences and high mortality rates are found among high-risk populations,
including the elderly [6] and patients with co-morbidities [7], such as cancer [8]. Particularly
for specific patient groups, the hitherto available vaccines might demonstrate only limited
efficacy or require additional T cell induction, e.g., in patients with B cell malignancies
treated with depleting antibodies.

Another legitimate way to gain preliminary evidence for novel treatments is self-
experimentation, a practice with historical importance that is only permissible under very
specific conditions and with strict restrictions that need to be considered in any event. It
should be respected that the practice remains restricted to single volunteers that can fully
oversee the implications of their actions and must be performed in absence of any coercion
or dependency [9,10]. In such a context and considering the current COVID-19 urgency,
this practice might yield valuable preliminary research results and increase public trust [11]
but must be performed in a responsible way and cannot avoid formal clinical trial testing.

We previously reported the results of an experimental approach based on a peptide
vaccine consisting of various viral epitopes. Peptides were administered together with
Montanide and a novel lipopeptide adjuvant, the toll-like receptor (TLR) 1/2 ligand
XS15, to the same healthy volunteer [10]. Building on this previous work, we here report
the findings from self-experimentation, involving the same volunteer from March and
April 2020 [12]. The previously tested protocol for vaccination was used, but this time
the vaccine contained in silico predicted peptide sequences from SARS-CoV-2. Relevant
data that were available very early from a virus isolate from China, were used for this
purpose [13] and the peptide selection was completed on 23 January 2020. The design of the
current vaccine included the careful selection of candidate epitopes that are promiscuous
for most human leukocyte antigen (HLA)-DR allotypes (theoretical considerations are
illustrated in Figure 1). Meanwhile early phase clinical trial testing for a respective vaccine
is ongoing (clinicaltrials.gov—registration number: NCT04546841), which also incorporates
the knowledge that T cell responses alone are found in a fraction of convalescents.
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Figure 1. Illustration of the potential interactions between SARS-CoV-2 and B and T cells. (A) If a
virus-specific B cell takes up the entire virus particle via B cell receptor (BCR)-mediated phagocytosis,
all structural viral proteins should be processed in the HLA class II processing vesicle. The resulting
peptides should be loaded onto the HLA class II molecules. For a review, see Avalos et al. (2014) [14].
Only a selection of the resulting peptides fit to the respective HLA molecules present, based on their
peptide specificity. The B cell will then present these peptides on the cell surface, with one peptide
per HLA molecule. If a T cell is specific for exactly this peptide–HLA combination and if the B cell is
activated via its BCR–antigen contact, then the CD4 T helper cell would deliver help to this B cell,
both through cellular interaction and cytokines. Since all viral proteins are presented on the B cell’s
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HLA in this scenario, a nucleocapsid-specific T cell also activates a spike-specific B cell. (B) If the
virus-specific B cell takes up separate viral proteins via BCR-mediated phagocytosis, e.g., after
previous destruction of viral particles by follicular dendritic cells, only peptides from these proteins
are presented on the B cell’s HLA molecules. This is shown here for the spike glycoprotein. Thus,
a nucleocapsid-specific T cell does not activate a spike-specific B cell in this constellation. (C) If
the same B cells as described in (B) are activated by a spike-specific CD4 T helper cell, the B cell is
now activated. Abbreviations: BCR—B cell receptor, HLA—human leucocyte antigen, SARS-CoV-
2—severe acute respiratory syndrome coronavirus 2, TCR—T cell receptor. Figure was designed
with BioRender.

