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Abstract
Objectives: Spontaneous intracerebral hemorrhage remains a major cause of death 
and disability throughout the world. We tried to establish accurate long- term out-
come prediction models for hypertensive intracerebral hemorrhage (HICH) using CT 
radiomics and machine learning.
Methods: In	a	retrospective	study	of	270	patients	with	HICH	between	June	2013	
and	June	2018,	CT	 images	and	patients'	6-	month	outcome	based	on	the	modified	
Rankin Scale were collected. Hematomas on CT images were selected as volumes 
of	interests	(VOIs),	and	1,029	radiomics	features	of	the	VOIs	were	extracted.	Based	
on	correlations	with	patients'	outcome,	radiomics	features	underwent	dimensional-
ity	reduction	analyses.	Then,	the	support	vector	machine	(SVM),	k-	nearest	neighbor	
(KNN),	logistic	regression	(LR),	decision	tree	(DT),	random	forest	(RF),	and	XGBoost	
algorithms were applied with the screened features to establish prognostic predic-
tion	models	of	HICH.	Accuracies	of	all	models	were	compared.
Results: Eighteen radiomics features were screened as prognosis- associated radiom-
ics	signature	of	HICH	based	on	the	variance	threshold,	SelectKBest,	and	 least	ab-
solute	shrinkage	and	selection	operator	 (LASSO)	regression	models.	Patients	were	
randomly allocated into training (n = 215) and validation (n =	55)	sets.	Accuracies	of	
all	6	machine	learning	algorithms	in	the	validation	set	exceeded	80%.	The	sensitivity,	
specificity,	and	accuracy	in	the	validation	set	were	93.3%,	92.5%,	and	92.7%	for	the	
RF	model	and	92.3%,	88.1%,	and	89.1%	for	the	XGBoost	model,	respectively,	which	
were the best two among all models.
Conclusions: Taking	advantage	of	 radiomics	and	machine	 learning,	we	established	
accurate	prognostic	prediction	models	of	HICH.	The	RF	model	and	XGBoost	model	
returned the best accuracies.
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1  | INTRODUC TION

Spontaneous intracerebral hemorrhage (ICH) is the most devastat-
ing	stroke	type,	with	reported	30-	day	mortality	rate	being	as	high	as	
40%,	and	only	one-	fifth	of	survivors	can	live	independently	6	months	
after	 ictus	 (van	Asch	et	al.,	2010).	Hypertensive	 ICH	 (HICH)	 is	 the	
most	common	type	of	ICH,	accounting	for	approximately	70%	of	all	
ICHs	(Meretoja	et	al.,	2012).	Studies	have	identified	a	wide	range	of	
factors associated with outcome after acute ICH. Identification of 
these factors led to the development of models to predict mortality 
and	functional	outcome	(Ariesen	et	al.,	2005;	Cheung	&	Zou,	2003;	
Rost	et	al.,	2008;	Ruiz-	Sandoval	et	al.,	2007).	Early	prognostication	
is	often	desired	by	doctors,	patients,	and	families,	but	existing	prog-
nostic models are biased and no models have satisfactory accuracy 
(Hemphill	et	al.,	2015).

The rapid development and advancement of medical imaging 
technology has provided more comprehensive data and has played 
an	 increasingly	 important	 role	 in	 disease	 screening,	 treatment	
planning,	 and	 prognosis	 assessment	 (Doi,	 2007).	 Biomedical	 im-
ages contain information that reflects underlying pathophysiology 
and	these	relationships	can	be	revealed	via	high-	throughput	quan-
titative	 image	 analyses	 (Gillies	 et	 al.,	 2016).	 The	 process	 of	 con-
verting digital medical images into mineable high- dimensional data 
is	known	as	radiomics	(Lambin	et	al.,	2012).	Machine	learning	is	a	
field	of	computer	 science	 that	uses	statistical	 techniques	 to	give	
computer systems the ability to “learn” with data without being ex-
plicitly	programmed	(Deo,	2015;	Jordan	&	Mitchell,	2015).	In	recent	
years,	machine	learning	algorithms	have	been	applied	to	cancer	re-
search to predict genotype preoperatively or to predict patients' 
prognosis	 based	 on	 radiomics	 features	 (Emblem	 et	 al.,	 2015;	 Lu	
et	 al.,	 2018;	 Macyszyn	 et	 al.,	 2015;	 Zhang	 et	 al.,	 2017).	 In	 this	
study,	we	attempted	to	establish	accurate	long-	term	outcome	pre-
diction models for HICH using CT radiomics and machine learning 
algorithms.

