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Abstract: Coral microbiomes are critical to holobiont health and functioning, but the stability of
host–microbial interactions is fragile, easily shifting from eubiosis to dysbiosis. The heat-induced
breakdown of the symbiosis between the host and its dinoflagellate algae (that is, “bleaching”), is one
of the most devastating outcomes for reef ecosystems. Yet, bleaching tolerance has been observed in
some coral species. This review provides an overview of the holobiont’s diversity, explores coral
thermal tolerance in relation to their associated microorganisms, discusses the hypothesis of adaptive
dysbiosis as a mechanism of environmental adaptation, mentions potential solutions to mitigate
bleaching, and suggests new research avenues. More specifically, we define coral bleaching as
the succession of three holobiont stages, where the microbiota can (i) maintain essential functions
for holobiont homeostasis during stress and/or (ii) act as a buffer to mitigate bleaching by favoring
the recruitment of thermally tolerant Symbiodiniaceae species (adaptive dysbiosis), and where (iii)
environmental stressors exceed the buffering capacity of both microbial and dinoflagellate partners
leading to coral death.
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1. Introduction

Coral reefs are one of the most biologically diverse and economically important marine ecosystems
on the planet. Often called the rainforest of the sea due to their outstanding biodiversity, coral reefs
only cover less than 0.1% of the ocean seafloor [1–3]. Coral reefs thrive in oligotrophic waters [4–6],
yet they harbor more than 25% of all marine species [7,8], including about 30% of all marine
fish species [1]. This ecosystem also delivers key services such as fisheries [9,10], tourism-based
industries [11], coastal protection [12], and medicines [13–15], sustaining the welfare and livelihoods
of millions of people. Coral reefs constitute complex ecosystems. Like trees in a forest, corals are
foundational species responsible for creating structural complexity [16] and they are critical players
in the nutrient recycling on reefs [17]. Corals are meta-organisms and are formed by a dynamic
multipartite relationship between the cnidarian host, its endosymbiotic dinoflagellate algae (family
Symbiodiniaceae [18]), and a suite of other non-Symbiodiniaceae microbes [19], hereafter termed
the microbiota or microbes. The microbiota includes prokaryotes (archaea and bacteria) [20], eukaryotes

Microorganisms 2020, 8, 1682; doi:10.3390/microorganisms8111682 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0002-8990-8597
https://orcid.org/0000-0001-9033-8272
http://dx.doi.org/10.3390/microorganisms8111682
http://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/2076-2607/8/11/1682?type=check_update&version=2


Microorganisms 2020, 8, 1682 2 of 28

(fungi and non-Symbiodiniaceae protists), and viruses [21,22]. In the present review, the dinoflagellate
algae and microbiota are collectively termed the coral microbiome. Each partner plays a fundamental
role within the holobiont. The coral host provides the living space and well-protected habitat
for all partners involved, as well as a supply of nutrients and other metabolic byproducts [23].
The dinoflagellate endosymbionts deliver oxygen and organic compounds to their hosts, mostly via
the transfer of photosynthetically fixed carbon [24,25], while the microbiota provides multiple beneficial
functions, such as protection against pathogens, nitrogen fixation [26,27], sulfur cycling [28–30], and
supply of other micronutrients [31,32]. The hologenome and the host–Symbiodiniaceae–microbiota
interaction drive the biology of the holobiont [22,33] and ultimately define its phenotype [31].

The stability of the holobiont is fragile. Holobionts can transition from eubiosis (healthy state of
the holobiont) to dysbiosis (unhealthy, disrupted state of the holobiont) as, for instance, environmental
conditions deteriorate. The health of the holobiont depends on many biotic (pathogens, prey availability,
cnidarian host physiology and genetic background, assemblage of photosynthetic algae and microbes,
among others) and abiotic (temperature, irradiance, pH, water movement, nutrients, among others [34])
factors, some of which are directly or indirectly impacting the holobiont homeostasis. The rapid
pace of environmental change caused by climate warming and other anthropogenic stressors is now
posing a serious threat to coral reef ecosystems and has been linked to numerous occurrences of coral
holobiont dysbiosis [31,35], causing higher susceptibility to opportunistic pathogens and, ultimately,
coral mortality. Of all the natural and anthropogenic stressors imposed on coral reefs, increasing
temperature is one of the most imminent threats as it can act from a few hours (i.e., pulse warming
events) to a few years [36,37]. The main consequence of these climate-driven marine heat waves is
coral bleaching. Coral bleaching is the result of the breakdown of the obligate symbiosis between
the coral animal and its photosynthetic dinoflagellate endosymbionts [38], leading to the white calcium
carbonate skeleton being visible through the transparent host tissue (Figure 1). This dysbiosic state can
occur either when the host immune system activates cell apoptosis, autophagy, exocytosis, detachment
or necrosis pathways [39], and rejects the dinoflagellate partner, or when the pigments are directly
expulsed from the algae when their thylakoids are exposed to free oxygen radicals [38,40]. Although
evidence suggests that the production of reactive oxygen species (ROS) in the Symbiodiniaceae cells
is the most likely cause of their expulsion [41], the bleaching mechanism is still far from being fully
understood [42].

Since the first description in the 1980s [43], increases in sea surface temperature have triggered
several unprecedented mass coral bleaching events, including three global-scale bleaching events in
1998, 2010, and 2016 [44]. The frequency and severity with which coral bleaching occurs has increased
in recent years [45,46]. Hence, the survival and persistence of corals will depend on their ability
to increase their thermal tolerance at a rate that keeps pace with global warming [47]. If not, over
70% of all coral reefs are expected to disappear by the end of 2050 [48,49]. The severity of coral
bleaching depends on several factors, including the specific coral species impacted, the dinoflagellate
and bacterial community composition, and the thermal history of the holobiont [50,51]. Nevertheless,
key microbial associates have been identified as a potential source of adaptive variation in response
to changing environmental conditions [31,52], in addition to their role in reducing the presence of
pathogens [53]. Given the key roles exerted by the microbiota and the Symbiodiniaceae in maintaining
the host’s health and homeostasis [54–56], numerous studies have investigated the mechanisms
by which these symbiotic partners can mitigate coral bleaching and increase resilience of the coral
holobiont to other climate related stressors [36,57,58]. This review aims to explore the resilience to
dysbiosis and bleaching in hermatypic reef-building corals (Scleractinia, Hexacorallia). This will be
achieved through a three-step approach: we will (i) briefly portray the great taxonomic diversity of
the coral holobiont, (ii) explore coral resilience to bleaching events and propose the hypothesis of
adaptive dysbiosis as a mechanism of environmental adaptation, and (iii) mention potential solutions
to mitigate coral bleaching and suggest new research avenues.
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Figure 1. Coral bleaching. The upper photographs show a reef landscape (reef slope) before (a) and 
during (b) the massive bleaching event of 2016 at Moorea, French Polynesia. The bottom macro-
photographs show a close-up lateral view of the polyps of the scleractinian coral Pocillopora damicornis 
experiencing bleaching: unbleached (healthy) polyps with visible Symbiodiniaceae (c), partially 
bleached polyps with low density of Symbiodiniaceae (d), and bleached polyps without 
Symbiodiniaceae and transparent tissue (e). Photographs are courtesy of Y. Chancerelle (a, b), and L. 
Hédouin (c–e) (CRIOBE, Moorea). 

