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Abstract

Educational researchers, psychologists, social, epidemiological and medical scientists are

often dealing with multilevel data. Sometimes, the response variable in multilevel data is cat-

egorical in nature and needs to be analyzed through Multilevel Logistic Regression Models.

The main theme of this paper is to provide guidelines for the analysts to select an appropri-

ate sample size while fitting multilevel logistic regression models for different threshold

parameters and different estimation methods. Simulation studies have been performed to

obtain optimum sample size for Penalized Quasi-likelihood (PQL) and Maximum Likelihood

(ML) Methods of estimation. Our results suggest that Maximum Likelihood Method performs

better than Penalized Quasi-likelihood Method and requires relatively small sample under

chosen conditions. To achieve sufficient accuracy of fixed and random effects under ML

method, we established ‘‘50/50” and ‘‘120/50” rule respectively. On the basis our findings, a

‘‘50/60” and ‘‘120/70” rules under PQL method of estimation have also been recommended.

Introduction

Individuals, who are drawn from a hospital, school or a classroom, tend to share more homo-

geneity as compared to those drawn from a population which is very large in size. As such

individuals will always enjoy various common properties like family background, morals and

values, religion, socio-economic status, demographic, etc., complete independence of observa-

tions in such situations is never going to happen [1]. If we have nested data or multilevel data,

the assumption of independence will be clearly violated and the application of analysis of vari-

ance (ANOVA) and linear regression will be incorrect because these two classical models

assume independence, so substitute statistical models (Multilevel Models) needed to examine

and analyze such nested data [2]. Most of the time the data is in the form of multilevel data

structure like in hospitals and educational institutions, and for this type of data researchers fre-

quently used statistical models called multilevel models, hierarchical models, mixed effects

models [3], [4], which are gaining recognition very rapidly. For the last 10 years, these models

have become much admired and still are on rise in terms of popularity among researchers in

various fields. As one of the prime questions in any field of research is to decide about an
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appropriate sample size, the decision and issues regarding sample size are not very straight for-

ward in multilevel modeling. Therefore, for a quantitative study, the decision about the opti-

mum sample size can be extremely tricky due to estimation complexity of the models and the

size of the sample at each level. The issues of sample size in multilevel models have been dis-

cussed by various researchers for continuous response variable. According to [5] for a model

having fixed coefficients, the group size of less than 10 is enough. However, for random coeffi-

cients a group size of� 10 is needed. [6] Concluded that to get high power and accuracy one

should use more level-2 units than level-1 units. Similarly, for level 2 effects and cross-level

interactions the power of the test mainly depends on level 2 units. [7] carried out simulation

study regarding sample size issues in multilevel models for a continuous response variable and

they determined that for fixed effects 10 groups are sufficient, for contextual effects 30 groups

are essential and for valid estimation of standard errors 50 groups are required. Similarly,

Maas and Hox [8] carried out another simulation study for a continuous response variable by

taking three groups (30, 50,100), three group sizes (5, 30, 50) and Intra Class Correlation i.e.

ICC (0.1, 0.2, 0.3). They concluded that across all simulated conditions, the estimates were

unbiased and reported under estimation of level 2 variance components when number of

groups was below 100. It was also concluded that for better estimation at least a sample of size

100 is needed for level 2. However, there is fewer research conducted in the context of binary

response variable. Moineddin et al., [9] performed simulation study for the determination of

sample size for multilevel binary logistic regression model with single level-1 explanatory vari-

able and single level-2 explanatory variable and by taking three groups conditions(30,50,100),

three group sizes (5,30,50) and ICC (0.04,0.17,0.38). They came to the conclusions that when

the number group is equal to hundred with a group size of fifty or more, the fixed effect

parameters estimates were unbiased. Secondly, when the number group is equal to hundred

with a group size of fifty, the variance components were reported to have a bias. The amount

of bias was extremely high for the random effects as well as for the fixed effect when the group

size was five. The standard errors for the variance components were underestimated and for

fixed effect parameters they were unbiased. Paccagnella [10] used a multilevel binary logistic

random intercept model in the simulation study and explored that similar to continuous

response variable model, the bias of fixed parameter estimates decreased with increase in num-

ber of groups. Acceptable coverage rates were achieved for fixed effects estimates when num-

ber of groups was 50. Unlike continuous outcome variable models, a very large number of

groups is needed to achieve acceptable coverage rates for the variance components estimates.

Zeng [11] proposed a Bayesian spatial generalized ordered logit model to analyze freeway

crash severity. The suggested model was superior as compared to the traditional generalized

ordered logit model in terms of statistical significance of the spatial term and better model fit.

