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It is now well established that cell interiors are significantly crowded by macro-

molecules, which impede diffusion and enhance binding rates. However, it is

not fully appreciated that levels of crowding are heterogeneous, and can vary

substantially between subcellular regions. In this article, starting from a micro-

scopic model, we derive coupled nonlinear partial differential equations for

the concentrations of two populations of large and small spherical particles

with steric volume exclusion. By performing an expansion in the ratio of the

particle sizes, we find that the diffusion of a small particle in the presence of

large particles obeys an advection–diffusion equation, with a reduced diffu-

sion coefficient and a velocity directed towards less crowded regions. The

interplay between advection and diffusion leads to behaviour that differs

significantly from Brownian diffusion. We show that biologically plausible

distributions of macromolecules can lead to highly non-Gaussian probability

densities for the small particle position, including asymmetrical and

multimodal densities. We confirm all our results using hard-sphere Brownian

dynamics simulations.
1. Introduction
Cells are highly crowded environments, with up to 40% of the cytoplasmic

volume occupied by macromolecules such as RNA, ribosomes and enzymes

[1,2]. The motion of smaller molecules, such as amino acids and small proteins,

is seriously impeded by macromolecular crowding: a large number of in vitro
studies have shown that diffusion coefficients are reduced and binding rates

increased in the presence of synthetic obstacles like dextran and Ficoll [2–7].

Furthermore, modern fluorescence microscopy techniques allow direct obser-

vation of single-particle motion in vivo, and experiments have shown that

biomolecules diffuse in an anomalous manner, in particular, subdiffusively

[8–10] and superdiffusively [11]. Theoretical approaches to crowding are gen-

erally simulation-based: particularly popular are highly detailed Brownian

dynamics (BD) models [12–14], and cruder lattice-based descriptions [15–19].

However, nearly all in vitro and theoretical treatments of crowding consist-

ently overlook the fact that the cell is not a homogeneous environment. Even

in prokaryotes, where the cell interior is completely membrane free, distinct

sub-cellular compartments exist. Firstly, there is a clear demarcation between

the cytoplasm and the nucleoid owing to a significant difference in the concen-

tration of macromolecules [20,21]. Secondly, macromolecules are actively

transported to opposite ends of the cell in preparation for cell division, leading

to a bimodal crowder distribution [22,23]. Thirdly, phase separation is known to

occur in the cytoplasm owing to hydrophobic and elecrostatic interactions between

different macromolecular species, leading to distinct regions of high and low

crowder density [24]. These effects imply that the cell interior consists of a highly

non-uniform distribution of crowders which is maintained over long time scales.

In this article, we address the question of how a purely steric heterogeneous

crowder distribution affects the motion of a small particle. Though it is frequently

claimed that a purely steric model of crowding cannot account for the full variety
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Figure 1. Cartoons showing the difference between homogeneous and heterogeneous crowding. (a) A uniform distribution of large particles (blue) corresponds to
homogeneous crowding. A small particle (red) will tend to exhibit Brownian diffusion, with a reduced diffusion coefficient. (b) A non-uniform distribution of large
particles (blue) corresponds to heterogeneous crowding. A small particle (red) will tend to be directed towards less-crowded regions.
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of behaviours observed in vivo [25,26], we show here that a

steric description can explain a considerably wider variety

of phenomena than usually thought, including multimodal

densities, directed motion, and super- and subdiffusion. This

highly irregular behaviour is caused directly by the hetero-

geneity of the crowded environment, and so naturally would

not be apparent in in vitro or computational studies which

assume uniform crowder distributions.

In §2 we derive, from a microscopic description, a pair of

diffusion equations for a population of large particles and a

single small particle. We perform a perturbative expansion in

the ratio of particle sizes, and thereby obtain a single advection–

diffusion equation for the small particle motion, which depends

strongly on the spatial distribution of the large particles. In

§3, we investigate how a variety of biologically plausible

distributions of macromolecules might affect the motion

of a small particle. We confirm the predictions of our advec-

tion–diffusion equation with hard-sphere BD simulations.