2. The Coral Holobiont 

The coral holobiont comprises the cnidarian host and all its associated microscopic organisms 
that functionally interact with one another via several metabolic pathways, further contributing to 
the physiology and health of the holobiont. The coral holobiont can be separated into three main 
components: (i) the cnidarian host, (ii) the Symbiodiniaceae algae, and (iii) the microbiota [59]. 

2.1. Corals 

Since their first appearance around 425 million years ago, scleractinian corals have radiated into 
more than 1500 species [60], about 900 of which are hermatypic corals normally containing millions 
of endosymbiotic dinoflagellate algae in their tissues [61]. Reef-building corals (Cnidaria, Anthozoa, 
Scleractinia) are invertebrate, modular organisms composed of many identical units, called polyps, 
connected by an interlaying tissue, the coenosarc [61–63]. The polyp is composed of two cell layers, 
the ectodermis and gastrodermis separated by the mesoglea, and each polyp has an oral disk and a 
mouth surrounded by small tentacles, corresponding to the opening of the gastrovascular cavity 
(Figure 2). The coral skeleton is secreted by specialized calcifying cells in the calicodermis [64–66], 
while the calcification process occurs in the calcifying fluid that is formed between the calicodermis 
and the skeleton [64] (Figure 2). The cellular glands, on the other hand, secrete a mucus layer to 
protect the ectodermis [67]. The ectodermis, gastrodermis, gastric cavity, mucus layer, and skeleton 
correspond to distinct microhabitats within the coral host that can encompass functionally distinct 
microbial communities [68,69]. These microhabitats change dramatically (in structure and 
composition) during bleaching periods. For example, depending on the bleaching stage and intensity, 
the loss of symbiotic algae leads to distinct degrees of tissue degradation [39,70,71]. Compared to 

Figure 1. Coral bleaching. The upper photographs show a reef landscape (reef slope) before (a)
and during (b) the massive bleaching event of 2016 at Moorea, French Polynesia. The bottom
macro-photographs show a close-up lateral view of the polyps of the scleractinian coral Pocillopora
damicornis experiencing bleaching: unbleached (healthy) polyps with visible Symbiodiniaceae (c),
partially bleached polyps with low density of Symbiodiniaceae (d), and bleached polyps without
Symbiodiniaceae and transparent tissue (e). Photographs are courtesy of Y. Chancerelle (a, b), and L.
Hédouin (c–e) (CRIOBE, Moorea).

2. The Coral Holobiont

The coral holobiont comprises the cnidarian host and all its associated microscopic organisms
that functionally interact with one another via several metabolic pathways, further contributing to
the physiology and health of the holobiont. The coral holobiont can be separated into three main
components: (i) the cnidarian host, (ii) the Symbiodiniaceae algae, and (iii) the microbiota [59].

2.1. Corals

Since their first appearance around 425 million years ago, scleractinian corals have radiated into
more than 1500 species [60], about 900 of which are hermatypic corals normally containing millions
of endosymbiotic dinoflagellate algae in their tissues [61]. Reef-building corals (Cnidaria, Anthozoa,
Scleractinia) are invertebrate, modular organisms composed of many identical units, called polyps,
connected by an interlaying tissue, the coenosarc [61–63]. The polyp is composed of two cell layers,
the ectodermis and gastrodermis separated by the mesoglea, and each polyp has an oral disk and
a mouth surrounded by small tentacles, corresponding to the opening of the gastrovascular cavity
(Figure 2). The coral skeleton is secreted by specialized calcifying cells in the calicodermis [64–66],
while the calcification process occurs in the calcifying fluid that is formed between the calicodermis
and the skeleton [64] (Figure 2). The cellular glands, on the other hand, secrete a mucus layer to
protect the ectodermis [67]. The ectodermis, gastrodermis, gastric cavity, mucus layer, and skeleton
correspond to distinct microhabitats within the coral host that can encompass functionally distinct
microbial communities [68,69]. These microhabitats change dramatically (in structure and composition)
during bleaching periods. For example, depending on the bleaching stage and intensity, the loss of
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symbiotic algae leads to distinct degrees of tissue degradation [39,70,71]. Compared to healthy corals,
the mucus surface layer in bleached corals is thinner [72] with a distinctive sugar composition [73].
Bleaching-associated changes also represent a modification of the microorganisms’ habitats.

As in other invertebrates, an innate immune system allows corals to maintain homeostasis.
Invertebrates lack an adaptive immune system [74], but their genomic repertoire is elaborated [75,76].
The immediate reaction via recognition, signaling pathways towards activation of defense mechanism,
and effector responses (reviewed in [77]) allows the detection and management of potential threats to
host integrity. Specific mechanisms of the coral immune response are still poorly understood. However,
research in other cnidarians suggests that immunological processes occurring within the host’s
microhabitats have a critical role in assembling the holobiont [76,78,79]. During bleaching, immune
regulation activity is observed in apoptosis, apoptosis regulation, necrosis, and cell–cell adhesion
proteins genes [80]. Heat-tolerant corals have a higher expression of genes related to cell death
signaling and immunity (Hsp gene family), evidencing the frontload expression of the host immune
system to maintain physiological resilience during environmental stress [80]. However, the coral
immune response to high temperature and eventual susceptibility to diseases after heat stress seems
to be species-specific [81]. Importantly, gene expression has been found uncorrelated or incongruent
with the concentration of the encoded proteins [82–84], pointing out that conclusions drawn from
the exclusive use of mRNA concentration data should be cautiously interpreted.