Similarly, to analyze crash rate by injury severity, three temporal multivariate random parame-

ters Tobit models were developed by Zeng [12]. In all of the temporal models, significant tem-

poral effects are found and the goodness of fit (Bayesian R2) of the multivariate random

parameters, Tobit regression improves considerably due to the inclusion of temporal correla-

tion. The inclusion of spatio-temporal correlation and interaction in a multivariate random-

parameters Tobit model and their influence on fitting arial crash rates with different severity

outcomes have been investigated by [13] in the Bayesian context. The proposed model per-

forms better in terms of model fit than a multivariate random-parameters Tobit model and a

multivariate random parameters spatial Tobit model.

A driving simulator experiment was conducted by [14] to investigate the safety of the truck

under crosswind at the bridge-tunnel section. Steering angle and the yawing rate were the indi-

ces of the dynamic response under crosswinds. To prevent the possible accident, the authors

recommended various safety options. In another study, [15] used Mixed logit models to reveal
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random effects. This was the first ever investigation of the difference in driver-injury severity

between single vehicle (SV) and multi-vehicle accidents (MV). Respective critical risk factors

of SV and MV accidents were evaluated and compared. Comprehensive observations, which

have not been covered in the existing studies, were made. Additionally, to examine factors

affecting injury sustained by two drivers involved in the same rear-end crash between passen-

ger cars, a random parameters bivariate ordered probit model has been developed by Chen

[16]. The proposed model outperforms the two separate ordered probit models with fixed

parameters.

In multilevel models small group sizes such as 5, 10, and 15 and 20 are usually considered

in education, behavioral science, etc. But here, large group number and moderate group sizes

have been utilized. As compared to the linear multilevel models, larger group numbers are

needed for multilevel logistic regression models. That is why small group number has been

ignored in this study. Moreover, Bayesian methods may also be very useful in such situations,

and can reduce model misspecification and estimation bias significantly.

So far, very little research has been conducted in the literature regarding sample size deter-

mination in the context of multilevel logistic regression models. For example, there is nothing

in the contemporary research about PQL method in multilevel logistic regression models.

Therefore, the present study attempts to capitalize on a novel state-of-the-art rule that encom-

passes all the weaknesses of the available methods for both fixed and random effects estimates

under ML and PQL methods of estimation. In addition, the present study also provides guide-

lines about optimum sample size needed for multilevel logistic regression models. Random

intercept and random slope model with two level-1 and one level-2 explanatory variables using

threshold parameter concept are used. Further, larger random effects are incorporated in the

present study which were unnoticed in the previous literature. Moreover, relevant factor and

their levels were also ignored in [9] and [10]. A detailed comparison of ML method and PQL

method has been made in terms of sample size.

Materials and methods

Multilevel Logistic Regression Model:

A very popular concept is used in social sciences to develop a dichotomous multilevel logis-

tic model through a latent continuous variable model [17]. A threshold concept is used that

the latent continuous variable Y�ij underlies the observed variable Yij. A simple two level dichot-

omous model is

Y�ii ¼ b0j þ b1jX1ij þ b2 X2ij þ eij Level 1 model

b0j ¼ g00 þ g01 Wj þ uoj Level 2 model

b1j ¼ g10 þ g11 Wj þ u1j

b2 ¼ g20

ð1Þ

The combined model was obtained by substituting level 2 model in level 1 model:

Y�ij ¼ ðg00 þ g10X1ij þ g20X2ij þ g01 Wj þ g11X1ijWjÞ þ ðuoj þ u1jXij þ eijÞ

ðFixed partÞ þ ðRandom partÞ
ð2Þ

Where X1ij and X2ij are the Level-1 explanatory variables, Wj is the Level-2 explanatory vari-

able, Level 1 coefficients denoted by β and γ0s are the fixed effects. If eij* logistic (0,π2/3), the

model is, then, referred to as multilevel logistic model [18]. Random effects of level 2 assumed
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to have a multivariate normal distribution
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It should be noted that the equation for Intra Class Correlation (ICC) is

ICC ¼ s2

u=ðs
2

u þ p
2=3Þ ð4Þ

According to [19], ICC is an estimate of the total variance explained by the grouping structure.

Now Y�ij can be linked with the observed variable Yij through a threshold γ, and this thresh-

old is also the intercept of the above model. As we have only two categories, so

Yij ¼ 0 if Y�ij � g and Yij ¼ 1 if Y�ij > g:

The other concept or approach towards multilevel logistic regression models is that of Mul-

tilevel Generalized Linear Models. Both approaches lead to equivalent models, but certainly

different at the conceptual level.