We conclude with a discussion in §4.
2. Diffusion equations with macromolecular
crowding

Mathematical models of macromolecular crowding tend to

assume that macromolecules are homogeneously (uniformly)

distributed throughout the cell, but in reality the local concen-

tration of macromolecules can vary widely on a subcellular

length scale (see Introduction). The consequences of this discre-

pancy are demonstrated in figure 1. The top cartoon shows a

typical trajectory of a small Brownian particle (red) in a homo-

geneous distribution of macromolecules (blue) at a moderate

level of crowding. The trajectory, starting in the centre of

the volume (red circle), is essentially Brownian, although

frequent collisions with macromolecules will tend to reduce

the small particle’s diffusion coefficient. The bottom cartoon

shows a typical trajectory of a small Brownian particle (red)

in a heterogeneous distribution of macromolecules (blue),
with alternating regions of high and low crowding. In this

case the small particle, again starting from the centre (red

circle), is directed preferentially towards a region of low crowd-

ing, and—since it is then trapped between regions of high

crowding—it will tend to remain there much longer than is pre-

dicted by a standard diffusion equation. Although both cases

in figure 1 have the same overall level of crowding, the behav-

iour of a small particle varies greatly between the two. In this

section, we therefore attempt to derive a diffusion equation

for the small particle which can capture the irregular motion

induced by heterogeneous macromolecular crowding.

We consider the three-dimensional space (21, 1) �
[0, L] � [0, L] with reflective boundaries, in which particles

can diffuse in all dimensions, but we are only interested in

the first dimension. We consider two species of spherical par-

ticles, X1 and X2, with radii r1 and r2, respectively, and

intrinsic diffusion coefficients D1 and D2, respectively. Let uj
i

be the concentration of Xi particles in the region [jh, ( j þ
1)h) � [0, L] � [0, L], for some grid-spacing h . 0 and integer

j, and let pj
i be the probability that a random point in [jh, ( j þ

1)h) � [0, L] � [0, L] can accommodate a single particle of

species Xi. Then we can approximately model diffusion of par-

ticles as a ‘hopping’ between neighbouring grid points. A

particle of Xi can hop from [jh, ( j þ 1)h) � [0, L] � [0, L] to

[( j þ 1)h, ( j þ 2)h) � [0, L] � [0, L] with rate (Di/h2)pjþ1
i . Incor-

porating pj
i into the hopping rate accounts for the probability

that a particle is blocked by crowders. Taking a mean-field

approach to this description leads to a spatially discrete diffu-

sion equation for the concentration of Xi:

@u
j
i

@t
¼ Di

h2
[p j

i (u
j�1
i þ u

jþ1
i )� (p j�1

i þ p jþ1
i )u

j
i]: ð2:1Þ

Similar mean-field equations have been derived for equal-

sized particles, such as in [27,28]. The equations for uj
1 and

uj
2 are not independent, but are rather coupled via the quantity

pj
i which is naturally a function of both uj

1 and uj
2. The quantity

pj
i is the probability that a random point in [ jh, ( jþ 1)h)� [0, L]�

[0, L] can accommodate a particle of Xi, which is approximately
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given by scaled particle theory (SPT) [1,29]:

pj
i ¼ ð1� fjÞexp � ri

1� fj
Bj þ 4pAj þ

B2
j

2ð1� fjÞ

 !
ri

 "

þ 4pr2
i

3
dj þ

B3
j

12pð1� fjÞ2 þ
AjBj

1�fj

0
@

1
A
1
A
3
5, ð2:2Þ

where dj ¼
P

i u
j
i, Aj ¼

P
i riu

j
i, Bj ¼

P
i 4pr2

i u
j
i and

fj ¼
P

i
4
3pr3

i u
j
i. Note that we are using the SPT formula for

pj
i rather than the more usual 1� fj ¼ 1�

P
i

4
3pr3

i u
j
i [28].

This is because we require pj
i to be the probability that a

random point is surrounded by a sufficiently large empty

region to at least accomodate a whole particle of radius ri.

This probability is given by SPT, whereas 1 2 fj is merely

the probability that a random point can accommodate a

point-particle, and is therefore an overestimate of the required

quantity (for more information, see [30]).

Defining ui(x) ¼ uj¼bx/hc
i and pi(u1(x), u2(x)) ¼ pj¼bx/hc

i , and

taking the limit h! 0, we use equation (2.1) to obtain

continuous PDEs for the concentrations ui:

@ui

@t
¼ Di pi

@2

@x2
ui � ui

@2

@x2
pi

� �
: ð2:3Þ

Again the PDEs for u1 and u2 are coupled via the functions pi.

