
MINI REVIEW
published: 27 February 2019

doi: 10.3389/fimmu.2019.00327

Frontiers in Immunology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 327

Edited by:

Celio Geraldo Freire-de-Lima,

Universidade Federal do Rio de

Janeiro, Brazil

Reviewed by:

Philip Alexander Efron,

University of Florida, United States

Hugo Caire Castro-Faria-Neto,

Fundação Oswaldo Cruz (Fiocruz),

Brazil

*Correspondence:

Thierry Roger

thierry.roger@chuv.ch

orcid.org/0000-0002-9358-0109

Specialty section:

This article was submitted to

Microbial Immunology,

a section of the journal

Frontiers in Immunology

Received: 09 January 2019

Accepted: 08 February 2019

Published: 27 February 2019

Citation:

Schrijver IT, Théroude C and Roger T

(2019) Myeloid-Derived Suppressor

Cells in Sepsis.

Front. Immunol. 10:327.

doi: 10.3389/fimmu.2019.00327

Myeloid-Derived Suppressor Cells in
Sepsis
Irene T. Schrijver, Charlotte Théroude and Thierry Roger*

Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Epalinges, Switzerland

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells characterized

by their immunosuppressive functions. MDSCs expand during chronic and acute

inflammatory conditions, the best described being cancer. Recent studies uncovered an

important role of MDSCs in the pathogenesis of infectious diseases along with sepsis.

Here we discuss the mechanisms underlying the expansion and immunosuppressive

functions of MDSCs, and the results of preclinical and clinical studies linking MDSCs to

sepsis pathogenesis. Strikingly, all clinical studies to date suggest that high proportions

of blood MDSCs are associated with clinical worsening, the incidence of nosocomial

infections and/or mortality. Hence, MDSCs are attractive biomarkers and therapeutic

targets for sepsis, especially because these cells are barely detectable in healthy

subjects. Blocking MDSC-mediated immunosuppression and trafficking or depleting

MDSCs might all improve sepsis outcome. While some key aspects of MDSCs biology

need in depth investigations, exploring these avenues may participate to pave the way

toward the implementation of personalized medicine and precision immunotherapy for

patients suffering from sepsis.

Keywords: sepsis, infectious disease, innate immunity, myeloid-derived suppressor cells, biomarker,

immunosuppression, inflammation, personalized medicine

INTRODUCTION

Sepsis is one of the leading causes of preventable death. Sepsis is defined as a “life-threatening organ
dysfunction caused by a dysregulated host response to infection” (1). The mortality rate of sepsis
accounts for five-to-six million deaths of ∼30 million cases per year worldwide. Sepsis incidence
is rising due to the aging of the population, the burden of chronic diseases, the increasing number
of immunocompromised patients, and the resistance of microorganisms to antimicrobials (2). In
2017, the World Health Assembly and the World Health Organization made sepsis a global health
priority by adopting a resolution to improve the prevention, diagnosis, and management of sepsis.

Innate immune cells, such as monocytes/macrophages, dendritic cells (DCs), and neutrophils,
sense microbial and danger-associated molecular patterns (MAMPs produced by microorganisms,
and DAMPs released by injured or stressed cells) through pattern recognition receptors (PRRs).
PRRs are grouped into five main families: toll-like receptors (TLRs), NOD-like receptors, C-type
lectins, scavenger receptors, RIG-I-like receptors, and intra-cytosolic DNA sensors (3). The
interaction between PRRs and MAMPs or DAMPs triggers intracellular signaling pathways that
coordinate gene expression, the development of the inflammatory response, the establishment
of antimicrobial cellular and humoral responses, and the restoration of homeostasis once
pathogens have been contained or eradicated. Sepsis is characterized by an early exacerbation of
antimicrobial defense mechanisms, the so-called hyper-inflammatory “cytokine storm,” mediating

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00327
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00327&domain=pdf&date_stamp=2019-02-27
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:thierry.roger@chuv.ch
http://orcid.org/0000-0002-9358-0109
https://doi.org/10.3389/fimmu.2019.00327
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00327/full
http://loop.frontiersin.org/people/668002/overview
http://loop.frontiersin.org/people/461407/overview
http://loop.frontiersin.org/people/113654/overview


Schrijver et al. MDSCs in Sepsis

tissue injury, organ dysfunctions and early mortality,
and a concomitant shift toward inflammation resolution
and tissue repair. Sepsis-induced immunoparalysis (or
immunosuppression) favors the development of secondary
infections and long-term immune disabilities accounting for late
mortality (4–8).