2. Materials and Methods
2.1. SARS-CoV-2 Peptide Prediction and Selection

The sequences described here were derived from a virus isolate obtained from a worker at
the Wuhan fish market (https://www.ncbi.nlm.nih.gov/nuccore/MN908947, accessed on:
22 January 2020, [13]). Using the SARS-CoV-2 nucleocapsid and envelope protein sequences
from this isolate and the prediction software SYFPEITHI (www.syfpeithi.de, accessed on:
22 January 2020, [15]), we predicted candidate CD8 (HLA-A*01 or -B*08) and candidate CD4
T cell epitopes (HLA-DRB1*11) based on the HLA allotype of the healthy volunteer. We
chose the nucleocapsid protein, because nucleoprotein peptides from many other viruses
are potent T cell epitopes (see: www.iedb.org, accessed on: 22 January 2020). Peptide
selection for the first vaccination was completed on 23 January 2020. We synthesized eight
peptide sequences that had the highest SYFPEITHI-scores and no cysteine residues (for
chemical stability reasons). They were complemented by two CMV-derived peptides that
had previously elicited immune responses in the same individual and could thus be used
as positive controls [10]. These ten peptides (Table 1) were synthesized in-house using
automated peptide synthesis.

Table 1. Peptides included in the first vaccination (6 March 2020).

AA Sequence Predicted HLA
Restriction Source Protein Peptide ID AA Position Peptide Length Administered

Amount (µg)

SPDDQIGYY A*01

SARS-CoV-2
nuc

nuc-A1-1 79–87 9 240
MKDLSPRWY A*01 nuc-A1-2 101–109 9 240
LLLDRLNQL B*08 nuc-B8-1 222–230 9 240

IGYYRRATRRIRGGD DR nuc-DR-1 84–98 15 240
ASAFFGMSRIGMEVT DR nuc-DR-2 311–325 15 240

VSLVKPSFY A*01
SARS-CoV-2

env

env-A1-1 49–57 9 720
YVYSRVKNL B*08 env-B8-1 57–65 9 720

FYVYSRVKNLNSSRV DR env-DR-1 56–70 15 240

YSEHPTFTSQY A*01 CMV-pp65 CMV-A1-1 363–373 11 720
YQEFFWDANDIYRIF DR CMV-DR-1 510–524 15 240

Vaccination was performed with synthetic peptides solubilized in water and 20% DMSO, including 50 µg XS15 as an adjuvant, emulsified
in Montanide ISA51 VG in a total volume of 0.5 mL. The varying dosing of peptides (240 µg for all HLA class II_restricted peptides and
720 µg for some of the HLA class I-restricted peptides) was used to address technical questions, based on speculations that a higher antigen
load might induce better CD8 T cell responses for HLA class I-restricted peptides in this particular vaccine approach. Abbreviations:
AA—amino acid, CMV—cytomegalovirus, DMSO—dimethyl sulfoxide, env—envelope protein, HLA—human leukocyte antigen, and
nuc—nucleoprotein.

For the prediction of promiscuous peptides [16] for the second vaccination, the ORF
protein sequences were split into peptides of 15 amino acids. The prediction algorithm SYF-
PEITHI 1.0 was used to predict the binding to HLA-DRB1*01:01, -DRB1*03:01, -DRB1*04:01,
-DRB1*07:01, -DRB1*11:01, and -DRB1*15:01. The 5% top-scoring peptides of each protein
(based on the total length of each ORF) and each HLA-DR allotype were selected. Position-
based sorting of peptides within each protein revealed peptide clusters of promiscuous
peptides binding to several HLA-DR allotypes. Through cluster-based selection, peptide
clusters of promiscuous peptides with a common core sequence of 9 amino acids were

https://www.ncbi.nlm.nih.gov/nuccore/MN908947
www.syfpeithi.de
www.iedb.org
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selected. Thereby, 8 and 2 clusters were chosen for the nucleocapsid and the spike protein.
Of each selected cluster, one representative peptide was selected for vaccination, excluding
any cysteine containing peptides (Table 2).

Table 2. Peptides from SARS-CoV-2 predicted to bind to multiple HLA-DR molecules included in the second vaccination
(3 April 2020).