We now consider the case where u2(x, t)� u1(x, t) for all x
and t. It follows that pi(u1, u2) � pi(u1, 0). Intuitively, this

means that the X2 concentration is so low that it does not

affect the diffusion of any particles, but the X1 concentration

affects the diffusion of both species. We therefore simply

write pi(u1). It follows that the diffusion equation for X1 is

completely self-contained, while the diffusion equation for

X2 depends on X1. We can write the two equations as

@u1

@t
¼ @

@x
D1 p1 � u1

@p1

@u1

� �
@

@x
u1

� �
ð2:4Þ

and

@u2

@t
¼ @

@x
D2p2

@

@x
u2

� �
� @

@x
D2u2

@p2

@u1

@u1

@x

� �
: ð2:5Þ

In other words, X1 obeys a nonlinear diffusion equation with

diffusion coefficient D1( p1 2 u1(@ p1/@u1)), while X2 obeys a

nonlinear advection–diffusion equation with diffusion coeffi-

cient D2p2 and velocity D2(@ p2/@u1)(@u1/@x) in the positive

x-direction. For more details on deriving nonlinear PDEs

from lattice models, see [30,31].

We now further consider the case where r2� r1. Combin-

ing this with the earlier assumption that u2(x, t)� u1(x, t), it

follows that we are now considering a single small particle

of type X2 diffusing amongst several large particles of type

X1. Let e ¼ r2/r1. Perturbatively expanding equation (2.2) in

small e gives the following:

p2(u1) ¼ 1� (1þ 3e)
4

3
pr3

1u1 þ o(e2): ð2:6Þ

Furthermore, from the Stokes–Einstein relation, we have that

D1/D2 ¼ e. It follows that the time scale on which u1 changes

is much slower than that of u2. We can, therefore, make a

quasi-stationarity assumption about u1 on the time scale of

u2: we say u1 ¼ u1(x). Note that this stationarity is consistent

with our earlier biological observations that heterogeneous

crowder distributions are maintained over long time scales.

Finally, letting f(x) ¼ 4
3pr3

1u1(x) be the proportion of volume
occupied by X1 at x, and writing u(x, t) ¼ u2(x, t) and D ¼ D2,

we have a linear advection–diffusion equation for X2:

@u

@t
¼ @

@x
D(1� (1þ 3e)f)

@u

@x

� �
þ @

@x
D(1þ 3e)

@f

@x
u

� �
: ð2:7Þ

We, therefore, have a rigorously derived advection–diffusion

equation for the concentration of small molecules diffusing in

a completely generic crowder distribution f(x). This PDE

shows that particle motion is affected in two distinct ways.

(i) The particle’s local diffusion coefficient is rescaled by a

factor of 1 2 (1 þ 3e)f(x), where e is the ratio of small-to-large

particle radii and f(x) is the local proportion of volume

occupied by crowders. This recovers the classical 1 2 f scaling

in the case of point-particle diffusion (e ¼ 0). (ii) The particle

moves with a velocity 2D(1 þ 3e)(@f/@x) in the positive

x-direction, that is, a velocity directed towards less crowded

regions and proportional to the gradient of the crowder distri-

bution. If f is constant (i.e. a uniform crowder density), this

velocity becomes zero, and the particle will obey a standard

diffusion equation (albeit with a reduced diffusion coefficient).

Particle motion will generally be governed by the interplay

between effects (i) and (ii), since particles will tend to move

towards more dilute regions of space but will tend to move

faster in those regions.
3. Applications
Using equation (2.7), we can investigate the motion of small

molecules in a variety of crowder distributions. Of particular

interest are the mean and variance (mean squared displace-

ment, MSD) of u as function of time. In particular, whether

the variance is superlinear or sublinear, which would

correspond to super- and subdiffusion, respectively.

The mean and variance of u cannot be obtained directly

from equation (2.7), so instead we write the solution of the

advection–diffusion equation as a Taylor series in time:

u(x, t) ¼
X1
i¼0

u(i)(x)
ti

i!
, ð3:1Þ

where u(i)(x) ¼ @iu/@tijt¼0. The time derivatives can be

immediately obtained from equation (2.7) by thinking of

the right-hand side as a differential operator acting on u:

u(i) ¼ D (1þ 3e)f00 þ (1� (1þ 3e)f)
@2

@x2

� �� �i

d(x), ð3:2Þ

where we have assumed u(x, 0) ¼ d(x), and f0 0 denotes the

second derivative of f(x). Each u(i) is then a sum of products

of derivatives of f(x) and d(x).

The nth moment of u is defined as

m(n)(t) ¼
ð1

�1

xnu(x, t) dx ¼
X1
i¼0

ti

i!