During the last decades, early goal-directed therapy decreased
early mortality from sepsis, which contributed to shift the
sepsis ICU population toward a population suffering from
chronic critical illness (CCI). Indeed, a subset of ICU
patients surviving sepsis develop CCI characterized by long-
lasting immunosuppression associated with a persistent, low-
grade, inflammation maintained by the continuing release
of DAMPs. The underlying inflammation is associated with
catabolism and malnutrition. The term persistent inflammation-
immunosuppression and catabolism syndrome (PICS) has been
proposed to characterize this degraded state. PICS is associated
with long-term morbidity, late multiple organ failures and late
mortality (9–11).

Clinical trials testing adjunctive therapy to dampen
inflammation-related dysfunctions in sepsis have not been
conclusive (12). Several reasons may account for these failures,
among them the large heterogeneity of the sepsis syndrome.
Nowadays, the prevalent view is that restoration of immune
capacities using immuno-stimulants might be more efficient
than anti-inflammatory therapies. In any case, personalized
medicine should be used to define at an individual level whether
inflammatory cytokines, immunoparalysis, or metabolism has to
be targeted (4, 7, 13–17). In that perspective, significant efforts
are devoted to the identification of genetic, molecular, and
cellular biomarkers to stratify patients for clinical studies and
treatment based on clinical condition and disease stage.

We poorly understand what is responsible for a dysregulated
host response and the delay returning to homeostasis in sepsis
patients (4–8, 18). Growing interest focuses on a subpopulation
of leukocytes called myeloid-derived suppressor cells (MDSCs).
MDSCs are involved in the regulation of the immune response
in many pathological situations, the best-studied being cancer.
A number of comprehensive reviews discusses MDSCs in the
context of cancer, autoimmunity and infectious diseases [see for
example (19–26)]. Interestingly, recent data suggest that MDSCs
are involved in immune dysfunctions observed in sepsis. In this
review, we summarize and discuss our current knowledge about
the role played byMDSCs during sepsis and the potential of using
MDSCs as biomarkers and therapeutic targets of sepsis.

MYELOID-DERIVED SUPPRESSOR CELLS
(MDSCs)

MDSCs are immature myeloid cells that expand during
chronic and acute inflammatory conditions. The premises of
MDSC discovery date back more than a century when tumor
progression was associated with extra-medullary haematopoiesis
and neutrophilia. In the mid-1960s, Lappat and Cawein reported
that subcutaneously transplanted A-280 tumor cells generate
factors involved in a leucocytosis response that sustains tumor

growth (27). Subsequently, leucocytosis was involved in the
expansion of cells of myeloid origin with immunosuppressive
activity (24). These cells express reduced levels of conventional
markers for mature myeloid and lymphoid cells and were named
natural suppressor cells, null cells, immature myeloid cells, or
myeloid suppressor cells. In 2007, “myeloid-derived suppressor
cells” was adopted as a unifying term to minimize the confusion
prevailing in the literature (28).

MDSCs are defined primarily by their immunosuppressive
functions. Within sepsis, one may predict that MDSCs play a
dual role depending on disease progression. On the one hand,
MDSCsmay be beneficial by limiting hyper-inflammation during
the early stages of sepsis, hence protecting from early organ
dysfunction. On the other hand, MDSCs may be detrimental by
amplifying long-term immunosuppression and contributing to
CCI and/or PICS (8, 10). As discussed later, these two facets have
been highlighted in experimental models, while clinical studies
all pointed to a deleterious role of MDSCs.