Corals can reproduce through both sexually and asexually (including budding, fragmentation,
polyp bailout, asexual planula larvae, and embryo breakage) [61,85]. Corals can be hermaphroditic
or gonochoric and they exhibit two modes of sexual reproduction, namely broadcast spawning and
brooding. During broadcast spawning, the coral releases eggs and sperm into the water column, where
fertilization, embryo, and larval development occurs. During brooding, a coral colony releases sperm
that fertilizes the eggs that are inside another colony, and the larva is internally brooded and released
into the water column once maturity is reached. Host genetic information inherited from parents may
provide a source of adaptive variation in corals, such as epigenetic marks and somatic mutations. Coral
adaptation based on standing genetic variation has also been shown, where natural variation in heat
tolerance (among other forms of stress) is heritable and evolvable [86,87]. Nevertheless, the capacity for
host genome adaptation to warming might be limited because of the long generation times associated
with most coral species (~4–8 years) [88,89].
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a healthy coral (top) and a close-up transversal view of one polyp to illustrate the tissue layers (bottom).
Diagrams on the right represent a close up of a cross-section of the coral tissues of a tentacle (a)
and the basal part of the polyp (b), showing the distribution of the Symbiodiniaceae, bacteria, and
cell-associated microbial aggregates (CAMAs) in the external environment, surface layer, ectodermis,
gastrodermis, gastrovascular cavity, and skeleton. The size of the Symbiodiniaceae and microbes has
been modified for illustration purposes. For an accurate size representation, see [90–92].

The reproduction mode influences the early establishment of the microbial consortium in corals.
The Symbiodiniaceae endosymbiont transmission is generally horizontal in broadcast spawners, and
vertical and mixed in brooders [93–95]. However, the establishment is not correlated to the reproduction
mode or not well understood for other microbial community members (bacteria, viruses, fungi).
Particularly for bacterial communities, the role of maternally inherited and environmentally acquired
microbes on the community assembly remains unclear, where both broadcast spawners and brooders
can inherit bacteria via vertical transmission [95–97]. However, regardless of the reproduction mode,
the acquisition of bacteria via horizontal transmission seems to have a critical role in winnowing
the bacterial community as the coral matures [95,98]. Transgenerational plasticity by conditioning
maternal colonies before transmission and manipulating the horizontally acquired microorganisms
has been proposed as a potential pathway to facilitate coral acclimatization and adaptation [99].

2.2. Symbiodiniaceae

Zooxanthellae are crucial components of the coral holobiont. The endosymbiotic dinoflagellates,
from the family Symbiodiniaceae (order Suessiales, class Dinophyceae [18]) are photosynthetic partners
living in vacuoles (the symbiosomes [100]) in the gastrodermis of the coral host (Figure 2). Corals
mostly depend on the dinoflagellate symbionts for energy requirements through the translocation of
photosynthates produced via photosynthesis, including glucose, glycerol, and amino acids [63,101,102].
Through photosynthesis, the Symbiodiniaceae algae also produce the oxygen required for coral
host cellular respiration and free oxygen radicals that can act as a protection against pathogenic
infections [103]. In exchange, the dinoflagellates benefit from this partnership by being protected
against predators, living in a stable and light-rich environment with direct access to inorganic waste
produced by the host [19,24]. Corals provide nitrogen under the form of nitrates (NO3

−) to the algal
symbionts [27], while the Symbiodiniaceae use carbonic gas (CO2

−) produced by the polyps, which
also promotes the dissociation of carbonic acid (H2CO3) from the water column and allows calcium
carbonate (CaCO3) to precipitate. Thus, this photosymbiosis also powers light-enhanced calcification
and the rapid growth of corals [104–106], resulting in coral reef development [107].

Based on the phylogenetic disparity in the Internal Transcribed Spacer 2 (ITS2) sequence, these
dinoflagellate algae were initially distinguished into nine phylogenetic clades (nominated A to
I) within the genus Symbiodinium [19,108,109]. The family Symbiodiniaceae was recently revised
and reorganized in seven genera: Symbiodinium, Breviolum, Cladocopium, Durusdinium, Effrenium,
Fugacium, and Gerakladium (formerly clade A to G, respectively) [18]. Among them, four genera
are known to commonly associate with scleractinian corals, Symbiodinium, Breviolum, Cladocopium,
and Durusdinium, while the genera Fugacium and Gerakladium are only occasional scleractinian
associates [110,111]. Coral-associated Symbiodiniaceae communities can involve one or more species
of algae, where the species makeup can be attributed to specific physiological and biochemical
properties, often associated to their adaptation to distinct environmental conditions (e.g., carbon
availability, temperature, and pH) [101,112,113]. The host–symbiont specificity can also be attributed to
the coral host phylogeny and habitats. Host-specific Symbiodiniaceae associations have been described
over a large depth gradient for some coral species in the Red Sea [110] and Caribbean [114], while
variations in Symbiodiniaceae associations between and within coral species are commonly attributed
to depth-mediated gradients of light and temperature [115,116]. For instance, the photosynthetic
properties of Symbiodinium, Breviolum, and Durusdinium species are more suited for light regimes
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associated with shallow habitats [117,118], with some Durusdinium species being the most thermally
tolerant [110,119]. On the other hand, Cladocopium species are considered depth-generalists, although
populations of shallow habitats can exhibit greater assemblage diversity compared to deeper habitats
at some reef locations [120].

A possible determinant of host-specificity and environmentally induced variations in
Symbiodiniaceae composition is the mode of symbiont acquisition. The Symbiodiniaceae algae can be
passed on to the offspring vertically (vertical transmission) [94,121,122]. Vertical symbiont transmission
creates heritability in Symbiodiniaceae community composition, often resulting in tight co-evolution
between the host and its microalgae, which may limit the host flexibility to associate with taxonomically
and physiologically diverse dinoflagellate partners [121]. Such a mode of transmission promotes
the evolution of specialist symbionts that are more locally adapted to their native environment [121,123].
On the other hand, symbiotic-free gametes, or larvae, acquire passively the Symbiodiniaceae cells from
the surrounding environment (horizontal transmission) [63]. Horizontal symbiont transmission can
potentially lead to new host–Symbiodiniaceae associations relative to the maternal colony, conferring
a higher flexibility on the host to associate with a wide range of symbionts. By acquiring new
symbiont partners during their early life history, horizontally transmitting corals are considered as
generalists, and this flexibility may be advantageous in terms of range expansions [124], adaptation to
changing environmental conditions, and stress tolerance [125]. Consistently, the dispersal potential
of offspring is higher when horizontal symbiont transmission results in a diverse Symbiodiniaceae
assemblage, providing them with better abilities to adapt and survive to a wider range of new
environments [126,127]. Regardless of the symbiont transmission mode, the coral host has the ability to
regulate the density and diversity of their associated Symbiodiniaceae during its lifetime [27,128]. This
flexibility may occur via three different cellular mechanisms: (i) variation of coral tissue compounds,
(ii) deterioration or digestion of Symbiodiniaceae, and (iii) limiting access to nutrients (e.g., nitrogen
and phosphorus) [27].