2  | MATERIAL S & METHODS

2.1 | Patients

Between	 June	 2013	 and	 June	 2018,	 270	 patients	 hospitalized	
for	HICH	were	included	in	the	study	(80	women,	190	men;	mean	
age	54.7	± 11.2 years). Inclusion criteria were as follows: (a) con-
firmed diagnosis of supratentorial HICH; (b) available CT images 
scanned	 within	 24	 hr	 after	 hemorrhage;	 (c)	 available	 progno-
sis information at 6 months after ictus based on the modified 
Rankin	Scale	(mRS);	 (d)	clinical	characteristics	(i.e.,	age,	gender,	
and	hemorrhage	location)	available.	Prognosis	was	dichotomized	
according	 to	 the	mRS:	Good	outcome	was	defined	as	mRS	<3,	
whereas	poor	outcome	was	defined	as	mRS	≥3.	This	retrospec-
tive	 study	was	approved	by	 the	Chinese	PLA	General	Hospital	
Institutional	 Review	 Board	 (IRB),	 and	 verbal	 agreement	 was	
obtained.

2.2 | Image acquisition, segmentation, and 
radiomics features extraction

A	noncontrast	CT	scan	was	performed	on	all	patients	after	admis-
sion to the hospital and the CT image data were collected in the for-
mat of Digital Imaging and Communications in Medicine (DICOM) so 
as to contain as much original information as possible. Hematoma 
outlines on CT images were regarded as volume of interests (VOIs) 
and were drawn slice- by- slice semi- automatically by a neurosurgeon 
in order to establish a precise relationship between hematoma radi-
omics features and prognosis.

Radiomics features extracted from each VOI were calculated 
automatically. The features could be divided into 5 groups: (a) first- 
order	statistic,	(b)	shape	features,	(c)	gray-	level	co-	occurrence	matrix	
(GLCM),	(d)	gray-	level	run	length	method	(GLRLM),	and	(e)	gray-	level	
size	zone	matrix	 (GLSZM).	The	final	set	consisted	of	19	first-	order	
statistic,	 15	 shape	 and	 size	 features,	 and	 59	 textural	 features	 (in-
cluding	 27	 GLCM,	 16	 GLRLM,	 and	 16	 GLSZM).	 The	 first-	order	
statistic features and textural features underwent 12 types of trans-
formation	and	filter:	exponential,	square,	square	root,	logarithm,	and	
wavelets	 (wavelet-	LLL,	 wavelet-	HHH,	 wavelet-	HLL,	 wavelet-	HHL,	
wavelet-	LLH,	 wavelet-	HLH,	 wavelet-	LHL,	 wavelet-	LHH).	 Finally,	 a	
total	of	1,029	[(19	+ 59) × 12 + 19+59 + 15] radiomics features were 
extracted from each patient's CT images.

2.3 | Dimensionality reduction and analysis of 
radiomics features

The principal features relevant for prognosis were then identified 
by reducing the number of features under consideration. Three 
feature	 selection	 methods,	 variance	 threshold,	 SelectKBest,	 and	
the	 least	 absolute	 shrinkage	and	 selection	operator	 (LASSO)	were	
applied orderly to screen out the features that could best predict 
prognosis of HICH. The variance threshold was applied to evaluate 
the	divergence,	and	features	with	variance	less	than	0.8	were	aban-
doned since only divergent features could play a part in differentiat-
ing	outcome.	SelectKBest	was	a	univariate	feature	selection	method	
that used variance analysis to measure the relationship between 
features	and	outcome.	LASSO	was	a	regression	analysis	method	that	
performed	both	feature	selection	and	regularization	in	order	to	en-
hance the prediction accuracy and interpretability of the statistical 
model it produces.