Minimal phenotypic characteristics of MDSCs have been
proposed, but a definite, consensual phenotyping scheme is
lacking (29, 30). Two main subpopulations of MDSCs are
usually considered: polymorphonuclear MDSCs (PMN-MDSCs,
previously called granulocytic-MDSCs) and monocytic MDSCs
(M-MDSCs), so-called because of their morphological and
phenotypical homologies with PMNs and monocytes (26, 29–
32). In mice, MSDCs are defined as Gr1+ CD11b+ cells (Gr1:
granulocyte receptor-1 antigen, consisting of Ly-6G and Ly-6C
antigens). PMN-MDSCs are CD11b+ Ly6G+ Ly6Clow cells and
M-MDSCs CD11b+ Ly6G− Ly6Chigh cells. In humans, PMN-
MDSCs are CD11b+ CD14− CD33+ (CD15+ or CD66+) cells
and M-MDSCs CD11b+ CD14+ HLA-DRlow/− CD15− cells.
PMN-MDSCs overlap phenotypically with mature neutrophils
but contrary to PMNs, MDSCs sediment within the PBMC
fraction in ficoll gradients after density separation of whole
blood. Whether low density gradient (LDGs) PMNs and PMN-
MDSCs are the same entity is unclear, albeit the terms is used
interchangeably in the literature. The identification of PMN-
MDSCs by density gradient is further limited by the rise of not
only low-density neutrophils, but also high-density CD62Ldim

neutrophils that suppress T cells in the blood of healthy humans
infused with endotoxin (33). Additional markers are proposed
to differentiate MDSCs from monocytes or granulocytes, for
example high expression of lectin-type oxidized LDL receptor-
1 (LOX-1) by PMN-MDSCs when compared to granulocytes in
whole blood (33, 34).

Complicating the picture, other MDSC subsets have been
described, among others early-stage MDSCs (e-MDSCs) and
eosinophilic MDSCs (eo-MDSCs) (29, 35). In addition, tumor-
associated macrophages (TAMs), which unlike their name
suggests are present in inflammatory conditions bedsides cancer,
can be considered as one of the members making up the MDSC
spectrum (36, 37). Finally, MDSCs are highly plastic. They
can differentiate into osteoclasts and non-suppressive mature
myeloid cells, and M-MDSCs can differentiate into TAMs and
PMN-MDSCs (38–41). Overall, to this day, identifying MDSCs
based on cell surface phenotyping usually ends up with a mixed
population, eventually containing other myeloid cell types, that
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does not take into account the hallmark immunosuppressive
function of MDSCs.

Adding to the above caveats, improper cell separation through
density gradient and freezing whole blood or PBMC samples
before flow cytometry analyses affects the detection of MDSCs,
especially PMN-MDSCs. Hence, an objective of future studies is
to optimize and harmonize sample handling and flow cytometry
strategies (labeling, gating, and analyses) to quantify MDSCs
in whole blood. This will facilitate the comparison of results
from different studies to determine whether MDSCs are reliable
disease biomarkers (32, 42). Strategies to identify cell surface
markers discriminating MDSCs from other leukocytes using
unbiased high discriminating techniques like RNA sequencing
and mass cytometry analyses are starting to be used and
have not yet improved the immuno-phenotyping of MDSCs
(43). To summarize, the analysis of MDSCs and comparing
results from different studies is complicated mainly because
of: (1) the functional definition of MDSCs, (2) the lack of
a defined phenotype(s) of MDSCs, and (3) the plasticity
of MDSCs.

MDSCs EXPANSION AND ACTIVATION

Hematopoietic stem cells differentiate into common
myeloid progenitors giving rise to immature myeloid cells.
An inflammatory environment, as observed in sepsis,
stimulates the egress of immature myeloid cells from
the bone marrow into the blood stream and the gain
immunosuppressive functions (26, 44) (Figure 1). The
identification of mediators and molecular mechanisms
underlying the expansion and the immunosuppressive
functions of MDSCs may pinpoint to original therapeutic
targets for various diseases. Most of our knowledge comes
from disease conditions other than sepsis. In sepsis,
most relevant studies analyse the impact of gene specific
knockout or the infusion of MDSCs in mice exposed
to polymicrobial sepsis induced by cecal ligation and
puncture (CLP).