2.3. The Microbiota

In scleractinian corals, the microbiota encompasses a wide range of microbial organisms, including
archaea, bacteria, eukaryotes (endolithic algae, fungi, protists), and viruses [19,22,129], all of which
play key roles in regulating the physiology of the holobiont. The microbiota serves diverse functions
in the coral holobiont, including nutrient acquisition, protection against pathogens, immune system
conditioning, and stress tolerance [32,130]. The microbiota also ensures nitrogen fixation and sulfur
cycling [20], as well as a continuous supply of other critical nutrients, including phosphorus, metals,
and vitamins [31,32]. The microbiota activity can also help in adjusting the host physiological responses
to stress and contribute indirectly to the photosynthetic activity via nitrogen- and sulfur-cycling
microbes [27,131]. The coral host in turn provides several niches (tissue, skeleton, and mucus,
Figure 2) for the microbes, as well as nutrients and carbon [31]. Microbiota members exhibit a wide
spectrum of symbiotic interactions with their host, ranging from mutualism to commensalism and
parasitism [31]. The number of genes with unique functions can also surpass that of the host [33,132].
Consequently, changes in terms of the microbial taxonomic composition and functional repertoires (i.e.,
the metagenome) represent an evolutionary process in action that could potentially produce heritable
adaptive phenotypic traits [33,132]. Although the cnidarian genome remains unchanged, the coral
holobiont is continuously evolving.

The heritability of such phenotypic traits can result partially from vertical transmission of
the microbiota, i.e., when the host passes on a sample of its microbes to the offspring [133]. This vertical
transmission creates heritability in microbial compositions, allowing hosts to transfer specific and
successful microbial species to their progeny [134]. Although microbes can be transmitted both
vertically and horizontally in corals [95–97,135–138], mixed strategies also exist [31,98,134]. In broadcast
spawning corals, one example is the release of specific bacteria from the coral host into the immediate
environment, favoring the recruitment of those species by the larvae [139]. Alternatively, microbial
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transmission can also occur through their incorporation into the mucus that surrounds egg–sperm
bundles [96,140]. However, the heritable association between a host and its microbes is weakened over
time because most coral species continuously acquire microbial symbionts from their surrounding
environment [98,141]. The microbiota assembly could have an initial stage with a maternal-inherited
community that reaches maturity through successional stages ruled by horizontal acquisition, with
the potentiality to generate functional redundancy within the microbiome [79] and to grant thermal
tolerance to the coral host [130].

Overall, the coral host represents a great diversity of microhabitats (gastrovascular cavity, tissue,
skeleton, and mucus layer), each sheltering a specific set of microbes [22,32,142]. Each of these coral
compartments is characterized by a specific set of microbes and associated functional repertoires,
emphasizing the important effects of microhabitat partitioning on coral microbiome structure and
function [20]. In both tissue layers (ectodermis and gastrodermis) of the polyp, cell-associated bacteria
are often found in aggregates, called cell-associated microbial aggregates (CAMAs), that most likely
consist of a single bacterial species [92,143–145] (Figure 2). The endolithic community refers to all
microorganisms living in the coral skeleton. The skeleton houses the highest diversity of bacteria
relative to other microhabitats, in addition to fungi and green algae [146–148]. Most coral-associated
bacteria reside in the surface mucus layer covering the ectodermis of the polyp [149], which is
a nutrient-rich habitat with a high amount of dissolved organic and inorganic compounds (e.g.,
carbon and phosphorus) [150,151]. Mucus-associated bacterial community compositions are mostly
determined by two main mechanisms: (i) the composition (e.g., nutrients, biocides, signals), viscosity,
and thickness of the mucus [67,152], and (ii) the specific receptors associated with the coral surface and
mucus layer [153]. The mucus could serve as a means to discriminate beneficial microorganisms from
pathogens [154] by preventing pathogens’ antibiotic production, necessary for bacterial colonization [53],
or by modifying the nutritive and physical characteristics of this microhabitat. The highly diversified
mucus-associated bacterial communities observed in hosts harboring diverse Symbiodiniaceae genera
might result from distinct Symbiodiniaceae-derived nutrient compositions of the mucus [155].

2.3.1. Bacteria

Bacterial symbionts are key players supporting the functioning and health of corals and reef
ecosystems [31]. Corals can develop and maintain some level of specificity with their associated
bacterial symbionts [63,156,157], suggesting an adaptive co-evolution between the coral host and its
microbiota [158]. Species-specific microbiota could correlate with the phylogeny of their coral host (i.e.,
phylosymbiosis) [158–160]. The environment also plays a significant role in structuring coral-associated
bacterial communities, where a coral species can have very different bacterial compositions depending
on its habitat, pointing to an adaptation to local environmental conditions [21,161–163]. The microbiota
associated with reef corals has been reported as one of the most diverse [63], spanning 37 described
bacterial phyla [164]. Bacterial communities of scleractinian corals are dominated by Proteobacteria [21]
(mostly of the orders Alpha- and Gammaproteobacteria), Bacteroides [164], Cyanobacteria [21], and
Firmicutes [164]. The Endozoicomonas, Vibrio, and Serratia genera are the most represented [164], with
bacterial species showing a high level of specificity with their coral host [63]. These bacterial symbionts
play a myriad of key functions in the holobiont, including nutrient acquisition and cycling (carbon,
nitrogen, sulfur, and other metabolites) [20], oxygen radical [35,165] and metal degradation [20], control
of Symbiodiniaceae growth, density, and nutrition [166–168], protection against pathogens [169,170],
and stress tolerance [27,130]. For example, functional genes associated to the bacterial community of
Orbicella faveolata and Porites lutea are involved in nutrient cycling (carbon, nitrogen, sulfur), featuring
genes for carbon fixation (through the Calvin cycle, reductive acetyl-CoA pathway, and reverse Krebs
cycle) and degradation [20,132]. Interestingly, genes encoding mechanisms to establish stable symbiosis
with the host (ankyrin repeats, ARPs; and WD40-containing proteins) were identified across bacterial
phyla associated with P. lutea [132].