To further remove irrelevant or redundant features to improve 
data	quality	and	speed	up	data	analysis,	principal	component	analy-
sis	(PCA),	covariance	analysis,	and	cluster	analysis	were	performed	
in turn. Principal component analysis used the orthogonal transfor-
mation to convert possibly correlated features into a set of linearly 
uncorrelated features to evaluate the correlation between these 
features. Covariance analysis was used to assess the degree to which 
two selected features cooperated or interacted. Cluster analysis 
grouped a set of features in a way that features in the same group 
were more similar to each other than to those in other groups.
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2.4 | Machine learning and prognosis prediction

Six	 common	 machine	 learning	 algorithms,	 support	 vector	 machine	
(SVM),	k-	nearest	neighbor	(KNN),	logistic	regression	(LR),	decision	tree	
(DT),	 extreme	 gradient	 boosting	 (XGBoost),	 and	 random	 forest	 (RF)	
were used to establish a prediction model of prognosis after HICH 
based on the selected features. The SVM aims to create a decision 
boundary between two classes that enables the prediction of labels 
from	one	or	more	feature	vectors.	KNN	algorithm	is	a	nonparametric	
approach	used	for	classification,	and	it	customs	the	information	about	
its	 neighbor	 points	 for	 the	 classification	 of	 output	 labels.	 Logistic	
regression iteratively identifies the strongest linear combination 
of variables with the greatest probability of detecting the observed 
outcome using components of linear regression reflected in the logit 
scale. Decision tree denotes a tree with its node refers to the attrib-
ute,	whereas	its	link	refers	to	a	decision	rule	and	its	leaf	node	refers	
to	 an	 output	 class.	 Extreme	 gradient	 boosting	 (XGboost)	 is	 an	 im-
proved	supervised	learning	algorithm	based	on	the	Gradient	Boosting	
Decision	Tree	algorithm.	The	Random	Forest	technique	is	a	regression	
tree	technique,	which	uses	bootstrap	aggregation	and	randomization	
of predictors to achieve a high degree of predictive accuracy. Of the 
270	HICH	patients,	80%,	215	patients,	were	used	as	the	training	set	
to train the machine learning prognosis prediction models and the re-
maining 55 patients (20%) were used as the test set to evaluate the 
performance	of	the	prediction	models.	Sensitivity,	specificity,	and	ac-
curacy	 in	 training	 set	 and	 test	 set	were	 calculated	 to	 quantify	 their	

prediction performance. The receiver operating characteristic (ROC) 
curve	was	presented,	and	the	area	under	the	curve	(AUC)	represented	
the	prediction	power	of	a	classifier	was	reported.	A	larger	AUC	indi-
cated	a	better	prediction	power.	An	accuracy	close	to	1	in	the	training	
set	represented	overfitting,	which	was	the	production	of	an	analysis	
that corresponded too closely or exactly to a particular set of data 
but failed to fit additional data reliably. The image data processing and 
machine	learning	workflow	are	shown	in	Figure	1.

2.5 | Statistical analysis

All	statistical	analyses	were	performed	in	Radcloud	platform.	Computer-	
generated random numbers were used to assign 80% of the VOIs to the 
training data set and 20% of VOIs to the validation data set.

3  | RESULTS

3.1 | Clinical characteristics

A	total	of	270	supratentorial	HICH	patients	with	6-	month	follow-	up	data	
were	included	in	this	study.	There	were	more	male	patients	(70.4%)	than	
female	patients.	At	6	months	of	follow-	up	using	the	mRS	score,	87	pa-
tients (32.2%) had good outcome (mRS <3) and 183 patients (67.8%) had 
poor outcome. The overall prognosis of patients with HICH was poor.

F I G U R E  1  The	image	postprocessing	workflow.	First,	hematoma	on	CT	images	was	segmented.	After	feature	extraction,	feature	
selection,	and	machine	learning	model	construction,	six	prognosis-	predictive	models	were	established	in	the	training	set	and	were	further	
evaluated in the validation sets
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3.2 | Feature extraction, selection, and analysis

First,	 the	1,029	 radiomics	 features	 of	 all	 patients	were	 extracted.	
Then,	 the	 extracted	 1,029	 original	 radiomics	 features	 were	 re-
duced to 525 and then to 182 after variance threshold analysis and 
SelectKBest	analysis	(Figure	2).	Finally,	18	radiomics	features	were	
nonzero	coefficients	after	the	LASSO	regression	analysis.	Details	of	

the	selected	18	features	were	shown	in	Figure	3.	PCA	showed	that	
the features that contributed most to patients' prognosis were as 
follows:	 least	axis,	minor	axis,	maximum	2D	diameter	column,	and	
maximum	3D	diameter	(Figure	4a).	Covariance	analysis	showed	the	
interdependence and collaborative changes between the selected 
18	radiomics	features	(Figure	4b),	and	cluster	analysis	revealed	the	
distribution of the selected features in all 270 patients.

