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ABSTRACT Aerated soils form the second largest sink for atmospheric CH4. A near-
complete genome of uncultured upland soil cluster Gammaproteobacteria that oxi-
dize CH4 at �2.5 ppmv was obtained from incubated Antarctic mineral cryosols. This
first genome of high-affinity methanotrophs can help resolve the mysteries about
their phylogenetic affiliation and metabolic potential.

Aerated soils remove 4 to 6% of CH4 from the atmosphere (1) as a result of
high-affinity methanotrophy that has been demonstrated by the detection of the

high-affinity form of particulate methane monooxygenase, encoded by pmo genes
(2–6). In the absence of isolates and genomes, phylogenetic identity and physiology of
atmospheric methane-oxidizing bacteria have remained a mystery (7). Here, we report
a near-complete genome of uncultured upland soil cluster Gammaproteobacteria
(USC�) obtained from incubated mineral cryosols (pH 8.51) collected from Taylor Dry
Valley, Antarctica. These samples exhibited CH4 oxidation when incubated with
2.5 ppmv at 4°C and 10°C, and were found to contain USC�-like pmoA genes (8).

DNA was extracted using PowerSoil total DNA/RNA isolation kit (MO BIO Laborato-
ries, Inc., CA), purified and concentrated using Microcon centrifugal filters 100 (EMD
Millipore Corp., MA). Four metagenomic libraries were prepared using the PrepX DNA
library kit and the automated Apollo 324TM robotic system (WaferGen Bio-systems, Inc.,
CA), pooled at equal molar amount and sequenced on Illumina HiSeq 2500 (Illumina
Inc., CA). Paired-end reads (2 � 100 nucleotides [nt]; mean insert size of 350 bp) were
quality filtered (9). High-quality reads (average 75.7 � 7.5 million reads per sample)
were coassembled using IDBA_UD v1.1.1 (default settings with precorrection) (10).
Protein-encoding genes were predicted using Prodigal v2.6.1 (11) and searched for
pmoA genes. All scaffolds were subjected to binning by an interactive approach (12)
and MetaBAT (13).

A high-quality genome bin containing a pmoA gene 100% identical to one of our
USC�-like pmoA clone sequences was identified. Reads mapped to the scaffolds in this
genome bin were reassembled using IDBA_UD (default settings). CheckM (14) deter-
mined that it was 89.99 to 91.9% complete with 0 to 0.09% contamination and 0%
strain heterogeneity. Annotation was performed using Prokka v1.12-beta (15), BLAST
(16), and KEGG Automatic Annotation Server v2.1 (17). A single copy of twenty 30S and
thirty-one 50S ribosomal proteins, one 5S rRNA operon, a single copy of 16S and 23S
rRNA gene fragments, 38 tRNA genes, and 3,012 coding sequences were retrieved. The
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488 nt-long 16S rRNA gene shared 99% identity to uncultured bacteria (JQ684308,
HM445440, and DQ823229) and 94% identity to Thioalkalivibrio (NR_074692) and
Ectothiorhodospira (NR_125567) of Chromatiales, which is phylogenetically closely re-
lated to Methylococcales but includes no methanotrophs.

The USC� draft genome contained the complete operon of pmoCAB. The pmoA
gene shared 72% identity with Methylocaldum szegediense (Methylococcales). Genes
encoding methanol dehydrogenase and accessory proteins, enzymes for the tetrahy-
drofolate and tetrahydromethanopterin-linked C1 transfer pathways, and two formate
dehydrogenases were identified. Although gene encoding formaldehyde dehydroge-
nase (FALDH) was missing, genes for pyrroloquinoline quinone (PQQ) synthesis were
identified, indicative of the potential use of PQQ-dependent FALDH. As with the
genomes of other gammaproteobacterial methanotrophs, the USC� draft genome
encodes all essential genes for a complete serine biosynthesis pathway for formalde-
hyde assimilation. Genes encoding enzymes for nitrogen metabolism were also iden-
tified. Manual annotation and phylogenetic and comparative analyses are in progress
to pinpoint the phylogenetic affiliation of USC� and to elucidate differences in the
metabolic potential between high- and low-affinity methanotrophs.

Accession number(s). This whole-genome shotgun project and the USC� draft
genome have been deposited at DDBJ/ENA/GenBank under the accession no.
MUGK00000000. The version described in this paper is version MUGK01000000.
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