Microorganisms 2020, 8, 1682 8 of 28

When the availability of nitrogen decreases in the environment, bacteria can supply the host
with organic nitrogen. The microbiota harbors nitrifying (transforms ammonium into nitrates
and eventually nitrites) and denitrifying (reduces nitrites and nitrates into dinitrogen) bacterial
species that transform nitrogen-related waste produced by the host into non-toxic compounds [20,27].
By regulating the nitrogen cycle, these bacteria can prevent accumulation of nitrogenous waste in
some compartments that could alter coral homeostasis. These bacteria can also regulate dinoflagellate
densities by maintaining a balanced ratio of nitrogen and phosphate via the utilization of ammonium
(NH4

+) [128]. The ammonium produced by the coral host [27] is the preferred inorganic nitrogen source
of the Symbiodiniaceae [171], while the utilization of nitrate (NO3

−) reduces photosynthetic health [172].
The occurrence of anaerobic ammonium oxidation (anammox) from the coexistence of nitrifying
and denitrifying bacteria (conversion of ammonium and nitrates into dinitrogen) thus constrains
the dinoflagellate algae to use dinitrogen (N2) for photosynthesis, which can ultimately increase
Symbiodiniaceae abundance, promote photosynthetic health, and enhance coral health [128,172].
Because the dinoflagellates produce chemical compounds that favor bacterial development and growth,
such an increased density of Symbiodiniaceae cells may have an impact on the bacterial composition
through syntrophy (i.e., cross-feeding) [173,174]. Diazotrophic communities (cyanobacteria and
bacteria) also play a key role in nitrogen cycling by providing diazotrophically derived nitrogen (DDN)
to the host and photosynthetic symbionts [175]. Endozoicomonas symbionts of the bacterial family
Hahellaceae also play a significant role in nutrient acquisition and cycling of organic compounds
because of their ability to metabolize dimethylsulfoniopropionate (DMSP) [30], a molecule produced by
the Symbiodiniaceae to mitigate osmotic stress. These bacteria transform the DMSP into dimethylsulfide
(DMS) that reacts with toxic compounds and eliminates them [165]. Some coral-associated bacterial
species express orthologous genes for antioxidant enzymes, bringing another protective mechanism
against oxygen free radicals [35].

Another key role of the microbiota is to provide protection against pathogens via diverse
mechanisms, including competitive exclusion, antibiotic production, inhibition of quorum sensing,
and secondary metabolite production [176,177]. The coral mucus consists of polymeric glycoproteins
and lipids [178] operating as a defense barrier to protect the coral against invasive pathogens [169].
Both commensals and pathogens living on the surface mucus layer employ glycosidases to utilize
carbon and nitrogen sources within the coral mucus. However, commensal bacteria can disrupt
the establishment of invading pathogens within the coral mucus by interfering with their metabolic
activities and by swarming [179]. This exclusion of pathogenic bacteria by out-competing commensal
bacteria (amensalism) can ultimately reduce the occurrence of coral diseases. Coral-associated bacteria
can also produce a wide range of antimicrobials and biocides to protect the host against pathogens,
notably pathogenic fungi [170]. The high concentration of antibiotics within the mucus layer prevents
new pathogens from settling on the coral surface. Although considered as an efficient mechanism
to keep invaders at bay, pathogens also produce antibiotics to favor their settlement on corals [53].
Quorum sensing is another molecular mechanism involved in the protection against pathogens, where
the production of autoinducers used for chemical signaling [180] allows bacteria to modulate their gene
expression depending on the cell population density [181]. Both gram-positive and gram-negative
bacteria use these signals to regulate their physiological activities, such as symbiosis, virulence, motility,
and antibiotic production [182]. Of note is the inhibition of bacterial quorum sensing for the prevention
of infection in other hosts, such as marine algae [183].

Although heat-induced bleaching is triggered by the breakdown of the symbiosis between
corals and their dinoflagellate symbionts, bleaching is sometimes accompanied by changes
in the coral-associated bacterial community composition, ranging from mutualistic species to
commensalistic, and parasitic [35,57,184]. Bleached corals are often associated with an increase
in community diversity, while a reduction in mutualistic and key bacterial symbionts, such as
Endozoicomonas species, has been observed [185]. On the other hand, shifts towards an increase in
opportunistic bacteria and potential pathogens, such as Vibrio species [51,186,187], have been reported
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and associated with an increase in genes related to virulence factors [51]. Bourne et al. [186] also
identified an increase in Vibrio spp. (about 0 to 30% of the relative abundance) in corals experiencing
heat-induced bleaching, while their abundances return to normal in resilient corals (about 0% after
the thermal stress). Although this study suggests that Vibrio spp. might be specifically linked to coral
bleaching, current knowledge makes it impossible to disentangle whether their presence, increase in
abundance, and virulence in thermally stressed corals is a consequence of bleaching [188] or plays
an active role in the development of bleaching [189].

2.3.2. Viruses

Viruses are found in both tissue and mucus layers, where they hold diverse essential functions in
the coral holobiont, including bacterial population maintenance, protection against pathogens, nutrient
cycling, and horizontal gene transfer [190,191]. As with bacteria, the surface mucus layer encompasses
the highest abundance of viruses [192,193], suggesting that viruses may potentially exert a tight control
on mucus-associated bacterial populations [194]. Coral-associated viruses are taxonomically diverse,
spanning 60 different families [195], while being dominated by the Siphoviridae, Myoviridae, and
Podoviridae families from the Caudovirales order [196]. Considering the large amount of available
bacterial hosts within the coral holobiont, bacteriophages (viruses infecting bacteria) are a major
microbial component [195], including nucleocytoplasmic large DNA viruses (NCDLVs), particularly
those of the Phycodnaviridae and Mimiviridae families, as well as Poxviridae, Ascoviridae, and
Iridioviridae [191]. While changes in the coral virome have been reported in different coral health states
(healthy, diseased, bleached), nine to twelve families with various genome types (dsDNA, ssDNA, and
retrotranscribing RNA) have been identified as core virome members [190].

Dominated by bacteriophages [195], the virome seems to mainly control and regulate bacterial
populations through lysis [194] with a daily viral-mediated bacterial turnover ranging from 20 to
120% [190]. Mucus-associated phages can also act as a “lytic barrier” against bacterial pathogens
and, as such, are considered an active component of the coral innate immune system [194].
Observations of binding between the phage capsid and the glycoprotein of the mucus layer have led to
the bacteriophage-adhering to mucus model (BAM), which suggests a tight coral-phage co-evolution
that limits the colonization by bacterial pathogens [197]. The model also includes the benefits of
lysogeny, where phage-carrying (lysogenic) bacteria of the coral microbiome become resistant to lysis
by other viruses [194,197]. Similar to their roles in microbial food-webs in oceanic ecosystems [198,199],
viruses participate in nutrient acquisition and cycling within the holobiont by controlling the microbial
biomass turnover [200]. They also contribute in the exchange of microbial genetic material via
horizontal gene transfer, including transduction (among other mechanisms [190]), and may therefore
act as “gene reservoirs”.

Rising temperature can also increase virulence by expressing genes causing dysbiosis (but
see [82–84] for incongruence between gene expression and encoded proteins). Virulence factors can
be acquired via prophages and/or horizontal transmission, which may further increase the virulence
of some bacterial pathogens (e.g., V. coralliilyticus) [201]. Consequently, the distinction between viral
causative agents and opportunistic strains, as for any other pathogens, remains a challenging task,
mostly due to the presence of viruses in both healthy and diseased corals [51], and their complex
interactions with other microbial members.