Let Yij be a binary response variable representing the occurrence or nonoccurrence of

some characteristics having values 0 and 1, corresponding to the individual level unit

(i = 1,2. . .. . .nj, j = 1,2. . .. . .N) and i is nested in j. A multilevel dichotomous logistic model

with two level 1 explanatory variables and single level 2 explanatory variable can be written as

logit ðPijÞ ¼ b0j þ b1jX1ij þ b2X2ij Level 1 model

b0j ¼ g00 þ g01 Wj þ uoj Level 2 model

b1j ¼ g10 þ g11 Wj þ u1j

b2 ¼ g20

ð5Þ

The combined model was obtained by substituting level 2 model in level 1 model:

logitðPijÞ ¼ ðg00 þ g10X1ij þ g20X2ij þ g01 Wj þ g11 X1ijWjÞ þ ðuoj þ u1jX1ijÞ

ðFixed partÞ þ ðRandom partÞ
ð6Þ

This particular model was utilized in the present study.

It should be noted that the lowest error eij is absent in the Eq (1) because it is part of Gener-

alized Linear Model specification [20]. This particular framework of generalized linear model

is very popular in biostatistics.

It would be easier to formulate the equation as Pij = expit (regression equation) where expit

is the inverse of the logit function [6]. Then for simulation studies, one would have to specify

the mean and variance of all predictor variables, and the values of all regression coefficients.

The predictor variables would be randomly generated, and the expit function would turn the

continuous prediction into a proportion, which can then be dichotomized according to the

chosen threshold. Similarly, one can use the following expression

Pij ¼ exp ðb0j þ b1jX1ij þ b2X2ijÞ=1þ fexp ðb0j þ b1jX1ij þ b2X2ijÞg ð7Þ

Simulation design

The threshold parameter was set to (γ00 = -1.22), corresponding to approximately twenty per-

cent prevalence rate of the response variable. Similarly, the other fixed effect parameters (γ10,

γ20,γ01,γ11) were set on the analogy of the studies conducted by [7] and [9]. That is γ10 = 0.3,

γ20 = 0.3, γ01 = 0.3, γ11 = 0.3. The explanatory variables (X1ij,X2ij and Wj) were all generated
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from standard normal distribution. u0j � Nð0; s2
uÞ and u1j � Nð0; s2

1
Þ, where s2

u follows from

intra-class correlation specification. The s2
1

value was set to 1 in all simulation scenarios and

for simplicity, the term σu1 was set to zero.

Four scenario for the number of group’s factor and three each for group size and ICC were

used. The number of Groups were taken as (30, 50,100 and 120), Group sizes were (5, 30 and

50) and ICC were set to be (0.1, 0.2 and 0.4). It means, we have 4×3×3 = 36 scenarios and for

each one, the number of simulations “R” was set to be 1000.

Analysis

The accuracy of different fixed effect and random effect parameters estimates were calculated

through the relative bias = (estimate-parameter)/parameter. Empirical coverage rates of 95%

confidence intervals were used to judge the accuracy of the standard errors of estimated

parameters. The 95% confidence intervals coverage rates were computed in each scenario as

the proportion of replications in which the true parameter is captured by the 95% confidence

interval. Bradley recommended acceptable coverage rates as 92.5% to 97.5% [21]. Empirical

powers were computed for the X1ijX2ij, Wj, and X1ij×Wj. The power was calculated as the num-

ber of replications in which H0 of null effect was correctly rejected at 5 percent level of signifi-

cance divided by 1000 as 1000 replications was used for each scenario. Moreover, a separate

logistic regression was used to judge the influence of various simulation scenarios on estimates

empirical coverage rates.

Results

Average relative bias of the Multilevel Binary Logistic Model Fixed Effects and Random Effects

Estimates across all conditions under ML method of estimation is presented in Figs 1–7. Esti-

mates have negligible bias when the number of groups is large. Figs 1–7 indicate that the bias

reduces significantly with the group sizes and the number of groups for all the estimates. Esti-

mates were substantially biased in conditions when the number of groups was 30, group size

was 5 and random effects had their smallest values. The relative bias was generally less than 5%

when the number of groups was 50. For threshold estimate, the relative bias was negative, and

for rest of the fixed effect estimates, the relative bias was positive. Figs 1–7 show that the bias

reduces significantly with the number of groups for all the estimates. The group size factor has

minimal impact on estimates average relative biases.