ð1

�1

xnu(i)(x) dx, ð3:3Þ

so that the variance is given by m(2)(t) 2 (m(1)(t))2. At very

short times, the t term of the variance will dominate, so the

particle motion will be diffusive. We can then investigate

the transition to subsequent anomalous diffusion at short

times by looking at the t2 term of the variance. If the coeffi-

cient of this term is positive, then the variance will be

initially superlinear, and so the motion will be initially super-

diffusive. Similarly, if the t2 term is negative, the motion will

be initially subdiffusive. A zero coefficient for the t2 term

denotes normal diffusion.
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By squaring the expression for m(1)(t), and observing thatÐ1

�1
xd(x) dx ¼ 0, we find the coefficient of the t2 term in the

expansion of the variance:

g ¼ 1

2

ð1

�1

x2u(2)(x) dx�
ð1

�1

xu(1)(x) dx
� �2

: ð3:4Þ

The initial anomalous diffusion follows immediately:

g < 0) subdiffusion
g ¼ 0) normal diffusion

and g . 0) superdiffusion:

9=
; ð3:5Þ

We now apply the advection–diffusion equation to a var-

iety of physically plausible heterogeneous crowder

distributions. Since our PDE is (i) derived from a lattice

description, (ii) uses a mean-field assumption and (iii) uses

the approximate SPT theory, it is not clear how accurate its

predictions will be. We, therefore, also compare our PDE

with hardsphere BD simulations, which suffer from none of

these limitations.

First, we study a Gaussian crowder distribution f(x) ¼

ke2x2

, where k is the maximum volume occupied. (Note that

k must be less than 0.74, the densest sphere packing.) This

could represent a local distribution of ribosomes, which are

known to assemble near individual strands of mRNA [5,32].

The symmetry of this example implies that the mean of u is

zero for all times, but the variance may vary. Using this f in

equation (3.4) gives g ¼ 10D2k(1 þ 3e)(1 2 k(1 þ 3e)). Since

k , 0.74 and e is ‘small’, say e � 0.1, it follows that k(1 þ
3e) , 1, and hence g . 0. Therefore, a small particle in a

Gaussian crowder distribution will transition from diffu-

sive to superdiffusive motion at short times. In figure 2,

we confirm this with BD simulations using the Cichocki–

Hinsen algorithm [33]. In the inset, we plot MSD against

time, and it is clear that our analytical theory is correct initially,

and our PDE is correct for all times shown. In the main

figure, we plot a snapshot of the distribution at a fixed

time, where the PDE and BD both exhibit bimodal behaviour,

clearly distinct from normal diffusion. The bimodal distri-

bution arises because the small particle is directed (by the

advection term in equation (2.7)) down one or other of the

slopes of the Gaussian distribution.

Next, we study a bimodal Gaussian crowder distribution

f(x) ¼ kx2e12x2

, where again k is the maximum volume

occupied. This could represent the bimodal distribution of

macromolecules characteristic of cells undergoing division

[22,23]. The symmetry of this example again implies that

the mean of u is zero for all times, but the variance may

vary. Using this f in equation (3.4) gives g ¼ 2 10D2ek(1 þ
3e) , 0. Therefore, a small particle in a bimodal Gaussian

crowder distribution will transition from diffusive to subdif-

fusive motion at short times. In figure 3, we confirm this with

BD simulations. In the plot of MSD against time (inset), we

observe that the particle motion transitions from diffusive

to subdiffusive at short times, as predicted, but later becomes

superdiffusive. In the main figure, we plot a snapshot of the

distribution at a fixed time (t ¼ 10), where the PDE and BD

both exhibit trimodal behaviour, clearly distinct from

normal diffusion. A number of effects give rise to this irregu-

lar behaviour: the small particle is initially trapped (by the

advection term in equation (2.7)) between the two peaks of

the bimodal crowder distribution—hence subdiffusion—but

eventually, it will move past one of these peaks and be
directed (by the advection term) down the outer slope—

hence superdiffusion. At t ¼ 10, for the parameter set

chosen, there is a significant chance that the particle is still

trapped in the central region, but also a significant chance

that the particle has moved past one or other of the peaks,

hence the trimodal behaviour.

Finally, we study a step-like crowder distributionf ¼ (k/p)

(arctan(s(x þ w)) þ p/2), where again k is the maximum

volume occupied, s is a measure of the sharpness of the step

and w is the distance between the step and the initial particle.