AA Sequence Source Protein Peptide ID AA Position Peptide Length

ASVYAWNRKRISN SARS-CoV-2 spike spi-DR-1 348–360 13
VADYSVLYNSASFST spi-DR-2 362–376 15

IGYYRRATRRIRGGD

SARS-CoV-2 nuc

nuc-DR-1 84–98 15
ASAFFGMSRIGMEVT nuc-DR-2 311–325 15
RWYFYYLGTGPEAGL nuc-DR-5 107–121 15
ASWFTALTQHGKEDL nuc-DR-6 50–64 15
LLLLDRLNQLESKMS nuc-DR-7 221–235 15

AADLDDFSKQLQQSM nuc-DR-8 397–411 15
AIVLQLPQGTTLPKG nuc-DR-9 156–170 15
YKHWPQIAQFAPSAS nuc-DR-10 298–312 15

Vaccination was performed with synthetic peptides solubilized in water and 20% DMSO including 50 µg XS15 as an adjuvant, emulsified
in Montanide ISA51 VG in a total volume of 0.5 mL. Peptides already used in the first vaccination (6 March 2020) (boost) are shown in
italics. The peptide amount administered in the vaccine was 240 µg for each peptide. Abbreviations: AA—amino acid, DMSO—dimethyl
sulfoxide, HLA—human leukocyte antigen, and nuc—nucleoprotein.

2.2. Self-Administered Vaccination

The first (personalized) vaccine consisted of ten peptides (see Table 1) solubilized in
water and 20% dimethyl sulfoxide (DMSO). It further contained the lipopeptide adjuvant
XS15 (50 µg) and was administered as an emulsion with an equal volume of Montanide™
ISA51 VG (Seppic, Paris, France). A total volume of 0.5 mL was administered subcu-
taneously (s.c.) under the skin of the left side of the abdomen, on 6 March 2020. The
vaccinated individual did not report any flu-like symptoms or other symptoms consis-
tent with SARS-CoV-2 infection during the relevant period. The individual further did
not report visiting any areas designated as high risk for virus transmission. The second
vaccination was applied in the same way on the right side of the abdomen on 3 April 2020.

2.3. Ethical and Scientific Considerations

As previously reported in a comparable self-vaccination study by the same volun-
teer [10], we considered this to be an ethically and legally legitimate form of experimenta-
tion [9]. Self-experimentation is a special case of research and limited to individual subjects.
It is essential that such self-experimentation does not contravene any personal interest or
ethical imperative. Coercion and dependency could be excluded here, ensuring decision-
making autonomy. The volunteer in this case was a renowned expert in immunology and
thus was able to understand any risks and implications of his own actions. It should there-
fore be considered that this study was permissible. In addition, relevant precedent exists,
where human self-experimentation opened up new avenues for research and contributed to
medical progress [17]. We are naturally aware that single case reports cannot provide con-
clusive evidence or any generalizable results. Rather these findings enable the formulation
of new hypotheses. Case reports are attributed with a high sensitivity for detecting novelty
and are deemed relevant for medical progress [18]. This study was intended as a starting
point for intensified discussion and development, rather than a substitute for proper drug
development and clinical trials. Meanwhile, a phase I clinical trial using promiscuous
SARS-CoV-2 HLA-DR binding peptides, together with the adjuvant XS15 was initiated
after receiving the required regulatory and institutional review board approvals.