F I G U R E  2  Figure	selection	using	variance	threshold	analysis	and	SelectKBest	analysis.	Of	the	1,029	features	extracted,	525	features	
were	selected	after	variance	threshold	analysis	(a)	and	182	were	selected	after	SelectKBest	analysis	(b)
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3.3 | Machine learning established 
prediction models

The	sensitivity,	specificity,	and	overall	accuracy	of	all	6	prediction	models	
established by different machine learning algorithms for training set and 
validation	set	were	summarized	in	Table	1.	All	6	algorithms	could	distin-
guish good outcome HICH patients from poor outcome patients accu-
rately.	General	accuracies	of	the	DT	algorithm	model	were	100%	in	the	
training	set	and	85.5%	in	the	validation	set,	which	suggested	overfitting.	
The	RF	 and	XGBoost	were	 the	 two	most	 accurate	 algorithms	 for	 both	
training	set	and	validation	set.	The	sensitivity,	specificity,	and	accuracy	in	
the	validation	set	were	93.3%,	92.5%,	and	92.7%	for	the	RF	model	and	
92.3%,	88.1%,	and	89.1%	for	the	XGBoost	model,	respectively.	Fifty-	one	
out of 55 HICH patients in the validation set were predicted correctly ac-
cording	to	the	RF	prediction	model,	and	49	out	of	55	were	predicted	cor-
rectly	according	to	the	XGBoost	prediction	model.	The	AUC	was	0.92	(95%	
confidence	interval	[95%	CI],	0.82–	0.97)	for	the	RF	model	and	0.92	(95%	
CI,	0.74–	0.93)	for	the	XGBoost	model	(Figure	5).	Even	though	the	overall	
accuracy	of	the	KNN	prediction	model	in	the	validation	set	(83.6%,	46/55)	
was	the	lowest	among	all	6	models,	the	accuracy	was	still	higher	than	80%.	
CT	radiomics-	based	machine	learning	algorithms,	especially	the	RF	algo-
rithm	and	the	XGBoost	algorithm,	could	accurately	predict	6-	month	out-
come	in	patients	with	supratentorial	HICH.	Based	on	the	above	findings,	
intelligent prediction of prognosis after supratentorial HICH was possible.

4  | DISCUSSION

Spontaneous ICH is a type of stroke with the highest mortality and 
disability	rate,	and	its	mortality	decreased	little	in	the	past	30	years	
(van	Asch	et	al.,	2010;	Vibo	et	al.,	2007).	Regardless	of	the	choice	

of	treatment,	prognosis	is	what	doctors,	families,	and	patients	care	
about the most. Previous studies have identified a wide range of fac-
tors	associated	with	worse	outcome	after	HICH,	including	older	age,	
lower	Glasgow	Coma	Scale	 (GCS)	 score,	 larger	hematoma	volume,	
combined	 intraventricular	 hemorrhage,	 and	 deep	 or	 infratentorial	
hemorrhage. Identification of these factors led to the development 
of	 models	 for	 predicting	 death	 or	 functional	 outcome	 after	 ICH,	
such	 as	 the	 FUNC	 score,	 the	NIH-	SS,	 and	 the	 intracerebral	 hem-
orrhage	 score	 (Ariesen	et	 al.,	 2005;	Cheung	&	Zou,	2003;	Garrett	
et	 al.,	 2013;	Rost	 et	 al.,	 2008;	Ruiz-	Sandoval	 et	 al.,	 2007;	Weimar	
et	 al.,	 2006).	Cheung	&	Zou	 reported	 that	 the	 ICH	score	 compro-
mising	 the	 GCS	 score,	 age,	 infratentorial	 origin,	 ICH	 volume,	 and	
intraventricular	hemorrhage	served	to	predict	good	outcome,	with	
a	sensitivity	of	93.5%,	and	a	specificity	of	60.5%	in	a	cohort	of	142	
patients	(Cheung	&	Zou,	2003).	Ruiz-	Sandoval	et	al	reported	an	ICH	
grading	scale	with	sensitivity	of	70.0%,	and	specificity	of	86.7%	for	
30-	day	good	outcome	 in	310	patients	 (Ruiz-	Sandoval	et	al.,	2007).	
On	the	whole,	previously	reported	prediction	methods	focused	on	
short-	term	prognosis	and	have	relatively	low	accuracies.	In	addition,	
the assessment of hematoma volume using the Tada formula was 
rough	and	inaccurate	(Xu	et	al.,	2014).