This could represent a phase boundary such as the point

where nucleoid meets cytosol. This example is asymmetric,

so we expect the mean particle position to change with time,

as well as the particle variance. We find that, at short times,

the mean particle position is given by m(1)(t) ¼ 2 (2Dks(1 þ
3e)/p(1 þ s2w2))t þ o(t2), so that the particle performs directed

motion towards the left (less crowded half) of the space. We

also find that g ¼ (2/p2)D2k2s2(1 þ 3e)2 . 0, so the motion

will initially transition from diffusive to superdiffusive.
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In figure 4, we confirm the change in mean position with BD

simulations (inset). It is clear that our analytical theory is

qualitatively correct, and our PDE is correct for all times

shown. In the main figure, we plot a snapshot of the distri-

bution at a fixed time, where the PDE and BD both exhibit

non-Gaussian asymmetric behaviour, clearly distinct from

normal diffusion. The steep slope of the crowder distribution

causes the particle to be directed to the left (by the advection

term in equation (2.7)) with high speed: this causes the

particle to outrun normal diffusion in the negative half of the

space. There is a small chance that the particle will diffuse

into the right half of the space, but the diffusion coefficient

here is significantly reduced so that normal diffusion is

considerably faster.
4. Conclusion
In this article, we have shown that heterogeneous macromolecu-

lar crowding can lead to highly irregular motion of small

particles, that differs wildly from the usual diffusion equation.

From a microscopic model, we rigorously derived a simple

advection–diffusion equation, equation (2.7), to describe the

motion of a small particle in an arbitrary distribution of large

crowder molecules, which agrees excellently with detailed

BD simulations. The shape of the crowder distribution f(x)

can induce surprising small particle behaviour, such as bimodal

and trimodal distributions, and directed motion. We also

observed superdiffusive or subdiffusive motion, and both are

possible in physically plausible crowder distributions. We

further developed a fast analytical method to check whether a

given crowder distribution f(x) leads to super- or subdiffusive

motion initially, and whether that motion is directed. This

allows us to accurately predict the initial effect of any crowder

distribution without solving the PDE.

There are two main consequences of our results. Firstly,

they show that it is essential to incorporate subcellular

heterogeneity into models of macromolecular crowding. The

motion of a particle in a heterogeneous environment differs

so greatly from its homogeneous counterpart, that ignoring
heterogeneity could lead to erroneous modelling predictions.

Secondly, our results suggest that cells might take advantage

of heterogeneous crowding to direct particles towards or

away from specific locations. For example, our results predict

that a newly translated protein will diffuse quickly away

from its parent mRNA molecule owing to the locally high

concentration of ribosomes, thereby reducing the time taken

to reach its destination.

It is worth noting that the work in this article ignores hydro-

dynamic interactions between particles, which are induced by

the flow field in the surrounding fluid as a particle diffuses [34].

Such interactions are believed to be important to accurate mod-

elling of in vivo diffusion [35], but are frequently ignored in

simulations owing to their huge computational cost [12],

which is due to the separation-dependent correlation between

each particle’s incremental Gaussian displacements at each

time step [36]. By contrast, in lattice-based descriptions (and

the Cichocki–Hinsen algorithm) it is assumed that only one

particle moves at a time, and the direction of motion is inde-

pendent of the other particles’ motion (though not of their

position). It is currently not possible to incorporate hydrodyn-

amic effects into our model, though we are working on a way

to do this which will hopefully be the subject of a future paper.

However, we can make an educated guess about the likely

impact. Batchelor showed that, in the diffusion of a single

species of sphere, hydrodynamic effects tend to reduce the

magnitude of steric effects, but not enough to offset them

entirely [34]. We therefore expect hydrodynamic interactions to

maintain the directed motion and altered diffusion coefficients,

but with a reduced magnitude.

Nevertheless, while a more detailed model of crowding

would incorporate many different crowder sizes, non-spherical

particles and hydrodynamic interactions, the work in this

article shows that a relatively simple steric model of crowding

can lead to a wide variety of anomalous behaviours if crowder

heterogeneity is taken into account.
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Appendix A. Brownian dynamics simulations
The BD algorithm used to produce the figures in this article is

the Cichocki–Hinsen algorithm [33,37] with reflective bound-

aries in the y- and z-directions. The algorithm, with time-step

Dt, can be summarized as follows:

(1) Place small particle at 0. Place large particles in a non-

overlapping configuration.

(2) Propose a new position for the small particle, at a

Normal(0, 2DDt) increment from its current position. If

the proposed position overlaps another particle or the

boundary of the volume, reject it, otherwise accept it.

(3) For each large particle, in turn, propose a new position

at a Normal(0, 2eDDt) increment from its current
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position. If the proposed position overlaps another par-

ticle or the boundary of the volume, reject it, otherwise

accept it.

(4) Advance time by Dt.
(5) Repeat steps 2–4 until sufficient time has elapsed.
We note that the large particles move with diffusion coef-

ficient De, with e � 1, so that the large particle density is

then essentially stationary on the time scale of interest.

Matlab code to perform the above algorithm is given in

the electronic supplementary material.
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