In mice subjected to CLP, MDSCs accumulate in secondary
lymphoid organs, in which they represent as much as 10–20%
of all leukocytes (45). In the spleen, MDSCs expand within 3–
5 days, culminate after 10–14 days and stay high for at least
12 weeks. The rise of MDSCs appears to be a complex and
progressive process that involves expansion and activation of
immature myeloid cells through many factors. These factors are
not specific to sepsis and can be redundant. The expansion of
immature myeloid cells is primarily mediated by the action of
growth factors (GF) and colony stimulating factors (CSF) [such
as vascular endothelial-GF (VEGF), granulocyte-macrophage-
CSF, macrophage-CSF (M-CSF) and stem cell factor (SCF)],
DAMPs (S100 calcium-binding protein A8/A9, S100A8/9),
and possibly chemokines (CXCL1, CXCL2). Activation of
pathogenic MDSCs is induced by MAMPs (LPS, staphylococcal
enterotoxins), DAMPs (HMGB1), cytokines (IFNγ, IL-1β, IL-
4, IL-6, IL-7, IL-10, IL-13, TNF, CXCL3), and acute phase
proteins (α2-macroglobulin, serum amyloid A) (26, 42, 46–56).

These same factors may induce the maturation of MDSCs, with
possible different outcomes. For example, M-MDSCs exposed
to R848 (a TLR7/8 agonist), TNF and IFNγ differentiate
into inflammatory macrophages that produce TNF and IL-12,
while M-MDSCs exposed to Pam3CSK4 (a TLR1/2 agonist)
differentiate into immunosuppressive macrophages producing
IL-10 (47, 57).

Myeloid differentiation primary response 88 (MyD88),
glycoprotein 130 (gp130) and nuclear factor I A (NFIA,
a transcription factor) control the expansion and the
immunosuppressive functions of MDSCs (Figure 1). MyD88
is an adaptor molecule that initiates quick nuclear factor-κB
(NF-κB) signaling through the IL-1 receptor and all TLRs
except TLR3. gp130 is a signal transducer co-receptor for IL-6
family cytokines that cooperates with signal transducer and
activator of transcription (STAT3) and C/EBPβ to upregulate
MDSCs (45, 54). MDSCs do not expand in MyD88−/− germline
mice and in hepatocyte-specific gp130−/− and myeloid-
specific Nfia−/− mice subjected to CLP (25, 45, 49, 58, 59).
Additionally, Gr1+ CD11b+ MDSCs lacking NFI-A lose their
immunosuppressive functions and stop differentiating into
mature myeloid cells. The expansion of MDSCs is normal in
myeloid-specific Cebpb−/− septic mice, but Cebpb−/− MDSCs
produce reduced levels of IL-10 (52, 60). During CLP, triggering
of a NF-κB/C/EBPβ/STAT3 axis upregulates the expression of
S100A9 (also known as calgranulin B). S100A9 translocates
into the nucleus to upregulate the transcription of microRNAs
miR-21 and miR-181b that fine tune the expansion and the
functions of MDSCs. Mice lacking S100A9 have less splenic
and bone marrow MDSCs especially during late sepsis and are
protected from death (61, 62). In vivo blockade of miR-21 and
miR-181 decreases bone marrow MDSCs and improves sepsis
survival (63). Recent work suggest that Nfe2l2 (nuclear factor,
erythroid derived 2, Like 2; also known as NRF2) contributes
to increase the metabolic activity and the expansion of Gr1+

CD11b+ MDSCs during endotoxemia (64).
The molecules mentioned above are not specific to MDSCs,

and their genetic ablation can influence other arms of the
defenses systems. To bypass this limitation, MDSCs isolated
from sepsis mice are infused into wild-type recipient mice
subjected to microbial insults. The adoptive transfer of Gr-
1+ CD11b+ MDSCs or PMN-MDSCs harvested from septic
donor-mice into recipient mice protects the later from acute
endotoxemia, rapidly lethal CLP and Pseudomonas airway
infection (54, 60, 65–68). Two studies compare the benefits
provided by the infusion of Gr-1+ CD11b+ MDSCs taken
either quickly or late after the onset of infection (i.e., 3 vs.
10–12 days post-infection). Interestingly, the transfer of early
MDSCs increases while the transfer of late MDSCs decreases
or does not change mortality (65, 69). Supported by additional
in vivo and in vitro data (65, 69), this can be explained by
the fact that, during the course of sepsis, MDSCs evolve to a
more immature and anti-inflammatory state. More work will
be required to appraise how much the maturation stage of
MDSCs, the timing of expansion and/or infusion of MDSCs and
the severity of the infectious models tip the balance toward a
beneficial or a detrimental impact of MDSCs on sepsis outcome.
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FIGURE 1 | MDSCs in sepsis. (A) Factors generated during sepsis induce the expansion and egress of MDSCs from the bone marrow into the peripheral blood.