2.3.3. Other Microbial Members

The microbiota also includes many other microbes such as archaea, protists, and fungi. However,
much less attention has been paid to these microbial members and to their role in coral bleaching.
Archaea are very common in marine environments. The archaeal groups Euryarchaeota and
Thaumarcheota can associate with corals [132], with the latter being the most abundant and involved in
nitrogen cycling [142,164]. Unicellular protists, the corallicolids (phylum Apicomplexa), have recently
been identified as an important coral endosymbiotic partner and are highly abundant in healthy corals,
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along with ciliates and dinoflagellates [202]. The ARL-V is the most abundant group of corallicolids
within the coral holobiont, and their localization in coral tissues differs from the endosymbiotic
Symbiodiniaceae protist [202], while the photosynthetic activity of corals does not seem to be associated
with their occurrence. Other protists have also been reported in corals, such as Licnophora and Coccidia
that associate with Pocillopora damicornis [203].

Although there is growing interest in the endolithic communities, their functional role within
the coral holobiont and bleaching responses remains poorly understood. The skeleton of many coral
species is often dominated by the filamentous Ostreobium microalgae (Siphonales, Chlorophyta) [204]
that seems to have co-evolved with both the coral host and Symbiodiniaceae symbiont [205]. Despite
their significant role in reef erosion under elevated sea temperature and decreased pH [147,206–209],
Ostreobium can potentially provide an alternative source of energy to the coral host during bleaching via
the transfer of photosynthates [147,210]. Although coral-associated fungi were previously deemed as
potential pathogens, little is known about their taxonomic and functional diversity within the endolithic
community [211]. Yet, the fungal community associated with the skeleton of Acropora hyacinthus
comprised a high diversity of basidiomycetes and ascomycetes species [129]. Fungi potentially
contribute to nitrogen cycling [212], stress tolerance [213], and bioerosion reduction by parasitizing
endolithic algae under environmental stress [213].

3. Coral Bleaching: From Adaptive to Traumatic Holobiont Dysbiosis

Since the partnership with microbial symbionts serves a wide range of beneficial functions
within the coral holobiont, functional activity of microbes may mitigate or even prevent bleaching
responses by supporting the internal equilibrium between the host and Symbiodiniaceae, and by
maintaining stable rates of photosynthesis [27,128,134,166,172]. Conversely, a microbial dysbiosis
can disrupt the stability of the photosynthetic activity and finely-tuned nutrient exchange between
corals and their dinoflagellate partners [51,172], which can ultimately trigger the breakdown of this
photosymbiosis, causing bleaching. Under temperature anomalies, coral health may therefore depend
on the physiological changes within the holobiont that confer thermal tolerance, as well as its ability to
return to a healthy equilibrium (i.e., resilience) after temperature returns to normal. At the ecosystem
level, resilience is defined as the capacity of a system to absorb or withstand environmental stressors,
and to build an alternative state, such that the system maintains its structure and functions [214,215].
At the coral holobiont level, resilience is defined as the capacity of the animal host to resist cellular
stress under relatively extreme environmental conditions (averting coral death) or to revert back
from cellular damages [216]. However, holobiont resilience also refers to the capacity to recruit new
dinoflagellate symbionts and quickly reinstate the microbe’s functional activity to a healthy equilibrium
after stress exposure.

As of today, the role of coral-associated microorganisms in bleaching remains poorly understood,
although changes in bacterial community composition are frequently associated with coral
bleaching [57,186,217]. These alternative microbial states (dysbiosis), and resulting shifts in
the holobiont metabolic network, can occur very rapidly, and even before the first visual signs
of bleaching [186]. As such, microbial profiling of corals, among other reef organisms, may confer
significant advantages over traditional reef monitoring methods (usually based on visual signs of
deterioration such as bleaching), and could therefore provide an early diagnostic tool to assess
climate-related pressures on coral integrity [218,219]. Considering that microbial symbionts can
influence the capacity of their coral hosts to acclimatize and adapt to environmental stressors, in
this section we assess whether microbial dysbiosis can represent an adaptive mechanism, where
the microbiota (i) senses changes in environmental conditions and acts as a buffer against these
disturbances, (ii) senses physiological changes in the coral host before the first signs of deterioration,
and favors recruitment of alternate, thermo-tolerant Symbiodiniaceae partners, or (iii) both of these
occur (hypotheses are not mutually exclusive).
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The adaptive dysbiosis hypothesis (ADH) stands on the principle that the microbiota confers
resistance and resilience to its host via functional redundancy (reviewed in [220]), and is suspected to be
involved in coral stress tolerance [221,222]. A large body of work has provided evidence for microbial
flexibility (dynamic restructuring of microbial symbionts under changing environmental conditions)
as a mechanism for coral environmental adaptation and bleaching tolerance (reviewed in [223]).
Dysbiosis between corals and their associated microbiota may confer novel adaptive capabilities to
environmental changes. Such an adaptive process occurs as long as the coral host can quickly revert
back to a healthy state (eubiosis) by recovering a better suited Symbiodiniaceae assemblage, either by
recruiting exogenous species from the surrounding environment (switching) or adjusting the relative
abundance of native species from a low-abundance background (shuffling) [224,225]. The microbiota
may act as a buffer to delay the coral–Symbiodiniaceae breakdown by maintaining essential functions
when facing weak disturbances [167,173]. Microbial dysbiosis can thus provide a potential source
of adaptive variation via diverse processes that provide physiological changes essential to support
the coral–dinoflagellate symbiosis. Those processes include shifts in microbial gene expression [226,227],
changes in microbiota taxonomic composition [130] and recruitment of new microbial species [186].
The restructuring of microbial communities, i.e., the addition or loss of microbial species, as well as
changes in their relative abundances, is termed metagenomic plasticity [228], and has been suggested as
an important mechanism of coral host plasticity and adaptation [31,130,161]. When exposed to strong
disturbances that exceed the buffering capacity of the microbiota, corals can shift Symbiodiniaceae types
to enhance resilience to environmental changes [225,229,230]. Both switching and shuffling processes
can translate into transient bleaching states, waiting for the coral holobiont to adapt and recover
to a healthy state. Elevated temperature and light incidence, along with the accumulation of ROS,
photoinhibition, and metabolic dysfunctions of the cnidarian–Symbiodiniaceae symbiosis [231,232],
may initiate the expulsion of the Symbiodiniaceae cells. If the environmental stressor persists and
exceeds the buffering capacity of both microbial and dinoflagellate partners, then a “traumatic”
dysbiosis occurs where coral bleaching is irreversible due to the permanent loss of the Symbiodiniaceae,
often accompanied by the occurrence of opportunistic and invading pathogens. Accordingly, we
propose the succession of three holobiont dysbiosis stages to define coral bleaching (Figure 3):

(1) Adaptive dysbiosis without Symbiodiniaceae community restructuring;
(2) Adaptive dysbiosis with Symbiodiniaceae community restructuring with or without

transient bleaching;
(3) Maladaptive/traumatic dysbiosis with irreversible loss of Symbiodiniaceae and invasion of

opportunistic microbes leading to holobiont death.