Table 1 reflects the influence of the number of groups on multilevel binary logistic model

estimates empirical coverage rates under ML method of estimation. This actually indicates a

significant effect of the number of groups on the accuracy of estimates standard errors. The

largest non-coverage for threshold parameter estimate was 5.8% when the number of groups

was 30. Similarly, for γ10, γ20, γ01 and γ11 the largest non-coverage rates were

Fig 1. Average relative bias for the estimate of the threshold parameter across all conditions (ML method).

https://doi.org/10.1371/journal.pone.0225427.g001

Sample size issues in multilevel models

PLOS ONE | https://doi.org/10.1371/journal.pone.0225427 November 22, 2019 5 / 13

https://doi.org/10.1371/journal.pone.0225427.g001
https://doi.org/10.1371/journal.pone.0225427


Fig 2. Average relative bias for the estimate of level 1 variable X1ij coefficient across all conditions (ML method).

https://doi.org/10.1371/journal.pone.0225427.g002

Fig 3. Average relative bias for the estimate of level 1 variable X2ij coefficient across all conditions (ML method).

https://doi.org/10.1371/journal.pone.0225427.g003

Fig 4. Average relative bias for the estimate of level 2 variable Wj coefficient across all conditions (ML method).

https://doi.org/10.1371/journal.pone.0225427.g004

Fig 5. Average relative bias for the estimate of cross-level interaction X1ijWj coefficient across all conditions (ML method).

https://doi.org/10.1371/journal.pone.0225427.g005

Fig 6. Average relative bias for σu across all conditions (ML method).

https://doi.org/10.1371/journal.pone.0225427.g006
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5.5%,5.6%,6.1%,6.3% respectively. Furthermore, for σu and σ1 the largest non-coverage rates

were 11.2% and 10.6% respectively. The non-coverage rates decreased significantly with

increasing the number of groups. The influence of the number of groups was significant on

the empirical coverage rate for both fixed effects and random effects estimates.

Similarly, Table 2 reveals the influence of group size factor on empirical coverage rates in

multilevel binary logistic model estimates under ML method of estimation. The group size fac-

tor did not play a dominant role in raising the accuracy of standard errors of the estimates.

The coverage rates of fixed effects estimates were all acceptable at all group sizes. A separate

logistic regression was used to judge the effect of group size levels on estimates empirical cov-

erage rates. P-values indicates the impact of group size factor on both fixed and random effect

estimate empirical coverage rates.

Moreover, Table 3 shows the influence of ICC on multilevel binary logistic model estimates

empirical coverage rates under ML method of estimation. The influence of different levels of

ICC was insignificant on empirical coverage rates of both fixed effects and random effects esti-

mates when separate logistic regression was used to judge the effect of different ICC conditions

on empirical coverage rates of estimates.

Figs 8–14 show the average relative bias for the Multilevel Binary Logistic Model Fixed

Effects and Random Effects Estimates across all conditions under PQL method of estimation.

It can be observed that the bias reduces significantly with the group sizes and the number of

groups for all the estimates.

Table 4 reflects the influence of the number of groups on multilevel binary logistic model

fixed effects and random effects estimates empirical coverage rates under PQL method of esti-

mation. The largest non-coverage for the threshold parameter estimate was 8.6% when the

number of groups was 30 and it reached 7.2% when the number of groups was 120. Similarly,

for γ10, γ20, γ01 and γ11 the largest non-coverage rates were 8.7%,8.7%,8.8%,9.6% respectively.

Furthermore, for σu and σ1 the largest non-coverage rates were 13.5% and 12.6% respectively.

The influence of the number of groups was insignificant in most of the conditions when sepa-

rate logistic regression was used to judge the effect of the number of groups on estimates

empirical coverage rates.

Fig 7. Average relative bias for σ1 across all conditions (ML method).

https://doi.org/10.1371/journal.pone.0225427.g007

Table 1. 95% CI Coverage rates for the estimates of multilevel binary logistic model by groups (Method = ML).