(B) Main signaling pathways involved in the expansion and the immunosuppressive functions of MDSCs during sepsis. (C) Biological functions of MDSCs during

sepsis. See body text for detailed explanations. DAMPs, danger-associated molecular patterns; MAMPs, microbial-associated molecular patterns; IL-6R*, interleukin

(IL)-6 receptor family of cytokines (commonly referred to as gp130 cytokines); gp130, glycoprotein 130; TLRs, toll-like receptors; IL-1R, interleukin-1 receptor; MyD88,

Myeloid differentiation primary response 88; NF-κB, nuclear factor-κB; NFI-A, nuclear factor I A; STAT, signal transducer and activator of transcription; miR, microRNA;

Mϕ, macrophage; DC, dendritic cell; Th, T helper; NK, natural killer; Treg, T regulatory; IFNγ, interferon γ; ROS, reactive oxygen species; RNS, reactive nitrogen

species; TGF-β, transforming growth factor-β; IL-10, interleukin-10.

As we will see in the last paragraph, the picture is clearer in
clinical settings where high proportions of MDSCs indicate a
poor prognosis.

The main epigenetic mechanisms, i.e., DNA methylation,
histones methylation and acetylation, miRNAs and long
non-coding RNAs (LncRNAs), have been implicated in the
development of MDSCs with different outcomes (70). For
example, inhibition of the DNA methyltransferases (DNMTs)
3a and 3b promotes the suppressive functions of MDSCs
while inhibition of the histone methyltransferase SETD1B limits
their suppressive function (71, 72). Pan-inhibitors of histone
deacetylases (HDACs) 1–11 elicit robust expansion of M-MDSCs
(73), in agreement with the observation that HDAC11 itself acts
as a negative regulator of expansion and function of MDSCs
(74). Interestingly, HDAC2 drives the phenotypic differentiation
of M-MDSCs into PMN-MDSCs in tumor bearing mice (75),
suggesting that individual HDACs have discrete, specific impact

on MDSCs. Remarkably, combination therapies of inhibitors of
either DNMTs or HDACs and checkpoint inhibitors (anti-PD-1
or anti-CTLA-4 antibodies) allow the eradication of checkpoint
inhibitor resistant metastatic cancers by suppression of MDSCs
(76). Finally, miRNAs both positively and negatively regulate the
accumulation and functions of MDSCs (for instance miR-9, 17-
5p, 21, 34a, 155, 181b, 210, 494, 690 vs. miR-9, 146a, 147a, 185-5p,
223, 185, 424) (70, 77). These observations, obtained in cancer
models, are particularly interesting because cancer and sepsis
share certain epigenetic features. Therefore, it is no surprise
that oncolytic epigenetic drugs have a strong impact on innate
immune responses and sepsis development (78–81). Numerous
epigenetic drugs are tested in oncologic clinical trials while
some are already approved for clinical applications. Altogether,
these observations open a fascinating area to test epigenetic
drugs targeting the expansion and/or function of MDSCs
during sepsis.
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IMMUNOSUPPRESSIVE FUNCTIONS OF
MDSCs

MDSCs suppress the activity of immune cells through
various mechanisms involving the degradation of L-
arginine, the production of reactive oxygen and reactive
nitrogen species (ROS, RNS), the secretion of anti-
inflammatory/immunosuppressive cytokines like IL-10 and
transforming growth factor (TGF)-β and the activation of T
regulatory cells (Tregs) (Figure 1).