3.1. Adaptive Dysbiosis without Symbiodiniaceae Community Restructuring

When corals are exposed to thermal stress (among others), major changes in microbiome
composition occur, often associated with different bleaching states, but without inferring a causative
link between the two [35,142]. Therefore, the genetic information encoded by the genomes of
microorganisms can change instantly within a generation (metagenomic plasticity), contrary to the host
genotype. Accordingly, under changing environmental conditions, metagenomic plasticity would
potentially confer immediate adaptive capacity to the coral holobiont. Such a fast evolving capacity
that microbiota confers to the holobiont results from various mechanisms, such as recruitment of
new microbial species from the environment, horizontal gene transfers (plasmids, lysogenic phages,
environmental DNA), and mutations, suggesting that coral microbiomes play a role not only in
holobiont health, but also in its resilience.

Among these mechanisms, the increase in cyanobacteria and plastid ratio within microbial
communities under stress has been identified as a potential mechanism to compensate for
reduced photosynthetic activity linked to a lower abundance of Symbiodiniaceae cells [233], while
a proliferation in nitrogen-fixing (diazotrophic) bacteria has been observed in corals exposed to
elevated temperatures [175,234,235]. Although the exact mechanism behind the association between
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corals and diazotrophic bacteria remains to be solved, their presence is positively correlated with
the abundance of dinoflagellates [166]. The loss of Symbiodiniaceae partners in bleached corals leads
to a decrease in the holobiont’s capabilities to acquire nitrogen [236,237]. As such, diazotrophic bacteria
can confer an additional source of nitrogen to thermally stressed corals and mitigate heat-induced
coral bleaching [142,175].
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Figure 3. Holobiont dysbiosis phases associated with their coral bleaching states. The diagram
illustrates an environmental stressor (increased temperature) inducing the disruption of the initial
microbiome, leading to a dysbiosis state (stage 1) where the coral holobiont remains healthy (no
sign of bleaching) despite the increase in the abundance of native opportunistic bacterial species
and the settlement of invading pathogens and other opportunistic bacteria from the surrounding
environment. The microbiota could act as a buffer and revert to its initial bacterial composition,
representing an adaptive dysbiosis; or the environmental stressor could exceed the buffer capacity of
the microbiota leading to another dysbiosis state (stage 2), where opportunistic bacteria and pathogens
will slowly replace the initial microbiota, while the coral holobiont still remains healthy. Metagenomic
plasticity, here referring to the addition of novel bacterial species and functions (but changes in
relative abundances of native bacteria can also occur), either leads to another adaptive dysbiosis; or
the environmental stressor exceeds once again the buffer capacity of the microbiota leading to another
dysbiosis state (stage 3), where transient bleaching can be observed. Corals can revert to a healthy state
by recovering a better suited Symbiodiniaceae assemblage, either by adjusting the relative abundance
of native species from a low-background (shuffling), here referring to the increase in heat-tolerant
Durusdinium species; or by recruiting exogenous species from the surrounding environment that
are better adapted to elevated temperature (switching). If the stressor causes an abrupt change in
the reef environment or persists for long periods, the adaptive dysbiosis will not act as a mechanism
of environmental adaptation. In that case, the traumatic dysbiosis occurs with the permanent loss of
the Symbiodiniaceae partners leading to coral death, and ultimately to a reef ecosystem dominated
by algae and cyanobacteria (phase shifts). Each dotted circle represents the microbiome of a coral at
each of the dysbiosis stages described, while the bar plots illustrate the declining number of “good
microorganisms” and the increasing number of “bad” ones within the coral microbiome at each of
the dysbiosis stages. The number and size of the Symbiodiniaceae and microbes within the coral tissues
has been modified for illustration purposes.

The intake of new microbial symbionts is not always mandatory to maintain functional homeostasis.
The microbiota can activate a natural defense mechanism against invading pathogens during coral
dysbiosis. For instance, commensal bacteria are known to produce antibiotics and other metabolites
involved in the enzyme inhibition (i.e., decrease in enzyme-related processes) [179,238]. Utilization
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of energetic reserves and/or heterotrophic feeding (i.e., zooplankton) represent another mechanism
to maintain coral homeostasis during elevated temperatures [239,240]. Heterotrophic feeding can
sustain coral energetic requirements during bleaching events, in which the supply of nutrients from
the dinoflagellates decreases or ceases [239,240], and may contribute to coral thermal tolerance by
providing an additional source of carbon [241]. The extent to which this process can meet coral
nutritional needs during bleaching varies greatly across species, ranging from 0 to 35% in Porites species
and up to 100% in Montipora capitata [240], while heterotrophic feeding is not enough to maintain coral
homeostasis in the face of recurrent bleaching events [239].

Coral holobionts living in variable environments can express some level of metagenomic plasticity
since they are forced to modify their physiological activity and/or their microbial composition
frequently [130,242]. Compositional changes of the microbiota are often observed in response to stress,
thus conferring short-term adaptation. If the new environmental conditions persist over time, then
vertical transmission of these changes would allow a long-term adaptation. Such microbiota variations
following a stress event have been demonstrated to be transmitted to the next generation [233].
The coral holobiont can therefore be considered as a selective unit.

3.2. Adaptive Dysbiosis with Symbiodiniaceae Community Restructuring with or without Transient Bleaching

First introduced by Buddemeier and Fautin [243], this holobiont dysbiosis stage involves
both bacterial and dinoflagellate symbiont restructuring and stands on two assumptions: (i) that
different Symbiodiniaceae species within a single genus can respond differently to environmental
conditions [18,27] and (ii) that bleached corals can secondarily acquire new Symbiodiniaceae species
directly from the environment [244]. Some experimental studies have demonstrated shifts in
the taxonomic composition of coral-associated Symbiodiniaceae assemblages, where the intake
of an alternative Symbiodiniaceae genus results in better suited physiological functions during
temperature anomalies [225,229,230]. However, most coral-associated Symbiodiniaceae communities
remain stable to retain photosynthetic function during acute thermal stress [245,246], or when recovering
from stress events [247,248]. When recruitment of new dinoflagellate partners from the environment is
needed, these alternative species are maintained in high abundance in the host’s tissue via shuffling or
switching until the stressor is alleviated or stopped. Shuffled, and possibly switched, Symbiodiniaceae
communities are heritable through maternal transmission, providing a fast-adaptive mechanism
for corals exposed to changing environmental conditions [249]. Conversely, bleaching may also
be triggered by the cnidarian–Symbiodiniaceae symbiosis shifting from a mutualistic to a parasitic
relationship, when the availability of nutrients is reduced under thermal stress [128].