2.4. Immunomonitoring

Peripheral blood mononuclear cells (PBMCs) were isolated from heparin-anticoagu-
lated peripheral venous blood drawn before and after vaccinations, via density centrifuga-
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tion [19], and were either frozen and stored in liquid nitrogen or used fresh. In addition,
plasma diluted 1:1 with phosphate buffered saline (PBS) was obtained during PBMC iso-
lation. Blood serum from three healthy blood donors (HDs) was obtained after informed
consent for use as control samples. For in vitro amplification (IVS) of vaccine-specific
cells, PBMCs were seeded in a 24-well plate in T cell medium (TCM; i.e., IMDM with
10% heat-inactivated human serum, 100 units/mL penicillin, 0.1 mg/mL streptomycin,
and 50 µM β-mercaptoethanol) and cultured overnight at 37 ◦C, 7.5% CO2. On day 1,
peptides were added in pools at 10 or 5 µg/mL each for HLA class I and class II peptides,
respectively, and interleukin-2 (rIL-2, R&D Systems, Minneapolis, MN) was added to the
culture on days 3, 5, 7, and 9. Cells were harvested on day 12, counted, and analyzed
either with intracellular cytokine staining (ICS) or Enzyme Linked ImmunoSpot (ELISpot)
assay [19]. For ex vivo interferon-γ (IFNγ) ELISpot, PBMCs obtained pre-vaccination were
thawed, while those obtained post-vaccination were used directly ex vivo after density
gradient separation. All cells were rested overnight in a culture medium (IMDM with 10%
heat-inactivated human serum, 100 units/mL penicillin, 0.1 mg/mL streptomycin, and
50 µM β-mercaptoethanol), containing 1 µg/mL DNase I before starting the ELISpot. A
total of 300,000 cells per well were plated on a pre-coated ELISpot plate. The negative
control (DMSO in water) and vaccine peptides were tested in six and three replicates,
respectively. For phytohemagglutinin (PHA-L) stimulation (positive control), duplicates
were plated with 150,000 cells per well. For IFNγ ELISpot analyses following in vitro
12-day expansion, 100,000 cells were used per well. Peptides were added at a concentration
of 5 µg/mL (for HLA class I peptides) or 2.5 µg/mL (for HLA-DR peptides), and PHA-L
was used at 10 µg/mL. The IFNγ ELISpot was performed as described previously [10,19],
with incubation at 37 ◦C in a 7.5% CO2 atmosphere for 26 h before development. Spot
measurement was performed on an ImmunoSpot series 6 ultra-V analyzer (CTL Europe
GmbH, Bonn, Germany). For the intracellular cytokine assay, cells obtained after the 12-day
culture were plated at 1 × 106 cells/well in a 96-well plate and cultured for 14 h in the
presence of Brefeldin A (10 µg/mL, Sigma-Aldrich, St. Louis, MO) and Golgi Stop (BD
Biosciences, Heidelberg, Germany), and 10 µg/mL of the individual peptides or the equiv-
alent amount of DMSO/water. Staphylococcus enterotoxin B (Sigma-Aldrich) was used
at 10 µg/mL as the positive control. Cells were thereafter stained with Zombie Aqua live
dead, CD4 APC-Cy7 (both Biolegend, San Diego, CA) and CD8 PE-Cy7 (Beckman Coulter,
Krefeld, Germany) antibodies, permeabilized with Cytoperm/Cytofix (BD Biosciences),
then stained intracellularly with the following specific antibodies—IFNγ FITC, IL-2 PE
(both BD Biosciences), CD154 APC, and TNF Pacific Blue (both Biolegend). All cells were
acquired on a flow cytometer (LSR Fortessa, BD Biosciences) and analyses were performed
with FlowJo (FlowJo, Ashland, OR) [10,19]. Antibody reactivity in the plasma obtained
from the vaccinated volunteer and in serum from three HDs (for comparison) was used in
an in-house ELISA performed as described previously [19]. In brief, 96-well plates were
incubated for 16 h with the respective peptides (produced in-house at the University of
Tübingen, Department of Immunology, Tübingen, Germany) or with recombinant proteins
(SinoBiological, Beijing, China), utilized at a concentration of either 35 µg/mL or 1 µg/mL.
Plasma or serum samples were diluted 1:500 (previously determined to be optimal for the
analysis of peptide–antibody reactivity). To differentiate between IgG- and IgM-antibodies,
peroxidase-conjugated goat anti-human IgG and IgM-antibodies were applied in parallel.
Ortho-phenylene-diamine was used as a substrate. The reactivity was measured with
an ELISA-reader at 450 nm and was expressed as the optical density multiplied by 1000
(OD × 103). Cut-off values were determined by testing sera from healthy blood donors
against the respective antigens/peptides. Values above the mean of OD × 103 plus twice
the standard deviation were defined as antibody positive.
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3. Results
3.1. Clinical Aspect of the Vaccination Sites

The first vaccine with the peptides shown in Table 1 was administered subcutaneously
(s.c.) under the skin of the left abdomen on 6 March 2020, the second with the peptides
shown in Table 2 on the right-hand side on 3 April 2020. As expected with any s.c.
vaccination using Montanide [10,20] or when further adding XS15 as an adjuvant [10], a
granuloma developed in both cases. These were palpable from day one and grew to a
maximum size of approximately 3 × 5 × 1.5 cm by day 12. In this case, the skin surface
temperature was 37.0 ◦C at the center of the granuloma vs. 36.2 ◦C on adjacent visually
unaffected abdominal skin. The granulomas were described as painless, slightly itchy
indurations that were sensitive to touch, particularly between days 9 and 14, and started
to shrink in size from day 13. No other adverse effects were noticed by the vaccinated
volunteer, particularly no systemic adverse reactions to the vaccine.