L-arginine becomes a semi-essential amino acid during sepsis
because of increased usage and reduced production. L-arginine
shortage is sustained by the production by MDSCs of arginase
that metabolizes L-arginine into L-ornithine and urea (82). L-
arginine depletion affects the function of T cells through a
decreased expression of the CD3 zeta-chain, which is essential for
T-cell receptor (TCR) signaling (50, 83). A lack of arginase also
limits the activity of natural killer (NK) cells (84). ROS, RNS, IL-
10, and TGF-β skew the polarization of monocytes/macrophages
and T cells toward anti-inflammatory/pro-resolving M2, Th2
and regulatory phenotypes (45, 65, 85) and impair TCR and IL-
2 receptor signaling, NK cell activity and DC maturation and
antigen presentation (86–89) (Figure 1). MDSCs suppress Th1
responses though direct cell-to-cell contact, but how precisely
this occurs remains to be determined (45, 85). Together with
CCL5/RANTES and CCL4/MIP-1β, RNS, IL-10, and TGF-β
promote the recruitment and the immunosuppressive activity
of Tregs, at least in cancer and in neonates (45, 85, 90,
91). The interaction between MDSCs and Tregs in sepsis
is unknown.

Splenic MDSCs harvested from CLP mice early (3–5 days)
and late (10 days) after sepsis onset inhibit T cell proliferation.
Early MDSCs secrete less S100A9 than late MDSCs (61) and,
in response to LPS and IL-6, less TNF, IL-6, IL-10, ROS,
and arginase I (65). However, in response to GM-CSF, early
MDSCs produce RNS and proinflammatory cytokines while
late MDSCs produce arginase, IL-10 and TGF-β (69). Of
note, MDSCs can also help fight infections. Indeed, MDSCs
efficiently phagocytose E. coli and group B streptococci (92) and
clear bacteria during late sepsis through a robust production
of ROS (65). Thus, MDSCs have diverse biological outputs
according to their surrounding milieu and sepsis progression
(54, 65). More work is required to fully understand to which
extend these biological variations reflect the accumulation
or the differentiation of different MDSCs subpopulations
during sepsis.

DIAGNOSTIC AND PROGNOSTIC VALUES
OF IMMATURE GRANULOCYTES AND
MDSCs IN HUMAN SEPSIS

MDSCs make up an important proportion of immature
myeloid cells. Thus, we will discuss reports analyzing immature
granulocytes (IG) in adult sepsis and then move forward
to studies that used more elaborated immuno-phenotyping

strategies to identify MDSCs. Table 1 provides details about the
design and the main observations of these studies.

Accumulation of immature myeloid cells is one of the
criteria established more than 25 years ago to characterize
SIRS (systemic inflammatory response syndrome) and sepsis
(107). The assessment of immature cells remained laborious
up to the advent of automated cell counters. In an earliest
study using automated IG counting on a small number of
patients, the percentage of IG was higher in infected than in
uninfected patients and was proposed to be a predictor of
sepsis (93). Retrospective and prospective observational studies
confirmed that IG proportion discriminates between infected and
uninfected patients and is associated with disease severity (94–
99) (Table 1). Automated cell counters can determine a delta
neutrophil index (DNI), which reflects the number of immature
neutrophils in the blood. A meta-analysis of ten Korean and
one Egyptian studies including 1,822 sepsis patients suggests
that an elevated DNI (i.e., an increased proportion of immature
granulocytes) is associated with mortality (100).

Few reports demonstrate the immunosuppressive functions
of immature myeloid cells in relation with sepsis and/or
monitor MDSCs subpopulations using advanced flow cytometry.
Since cell preparation (whole blood, with and without ficoll
purification) and flow cytometry strategies are not standardized,
the phenotype of MDSCs, PMN-MDSCs and M-MDSCs differs
between studies (Table 1).