In	this	study,	we	presented	a	new	method	to	predict	the	outcome	
of HICH. The primary objective of our study was to establish an ac-
curate prognostic prediction model for HICH by using CT radiomics 
and	machine	 learning.	High-	throughput	radiomics	of	1,029	quanti-
tative CT features were extracted to assess their value in predicting 
prognosis	of	HICH.	Finally,	18	radiomics	features	were	screened	out	
as imaging markers to establish prediction models using machine 
learning algorithms. Through 6 advanced machine learning algo-
rithms,	we	not	only	established	6	HICH	prognosis	prediction	mod-
els,	but	also	evaluated	and	verified	the	accuracy	of	each	prediction	

F I G U R E  3  Features	finally	selected	for	prediction	after	the	LASSO	regression	analysis
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model.	Compared	with	traditional	visual	image	assessment,	radiom-
ics	 could	obtain	more	 comprehensive	 information.	 The	 sensitivity,	
specificity,	 and	 accuracy	 of	 the	 RF	 algorithm	 prediction	model	 all	
exceeded	90%	in	the	validation	set,	which	were	significantly	higher	
than previously reported methods. Our findings demonstrated that 
CT radiomics and machine learning- based prediction models could 
accurately predict the 6- month outcome in patients with supraten-
torial HICH.

Radiomics	aims	to	extract	large	amount	of	quantitative	features	
from	medical	images	using	data-	characterization	algorithms	(Kumar	
et	 al.,	 2012;	 Lambin	 et	 al.,	 2012).	 These	 features,	 namely	 radiom-
ics	 features,	 have	 the	 potential	 to	 uncover	 disease	 characteristics	

that	fail	to	be	appreciated	by	the	naked	eye	(Aerts	et	al.,	2014;	Wu	
et	 al.,	 2018).	 Radiomics	 features	 include	 metrics	 such	 as	 spatial	
relationships,	 textural	 heterogeneity,	 and	 many	 other	 character-
istics,	 and	 the	distinctive	 imaging	 features	between	disease	 forms	
may	be	useful	 for	predicting	prognosis	 (Lambin	et	al.,	2012;	Yip	&	
Aerts,	2016).	It	has	been	proven	that	radiomics	is	able	to	accurately	
predict	genotype,	gene	mutation	status,	and	survival	in	tumors,	such	
as	 isocitrate	 dehydrogenase	 (IDH)	 genotype,	 O6- methylguanine- 
DNA	 methyltransferase	 promoter	 methylation,	 1p19q	 codeletion,	
and	p53	(Emblem	et	al.,	2015;	Jakola	et	al.,	2018;	Li	et	al.,	2017;	Xi	
et	al.,	2018).	Zhang	et	al	generated	a	model	predictive	of	IDH	geno-
type	in	high-	grade	gliomas	with	accuracies	of	86%	(AUC	= 0.88) in 

F I G U R E  4  Principal	component	screening	and	feature	correlation	analysis.	Principal	component	analysis	revealed	the	4	features	that	had	
the greatest impact on prognosis (a). Covariance analysis showed the interdependence and relevance between the selected 18 features (b)
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the	training	cohort	and	89%	(AUC	= 0.92) in the validation cohort 
using	random	forest	algorithm	(Zhang	et	al.,	2017).	In	another	similar	
study,	 the	 authors	 generated	 a	model	 predictive	 of	 IDH	mutation	
status	achieving	an	AUC	of	0.921	 in	the	training	cohort	and	0.919	
in	the	validation	cohort	and	a	model	predictive	of	1p19q	codeletion	
achieving an 0.917 and 0.916 for the training and validation cohort 
(Zhou	et	al.,	2019).	Lu	et	al	reported	the	IDH	and	1p/19q	status	of	
gliomas could be classified by radiomics and machine learning ap-
proaches,	with	AUC	between	0.922	and	0.975	and	accuracies	be-
tween 87.7% and 96.1%. Emblem et al developed a support vector 
machine	model	with	high	diagnostic	accuracies	for	6-	month	and	1-	,	
2-	,	 and	 3-	year	 survival	 (AUC	 0.794–	0.851)	 (Emblem	 et	 al.,	 2015).	
On	 the	whole,	 current	 radiomics	 and	machine	 learning-	related	 re-
searches mainly focused on prediction of genotype or survival of 
tumors.	To	our	knowledge,	our	study	was	a	new	attempt	to	predict	
prognosis in HICH patients and we got favorable accuracies similar 
to those in tumor- related studies.