3.2. T Cell Responses

First vaccination: Ex vivo IFNγ ELISpot results from pre- and post-vaccination PBMCs
are shown in Figure 2A,B. The CMV-pp65 HLA-DR epitope YQEFFWDANDIYRIF (amino
acids 510–524; CMV-DR-1), which was included as a positive control, was weakly recog-
nized (mean: 16 spots/300,000 cells; background < 1) before this vaccination. Notably, three
years prior, vaccination with this peptide resulted in a mean spot count of 525 four weeks
after the peptide was administered, with the same adjuvant and protocol [10]. As expected
from our previous experience, boosting with one additional vaccination more than one year
later with the same peptide gave a strong response (mean: 910 spots/300,000 cells). The
CMV-pp65 HLA-A*01 epitope YSEHPTFTSQY (amino acids 363–373; CMV-A1-1), which
induced a weak response in an ex vivo ELISpot three years prior with a mean spot count
of only 12, and showed a negative response before the recent booster vaccination, gave a
mean spot count of 115. These results indicated that a three-year memory against these
HLA class II- and class I-restricted CMV-pp65 epitopes persisted after a single vaccination.
Importantly, the vaccinated volunteer was previously tested as CMV seronegative. No
pre-existing SARS-CoV-2-directed T cell responses were detectable prior to this first SARS-
CoV-2 vaccination. The response to the five predicted SARS-CoV-2 HLA class I peptides
remained negative after vaccination. In the meantime, we know that our predictions did
not find the immunodominant HLA class I epitopes recognized by the T cells of convales-
cents [16], and thus, might not be immunogenic at all. In contrast, a strong T cell response
was induced against all three SARS-CoV-2 HLA class II peptides by a single vaccination
(Figure 2). Thus, all three SARS-CoV-2-derived peptides predicted for HLA-DR-binding
induced T cells to produce IFNγ, most probably representing a Th1 response. Phenotyping
of the responding T cell subsets and the production of further cytokines by intracellular
cytokine staining confirmed this notion (Table 3).