Gradient density interphase neutrophils arise during sepsis
and their proportion correlates with disease severity in ICU
patients. Cells isolated from septic shock patients deplete arginine
and impair T cell functions in vitro, suggesting that they represent
PMN-MDSCs (50). High levels of circulating CD10dim CD16dim

IG are predictive of clinical deterioration and mortality (101,
102). This population contains a subset of CD14− CD24+

myeloid suppressor cells that kill activated T cells in vitro (101).
The frequency of PMN-MDSCs (SSChigh CD16+ CD15+

CD33+ CD66bhigh CD114+ CD11b+/low LDG) and M-MDSCs
(SSClow CD14+ CD11b+ CD16− CD15+) does not differ
between non-infectious critical ill patients and sepsis patients
(103). However, high levels of MDSCs are linked to nosocomial
infections (Table 1). In a first study, PMN-MDSCs (CD14−

CD15+ low-density granulocytes, LDG) representing more than
36% of WBC in ICU patients sampled within 3 days of study
inclusion predicts the subsequent occurrence of nosocomial
infections (104). Patients that develop nosocomial infections have
2.5 times more PMN-MDSCs than patients that do not. In a
second study, a close follow-up of ICU surgical patients (at days 1,
4, 7, 14, 21, and 28 or until discharge of ICU) reveals that patients
with continuously high proportions of CD33+ CD11b+ HLA-
DR−/low MDSCs have a longer stay in the ICU, more nosocomial
infections and poor functional status at discharge (105). The
percentage of total MDSCs in patients with severe sepsis/septic
shock raises up to 45% ofWBC, and a high proportion of MDSCs
at diagnosis is associated with early mortality. Comparing cell-
sorted enriched CD33+ CD11b+ HLA-DR−/low MDSCs from
the blood of healthy subjects and septic patients reveals that
pathogenic MDSCs dose dependently suppress IFNγ, IL-4, and
IL-10 production by T cells more efficiently than MDSCs from
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TABLE 1 | Studies investigating immature granulocytes and MDSCs in adults with sepsis.

Subjects Cells/phenotypes Observations References

142 ED patients, 29 uninfected

outpatients.

IG (automate-based determination) Higher % in infected patients, predictor of sepsis. (93)

70 consecutive ICU patients (51 infected,

19 uninfected).

IG (automate-based determination) Higher % in infected patients, unrelated to day-21 and

in-hospital mortality.

(94)

184 sepsis patients. IG (automate-based determination) Increase % associated with severity, but not predictive of

mortality.

(95)

136 consecutive ICU patients. IG (morphology and staining) Higher % in sepsis than in uninfected patients. Unrelated to

mortality.

(96)

35 sepsis and 22 non-septic consecutive

burn patients, 19 healthy controls.

IG (flow cytometry) Increase % post-burn, associated with reduced neutrophil

function. Remaining elevated levels (day 7–28) associated

with sepsis development

(97)

781 sepsis patients, 20 control

outpatients.

IG (flow cytometry) High % at admission related to organ failure and day-7 and

day-28 mortality.

(98)

47 uninfected and 17 infected cardiac

surgery patients.

IG (flow cytometry) Increase % postoperative. Highest levels associated with

secondary infection complications.

(99)

Meta-analysis (11 studies) of 1’822 sepsis

patients.

Delta neutrophil index (DNI,

automate-based determination)

Elevated DNI associated with mortality. (100)

24 sepsis ICU patients, 12 hospital

controls.

Interphase neutrophils (flow

cytometry)

Present only in sepsis patients, proportional to sepsis severity.

Suppress T-cell activity in vitro.

(50)

177 sepsis patients. IG (flow cytometry) Increase % at 48 h predictive of clinical deterioration. High %

of CD10dim and CD16dim IG correlates with mortality. Kill

activated T cells in vitro.

(101)

43 septic shock patients, 23 healthy

controls.

IG (flow cytometry) Increased % of CD10dim and CD16dim IG at days 3–4 and

6–8. Patients with lower % have better survival.

(102)

14 sepsis and 8 uninfected critically ill

patients, 15 healthy controls.

M-MDSCs: SSClow CD14+ CD11b+

CD16− CD15+

PMN-MDSCs: SSChigh CD16+

CD15+ CD33+ CD66bhigh CD114+

CD11b+/low

M-MDSCs but not PMN-MDSCs increase at day 13-21

post-sepsis. Similar % of M-MDSCs and PMN-MDSCs in

sepsis and non-septic critical ill patients.

(103)

94 sepsis, 11 severity-matched ICU

patients, 67 health donors.