Because some Durusdinium species are considered thermo-tolerant, these better adapted
Symbiodiniaceae can minimize coral bleaching and increase host survival under thermal
stress [230,250–252], compared to species of other genera, such as Cladocopium. Although some
Durusdinium species can potentially confer greater thermal tolerance, associating with this genus
might represent a trade-off for corals, as for example they support slower coral growth compared to
Cladocopium species [253,254]. Corals can also return to their original Symbiodiniaceae partnership
while recovering from environmental stress (2–3 years after the bleaching event) [255], suggesting that
associations with an alternative and more resistant species might only provide short-term benefits.
Opportunistic dinoflagellate, such as Durusdinium, can replace other, less resistant species during
bleaching to help the coral survive before returning to its beneficial association with its original partner.
Durusdinium species might therefore act as transitional helpers rather than permanent partners.

The transition between two Symbiodiniaceae genera is costly in terms of energy, often resulting in
a reduced number of symbionts for photosynthesis [256,257]. Because of their role in photosynthetic
activity, the recruitment of cyanobacteria can potentially sustain important functions in the coral
holobiont during this transitional period [22]. Such an increase in cyanobacteria during coral bleaching
supports the partial contribution of the microbiota in maintaining the stability of the photosynthetic
activity in order to meet the coral nutritional requirements during transitional bleaching (i.e., reversible
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loss of dinoflagellate symbionts). At last, latent viral infections of Symbiodiniaceae might be induced
by light and/or heat stress [258], and infected Symbiodiniaceae are more sensitive to thermal stress [259].
Viral infections of Symbiodiniaceae have negative effects on thermal tolerance that most likely increase
coral susceptibility to bleaching. In some cases, heterotrophic feeding may also provide the buffer time
that is necessary for corals to switch or shuffle their associated dinoflagellate communities in response
to increasing temperatures.

3.3. Madaptive/Traumatic Dysbiosis with loss of Symbiodiniaceae and Invasion of Opportunistic Microbes
Leading to Holobiont Death

In cases of abrupt or prolonged elevated temperature, the microbiome can no longer maintain
resistance against invading opportunistic pathogens (e.g., due to a decrease in the production of
antimicrobial substances) and an irreversible breakdown in the holobiont equilibrium takes place,
where the dinoflagellate symbiont loss is permanent [238]. Following coral mortality induced by
thermal stress, shifts in reef ecosystems can be observed. Nitrogen production from dead corals has
been documented to be as much as 30 times higher compared to healthy reefs [260], favoring an anoxic
environment [261] and algae growth [260]. Endolithic boring communities dominated by Ostreobium
sp. contribute to the dissolution of the calcium carbonate structure of dead corals, thus enhancing
erosion by ocean acidification [262].

4. Microbiome Manipulations

Coral reefs are undergoing rapid decline globally as human activities have led to a gradual
increase in sea temperature that surpasses the physiological tolerance of corals and their associated
microorganisms. We are currently witnessing the most prolonged global coral die-off to date, mostly
due to coral bleaching (from 2014 onwards) [263]. In 1998, 16% of global coral reefs perished [264], and
92% of the Great Barrier Reef showed some degree of bleaching in 2016 (1156 surveyed reefs) [265].
As we progress further into the Anthropocene, the fate of coral reefs under this unprecedented rate of
environmental change is of particular concern and has driven the development of potential approaches
for mitigating the effects of climate warming. Manipulations of rapidly evolving bacterial communities
associated with the coral host might be one strategy to enhance coral tolerance to stress and bleaching.
These new approaches include the isolation of natural microbiomes whose phenotypic traits are
associated with increased survival and resilience (probiotics) [266], and the genetic modification
of coral-associated microorganisms (microbiome engineering) to improve host performance and
fitness in the face of climate change [98]. Although microbiome manipulations may represent a key
strategy to improve coral phenotype and ecosystem functioning, these efforts are still challenging.
Challenges include the lack of knowledge on the mechanisms causing bleaching, the role of microbes
in the development of bleaching, the identity of stable and crucial symbionts promoting coral health,
and the processes involved in the establishment and maintenance of the coral-microbiome symbiosis,
in addition to the difficulty of isolating microorganisms [142]. Nevertheless, recent manipulations
of bacteria associated to the coral P. damicornis have proven to be useful in lessening the effects of
bleaching through the addition of a consortium of native putatively beneficial microorganisms for
corals (pBMCs), including five Pseudoalteromonas sp., a Halomonas taeanensis and a Cobetia marina-related
species strains [58]. Such microbial inoculations were also successful in increasing the resistance of
corals to oil pollution, as well as promoting the degradation of water-soluble oil fractions [267]. Because
coral thermal tolerance is partly dependent on the Symbiodiniaceae species hosted, inoculations
of heat-adapted photosymbionts through experimental evolution can represent another strategy of
improving coral health and bleaching tolerance [268,269].

Despite the potential for harnessing the benefits of coral microbiomes, their manipulations are not
enough to overcome the impact of human-induced climate change and other threats (e.g., pollution,
eutrophication, overfishing) on coral reef ecosystems. Other local/small scale actions must be taken,
in combination with climate action, to protect and restore these diverse and productive ecosystems.
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Ecological restoration, creation of marine protected areas, strict monitoring of physicochemical
parameters, and international collaboration sharing data on corals are only a few examples that
would help in mitigating the current and unprecedented coral decline [270–272]. The establishment of
a holobiont health database is therefore critical to obtain a more integrated understanding of factors
that are threatening coral ecosystems. Ongoing efforts to conserve coral reefs should thus rely on
field and laboratory experiments to generate robust multi-omics data. The application of single
“omics”-based approaches—which refer to technologies used to explore the roles, relationships, and
functions of a large family of molecules that make up the cells of an organism, such as genomics
(genes), transcriptomics (mRNAs), proteomics (proteins), and epigenomics (epigenetic marks)—has
helped to identify molecular signatures linked to the plasticity and adaptation of the coral animal and
its associated microbes [82–84,273–275]. Nevertheless, more investigations that employ multi-omics
approaches to the coral holobiont are required to facilitate the study of associations and interactions
within and across these omics layers.
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