Second vaccination: Strong ex vivo T cell responses could be detected at day 19,
when testing peptides in pools (Figure 3A). The three pools with nucleoprotein and spike
peptides showed a strong response. Two 9-mer-peptides embedded in 15-mer peptides
(VYAWNRKRI, SVLYNSASF) were recognized by CD4 T cells after one round of in vitro
peptide stimulation (Table 3). The two new spike peptides were also tested with blood
drawn at days 5 and 12, respectively, after in vitro stimulation, to get an idea about the
kinetics of T cell induction. As indicated in Figure 3B, no response was detectable on
day 5 against the spike peptide ASVYAWNRKRISN, but could be evidenced later on
day 12. In order to resolve the peptide specificity of all induced T cell responses, as well
as the functional phenotype of the T cells, intracellular stainings were performed for all
peptides used (Table 3). Thus, all CD4 T cells induced produce IFNγ, IL-2, CD154, and
TNF. The two boost peptides from nucleocapsid and the newly vaccinated spike pep-
tide ASVYAWNRKRISN (spi-DR-1) showed especially strong responses, as well as the
nucleocapsid peptide LLLLDRLNQLESKMS (nuc-DR-7). Since the latter was included
in a peptide-pool tested with PBMCs from a pre-vaccination time-point (23 March 2021),
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which showed some T cell reactivity, this strong reaction could also be a boost reaction of
a naturally existing cross-reactive T cell response. Indeed, we found T cells against this
peptide in other non-infected individuals [16]. One of the spike peptides (VADYSVLYN-
SASFST; spi-DR-2) was not recognized as a 15-mer, but as an embedded 9-mer peptide
(SVLYNSASF), it did show responses (Table 3 and ELISpot; ELISpot results not shown).
Taken together, after vaccination with ten promiscuous HLA-DR peptides, we could detect
T cell responses against five peptides, plus an embedded peptide.
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Figure 2. Results of the ex vivo Interferon-γ ELISpot after the first vaccination. (A) ELISpot wells
showing spot counts obtained from pre- and post-vaccination PBMC samples tested against each of
the specified vaccine peptides (n = 10, in triplicate). The negative control (ctrl.—DMSO and water)
was tested in six replicate wells and the positive control (+ ctrl.—phytohemagglutinin) in duplicate
wells. The images representing the ELISpot wells were rearranged for this illustration. (B) Graph of
spot numbers for the three SARS-CoV-2-derived HLA-DR peptides. The mean and SD are shown from
three technical replicates. Abbreviations: CMV—cytomegalovirus, ctrl.—control, DMSO—dimethyl
sulfoxide, env—envelope protein, nuc—nucleoprotein, pre-vac—36 days before vaccination, post-
vac—19 days after vaccination, and SARS-CoV-2—severe acute respiratory syndrome coronavirus 2.
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Figure 3. Results of the Interferon-γ ELISpot after the second vaccination. (A) PBMCs were assayed by ex vivo interferon-γ
ELISpot. Wells showing spot counts from post-vaccination PBMC samples obtained from blood drawn 19 days after the sec-
ond vaccination. The specified peptide pools, consisting of several of the vaccinated peptides, were either vaccinated before
(boost; second vac) or vaccinated for the first time (after first vaccination); tests were performed in triplicates. The negative
control (- ctrl.—DMSO and water) was tested in six replicate wells and the positive control (+ ctrl.—phytohemagglutinin) in
duplicate wells. The images representing the ELISpot wells were rearranged for this illustration. (B) PBMCs were assayed
by interferon-γ ELISpot (100.000 cells/well), after 12 days of in vitro expansion in the presence of the relevant peptides
(in vitro stimulation; IVS). PBMCs were isolated from blood drawn 5 days (left side) or 12 days (right side) after the second
vaccination; peptides were either vaccinated before (boost; second vaccination) or newly vaccinated for the first time (after
first vac), as indicated by the column number. Figure was designed with BioRender.

3.3. Antibody Responses

Antibodies contained in the plasma of the volunteer and serum of three healthy blood
donors were tested using an ELISA. IgG and IgM antibodies against the three SARS-CoV-2
CD4 peptides were not detectable or showed negligible induction (Table S1). We know from
previous work that repeated vaccination with CD4 peptides in Montanide with or without
additional adjuvants leads to the induction of antibodies [19]. We, therefore, speculate
that antibodies against these epitopes might develop later on. There seems to be a weak
recall IgG response against the CMV-pp65 CD4 epitope YQEFFWDANDIYRIF (an 8-fold
increase compared to the reactivity before vaccination). It is interesting that two out of the
three healthy donors showed high IgG reactivity against YQEFFWDANDIYRIF (amino
acids 510–524; CMV-DR-1). Testing serum for antibodies against linear synthetic peptides
from all proteins, not only from the surmised neutralizing epitope-bearing ones, might be
a useful complement to the use of recombinant proteins. In addition, sera of the vaccinated
volunteer and several healthy donors, obtained before the current pandemic, were tested
with an ELISA covering SARS-CoV-2 proteins and peptides (Table S2). Further, serum
from one donor (HD CoV+) who was tested positive for SARS-CoV-2 according to medical
routines (qRT-PCR) and recovered from the infection, was included. This serum showed
strong reactivity against the spike protein, but not the serum from the vaccinated volunteer,
indicating that the latter was not infected.
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Table 3. Intracellular cytokine staining of CD4+ PBMCs drawn 19 days after the second vaccination, following in vitro
stimulation with the respective peptides.