M-MDSCs: Lin− CD14+

HLA-DR−/low

PMN-MDSCs: LDG CD14− CD15+

(Excluding eosinophils)

High % of PMN-MDSCs in sepsis patients. M-MDSCs are

higher in gram-negative than gram-positive sepsis.

PMN-MDSCs > 36% WBC at entry are associated with

higher risk of nosocomial infections. PMN- and M-MDSCs

suppress T-cell proliferation in vitro.

(104)

67 surgical patients with severe

sepsis/septic shock, 18 healthy controls.

MDSCs: CD33+ CD11b+ HLA-DR−

M-MDSCs: CD14+

PMN-MDSCs: CD14− CD15+

High % of MDSCs at admission correlates with early mortality.

Decreasing levels of MDSCs correlate with short ICU stay.

Sustained levels of MDSCs (>30% of WBC) predict

nosocomial infections.

(105)

56 sepsis patients and 18 healthy controls. M-MDSCs: CD14+ CD64+

HLA-DR−

PMN-MDSCs: LDG CD33+

CD14neg/low CD64low CD15+/low

High % of M-MDSCs in all sepsis, but particularly in

gram-negative sepsis patients. Prominent PMN-MDSCs in

gram-positive sepsis. PMN-MDSCs suppress T-cell

proliferation in vitro.

(106)

ED, emergency department; ICU, intensive care unit; IG, immature granulocytes; LDG, low density granulocytes; Lin, lineage; WBC, white blood cells.

healthy subjects, while healthy and disease MDSCs suppress T
cell proliferation alike (105).

The proportion of PMN-MDSCs and M-MDSCs, defined
as CD14neg/low CD64low CD15+/low LDG and CD14+ CD64+

HLA-DRneg leukocytes, may vary according to causative agent
leading to sepsis (Table 1). M-MDSCs increase in all sepsis
patients, predominantly in gram-negative cases, while PMN-
MDSCs increase prominently in gram-positive sepsis (106). A
subsequent study confirmed that M-MDSCs (Lin− CD14pos

HLA-DRlow/neg) are enriched during gram-negative sepsis, but
PMN-MDSCs (CD14− CD15+ LDG) do not differ according
to the gram of the causative bacteria (104). Larger studies are
required to ascertain that the microbial origin of sepsis shapes the

pattern ofMDSCs (108). This is an important parameter sinceM-
MDSCs are more potent immunosuppressive than PMN-MDSCs
on a per cell basis (109).

CONCLUDING REMARKS

MDSCs play a dual role during infection and sepsis. MDSCs
expanding along emergency erythropoiesis provide a first
barrier against microbial invasion by producing high amounts
of bactericidal molecules like ROS and RNS and counteract
the hyperinflammatory response associated with early organ
dysfunctions. However, MDSCs are also detrimental by
supporting the establishment and/or the maintenance of a late
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protracted immunosuppressive environment. In line with a
deletary role of MDSCs, all clinical studies to date associate
high proportions of blood MDSCs with clinical worsening,
occurrence of nosocomial infections and mortality of sepsis
patients. Hence, MDSCs are attractive biomarkers, especially
since these cells are barely detectable in healthy subjects. One
limitation of clinical studies, not limited to the sepsis field,
resides in the uneven phenotypic classification of MDSCs. One
important future objective is to harmonize sample handling and
flow cytometry strategies. Besides being attractive biomarkers,
MDSCs are attractive therapeutic targets for sepsis. Inhibiting
MDSCs-mediated immunosuppression or MDSCs trafficking
or depleting MDSCs themselves (by normalizing myelopoiesis
or inducing the differentiation of MDSCs into mature myeloid
cells) would positively influence patient outcome. Interestingly,
more than 30 clinical trials are running targeting MDSCs directly
or indirectly in cancer patients (22). If ever envisaged for sepsis,
these therapies will need specific evaluation since targeting
MDSCs aggressively may put critically ill patients at risk of

agranulocytosis. The results arising from these oncological
studies, added to those from current or future studies in the
field of sepsis, will give invaluable information onto whether and
how MDSCs might be used to implement sepsis personalized
medicine and precision immunotherapy.
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