Before	the	advent	of	radiomics	studies,	several	CT	image	mark-
ers or signs have proven to significantly correlate with hemorrhage 
expansion	 and	 patients'	 prognosis,	 such	 as	 hemorrhage	 volume,	
hemorrhage	margin	 irregularity,	 black	 hole	 sign,	 hypodensity,	 and	
density	heterogeneity	(Blacquiere	et	al.,	2015;	Boulouis	et	al.,	2016;	
Brouwers	et	al.,	2014;	Delcourt	et	al.,	2016;	Li	et	al.,	2016).	Radiomics	
can	be	regarded	as	quantification	and	full	extension	of	above	men-
tioned features and signs. Machine learning offers an approach for 
discovering predictive radiomics features and establish prediction 
model	 (Zhou	 et	 al.,	 2018).	 The	 parameter	 space	 is	 searched	 for	

imaging features statistically associated with clinical outcome. The 
results demonstrated that the deep features extracted via machine 
learning performed much better than traditional image signs seen 
by the naked eye in the prediction of long- term outcome in HICH 
patients.

The	results	of	our	study	showed	that	18	of	1,029	radiomics	fea-
tures	were	most	closely	associated	with	prognosis	of	HICH,	includ-
ing	4	first-	order	statistic	features,	4	shape	features,	and	10	textural	
features. Most of these features were not visually appreciable but 
very important for comprehensive assessment of patient's state 
and prediction of the long- term outcome. We got a higher accu-
racy compared with the aforementioned studies concerning tumor 
survival and gene mutation status using radiomics and machine 
learning	(Emblem	et	al.,	2015;	Jakola	et	al.,	2018;	Li	et	al.,	2017;	Xi	
et	al.,	2018).	The	reason	might	be	that	we	used	6	different	machine	
learning algorithms to establish 6 prediction models at the same time 
and chose the one with the highest accuracy. Machine learning by 
means	of	RF	or	XGBoost	made	the	early	prediction	of	long-	term	out-
come after HICH possible and could be used for artificial intelligence 
prediction of HICH prognosis.

Despite	the	promising	results,	there	are	several	limitations	in	our	
study.	First,	the	imaging	data	were	not	acquired	from	the	same	CT	
scanner,	which	might	contribute	to	model	performance	discrepancy.	
In	addition,	different	treatment	measures	patients	received	might	be	
a	confounding	factor	for	predicting	outcomes.	Finally,	limited	by	the	
retrospective	nature	of	our	study,	a	prospective	study	with	more	pa-
tients is warranted to verify the results.

Algorithms

Training set (n = 215) Validation set (n = 55)

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

KNN 86.8% 88.3% 87.9% 90.0% 82.2% 83.6%

SVM 81.8% 87.5% 86.0% 90.9% 84.1% 85.5%

XGBoost 96.0% 89.7% 91.2% 92.3% 88.1% 89.1%

RF 98.5% 99.3% 99.1% 93.3% 92.5% 92.7%

LR 75.9% 86.6% 83.7% 90.9% 84.1% 85.5%

DT 100% 100% 100% 80.0% 87.5% 85.5%

Abbreviations:	DT,	decision	tree;	KNN,	k-	nearest	neighbor;	LR,	logistic	regression;	RF,	random	
forest;	SVM,	support	vector	machine;	XGBoost,	extreme	gradient	boosting.

TA B L E  1  Sensitivity,	specificity,	and	
overall accuracy of different machine 
learning algorithm prediction models for 
training set and validation set

F I G U R E  5  ROC	curves	of	the	RF	
model	and	the	XGBoost	model	for	
long- term outcome prediction of HICH 
in	validation	sets.	The	AUC	was	0.92	for	
both	the	RF	model	(a)	and	the	XGBoost	
model (b)
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5  | CONCLUSIONS

In	this	study,	we	established	6	long-	term	outcome	prediction	mod-
els	for	HICH	using	radiomics	and	machine	learning	algorithms.	After	
comparison,	the	RF	model	and	the	XGBoost	model	showed	the	best	
accuracy and are attractive alternatives to traditional methods for 
upfront assessment of long- term outcome in supratentorial HICH 
patients.
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