AA Sequence Source Protein Peptide ID
IFNγ IL-2 CD154 TNF

% (Fold Increase)

IGYYRRATRRIRGGD nuc nuc-DR-1 4.2 (199) 1.6 (35) 16.0 (60) 14.2 (191)
ASAFFGMSRIGMEVT nuc nuc-DR-2 12.0 (571) 3.2 (67) 31.7 (118) 24.0 (321)

ASVYAWNRKRISN spike spi-DR-1 8.9 (424) 4.6 (76) 34.0 (122) 22.0 (201)
VADYSVLYNSASFST spike spi-DR-2 0.0 0.0 −0.3 −0.1

RWYFYYLGTGPEAGL nuc nuc-DR-5 0.1 (4) 0.3 (6) 1.3 (4) 1.2 (12)
ASWFTALTQHGKEDL nuc nuc-DR-6 0.0 0.0 0.1 0.1
LLLLDRLNQLESKMS nuc nuc-DR-7 16.0 (696) 3.3 (62) 37.1 (99) 31.1 (312)

AADLDDFSKQLQQSM nuc nuc-DR-8 0.0 0.0 −0.1 0.0
AIVLQLPQGTTLPKG nuc nuc-DR-9 0.0 0.0 0.0 −0.1
YKHWPQIAQFAPSAS nuc nuc-DR-10 0.0 0.0 −0.1 0.0

Embedded AA sequence

VYAWNRKRI * spike - 1.6 (45) 1.0 (13) 15.8 (13) 8.0 (22)
SVLYNSASF * spike - 4.6 (128) 3.9 (49) 17.6 (15) 15.1 (41)
LLDRLNQL * nuc nuc-B8-1 0.0 0.2 (3) 0.2 0.4

Embedded sequences * tested are shown in italics. Percentages of marker+ cells are given within the living CD4+ lymphocytes, after
subtraction of the values found in the unstimulated cells (neg. ctrl.—DMSO/water). T cell responses (given in bold) were defined for
each marker as: (i.) frequency of marker-positive CD4+ [peptide stimulation] at least 3-fold higher than the frequency of marker-positive
CD4+ cells [neg. ctrl.], and (ii.) at least 20 marker-positive CD4+ events in the peptide stimulated condition. Mean % positive cells
in the unstimulated control samples were 0.02%, 0.06%, 0.55%, and 0.17% for IFNγ, IL-2, CD154, and TNF, respectively; fold increase
over control is indicated in brackets. Abbreviations: AA—amino acid, neg. ctrl.—negative control, IFNγ—interferon-γ, IL—interleukin,
nuc—nucleoprotein, and TNF—tumor necrosis factor.

4. Discussion

After the first vaccination, ex vivo IFNγ-ELISpot results revealed strong T cell re-
sponses against all three SARS-CoV-2-derived CD4 peptides, 19 days after a single s.c.
vaccination with the peptides, Montanide and the TLR 1/2 ligand XS15. Based on previ-
ous findings, we assumed that these immune responses were most probably robust and
durable [10]. There were no detectable T cell responses against the five CD8 peptides and
no measurable antibody responses. In the second vaccination, ten CD4 peptides were used,
two from spike and eight from the nucleocapsid. T cell responses against six of these were
induced, starting to be detectable 12 days after vaccination. Based on these findings, we
developed a SARS-CoV-2 peptide vaccine that was particularly intended for persons who
tend to have weaker CD4 T cell activity, e.g., patients with B cell malignancies, meanwhile
undergoing early phase clinical trial testing. The potential of this approach is based on the
following assumptions.

1. CD4 Th1 cells should vigorously activate virus antigen-experienced B cells that should
already pre-exist in most COVID-19-patients. An illustration for this assumption is
provided in Figure 1. These CD4 T cells would be expected to directly contribute to
virus clearance and deliver strong T helper signals to the CD8 T cells already primed
during natural infection. The resulting enhanced activity could lead to more rapid
virus clearance or transiently increased lung damage.

2. Vaccine-induced CD8 T cells against peptides embedded in the longer peptides
do appear later, as preliminary data from the majority of subjects in our presently
running study suggest (https://clinicaltrials.gov, accessed on 20 April 2021, Identifier:
NCT04546841). In this study, six immunodominant 15-mer peptides reported in [16]
are used in a vaccine with Montanide and XS15. Once activated, such CD8 T cells
should also contribute to faster virus clearance.

3. Vaccine-induced antibodies against the viral peptides tested in this study might also
appear much later, if at all.

https://clinicaltrials.gov
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4. Since we found IFNγ-producing T cells, we conclude that Th1 CD4 T cells were
induced. Therefore, there should be no disease enhancing-effects related to the
induction of Th2-bias, as described for other coronaviruses [21].

Of course, a vaccine designed for broad use must be designed to be suitable for
all patients independent of their individual HLA allotypes. Based on the experiments
described here, and our recent analysis of T cell responses in 180 SARS-CoV-2 infected
individuals [16], we proposed that SARS-CoV-2 peptides that are recognized frequently by
CD4 T cells in this cohort should be used for a first exploration of this vaccine concept. From
spike glycoprotein, only those peptides should be included that are not exposed on the
virus particle and thus should not be recognizable by antibodies. This could be judged by in
silico prediction of the site of candidate peptides within the spike protein (see Figure 4). We
think this measure should exclude any risk of inducing antibody-dependent enhancement
(ADE) through non-neutralizing antibodies improving viral uptake, as was described
for SARS-CoV-1 and dengue virus infection in humans and feline infectious peritonitis
virus in cats [22–25]. Thus, our strategy was to carefully select spike glycoprotein-derived
candidate epitopes that were promiscuous for most HLA-DR allotypes, recognized by
infected people, but that did not represent any potential B cell epitopes, as far as could be
judged using in silico analysis and analysis of serum antibodies from SARS-CoV-2-infected
patients. The relevant underlying theoretical considerations are illustrated in Figure 1.
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Figure 4. In silico prediction of the localization of a CD4 candidate epitope within the SARS-CoV-2
spike protein. Ribbon representation of the top view (left) and side view (right) of the SARS-CoV-2
spike ectodomain in its closed state (PDB:6VXX) with the peptide VADYSVLYNSASFST highlighted
in the Red Corey-Pauling-Koltun (CPK) model. Image was produced using the Molsoft ICM-Browser.

Vaccination with T cell epitopes alone should be suitable for prophylactic as well as
therapeutic vaccination. As the situation in zoonotic coronaviruses suggests, this strategy
might even be superior to traditional vaccination approaches, where primarily B cell
responses against the vaccine antigens are to be induced, since in many such infections
mainly memory T cells and not antibodies seem to play the major role for long-term-
immunity against disease [26]. A vaccine solely consisting of T cell epitopes would not
necessarily be expected to completely prevent infection, as with traditional vaccines aiming
for strong neutralizing antibody responses. However, it would help the patient’s immune
system to quickly resolve the commencing infection by fostering faster antibody production,
enabled by the vaccine-induced CD4 T cells. On the other hand, a fraction of SARS-CoV-2
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convalescents do not show any antibody responses, indicating clearly that T cells alone
could be protective [16].

Induction of T cells against several viral proteins should also have the advantage of
protection against virus mutations affecting only one viral protein, as was discussed in the
context of influenza [27]. In the case of SARS-CoV-2, this type of vaccine should also work
for new viral serotypes and variants that already exist in so far unknown environments
or could develop in the future. Taken together, we propose an immunization strategy
that induces T cells but indirectly affects B cells, to be applied in at-risk patients before
or after SARS-CoV-2 infection. This might be especially beneficial for older individuals
who frequently have lower numbers of CD4 T cells, and for cancer patients with treatment-
induced lymphopenia. A phase I clinical study based on these considerations was started
in November 2020 (EudraCT Number: 2020-002502-75) in healthy young individuals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9050428/s1. Table S1: Antibody responses in a healthy self-vaccinated volunteer and
healthy blood donors without anamnestic SARS-CoV-2 exposure. Table S2: Antibody responses in a
healthy self-vaccinated volunteer and healthy blood donors with confirmed and without SARS-CoV-
2 exposure.
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