Parameters Number of Groups

30 50 100 120 P-Value

γ00

γ10

γ20

γ01

γ11

σu
σ1

0.942

0.945

0.944

0.939

0.937

0.888

0.894

0.943

0.947

0.947

0.939

0.940

0.901

0.910

0.949

0.947

0.951

0.947

0.948

0.908

0.931

0.967

0.964

0.963

0.966

0.961

0.926

0.939

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

https://doi.org/10.1371/journal.pone.0225427.t001
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In the same way, Table 5 reveals the influence of group size factor on multilevel binary

logistic model fixed effects and random effects estimates empirical coverage rates under PQL

method of estimation. The group size factor played a dominant role in the reduction of esti-

mates non-coverage rates. A separate logistic regression was used to judge the effect of group

size factor conditions on estimates empirical coverage rates. The coverage rates were signifi-

cantly affected by the group size factor. P-values indicate the impact of group size on estimates

empirical coverage rates. Additionally, Table 6 highlights the influence of ICC on fixed effects

and random effects estimates empirical coverage rates of the multilevel binary logistic model

under PQL method of estimation. The influence of different levels of ICC was significant in

most of the conditions on both fixed effects and random effects estimates empirical coverage

rates when separate logistic regression was used to judge the effect of different levels of ICC on

estimates empirical coverage rates.

Table 7 lists the power rates for multilevel binary logistic model fixed effects estimates

under ML method of estimation. The lowest power rates were recorded for all the fixed effects

estimates when the number of groups was 30. The power increased substantially with the num-

ber of groups. With 100 groups, power rates were well above 0.90.With 120 groups, power

rates were 100% in majority of the conditions under ML method. On the contrary, PQL fixed

effects estimates power rates were lower than that of ML fixed effects estimates power rates, on

average. Power rates increased with the number of groups under both methods of estimation.

Table 8 lists the power rates for multilevel binary logistic model fixed effects estimates under

PQL method of estimation.

Conclusions

In ML method of estimation, the fixed effects estimates were unbiased even with 30 groups;

however, the accuracy of the standard errors of fixed effects estimates was achieved when the

number of groups was 50. In addition, random effects estimates were underestimated, particu-

larly with 30 groups. Unlike fixed effects estimates standard errors, the accuracy of the random

Table 2. 95% CI Coverage rates for the estimates of multilevel binary logistic model by group size

(Method = ML).

Parameters Group Size

5 30 50 P-Value

γ00

γ10

γ20

γ01

γ11

σu
σ1

0.953

0.955

0.953

0.951

0.951

0.896

0.912

0.951

0.949

0.949

0.946

0.943

0.904

0.922

0.946

0.949

0.952

0.948

0.946

0.916

0.920

0.0116

0.0091

0.7870

0.1910

0.0700

0.0000

0.0335

https://doi.org/10.1371/journal.pone.0225427.t002

Table 3. 95% CI Coverage rates for the estimates of multilevel binary logistic model by ICC (Method = ML).

Parameters Group Size

0.1 0.2 0.4 P-Value

γ00

γ10

γ20

γ01

γ11

σu
σ1

0.952

0.950

0.949

0.946

0.946

0.901

0.920

0.951

0.951

0.953

0.949

0.948

0.907

0.919

0.948

0.950

0.951

0.948

0.946

0.908

0.918

0.2591

0.9760

0.4710

0.5610

0.9540

0.0519

0.4639

https://doi.org/10.1371/journal.pone.0225427.t003

Sample size issues in multilevel models

PLOS ONE | https://doi.org/10.1371/journal.pone.0225427 November 22, 2019 8 / 13

https://doi.org/10.1371/journal.pone.0225427.t002
https://doi.org/10.1371/journal.pone.0225427.t003
https://doi.org/10.1371/journal.pone.0225427


Fig 8. Average relative bias for the estimate of the threshold parameter across all conditions (PQL method).

https://doi.org/10.1371/journal.pone.0225427.g008

Fig 9. Average relative bias for the estimate of level 1 variable X1ij coefficient across all conditions (PQL method).

https://doi.org/10.1371/journal.pone.0225427.g009

Fig 10. Average relative bias for the estimate of level 1 variable X2ij coefficient across all conditions (PQL method).

https://doi.org/10.1371/journal.pone.0225427.g010

Fig 11. Average relative bias for the estimate of level 2 variable Wj coefficient across all conditions (PQL method).

https://doi.org/10.1371/journal.pone.0225427.g011

Fig 12. Average relative bias for the estimate of cross-level interaction X1ijWj coefficient across all conditions (PQL method).

https://doi.org/10.1371/journal.pone.0225427.g012
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effects estimates standard errors was achieved when the number of groups was 120. Overall,

the influence of the number of groups was significant on the accuracy of multilevel binary

logistic model estimates and their standard errors. However, group sizes effect was insignifi-

cant in most of the conditions on the accuracy of estimates and estimates standard errors. The

present study not only confirms (50/50 rule, i.e. minimum of 50 groups and 50 units per group

under ML method of estimation) of Moineddin et al.[9] but also suggests that 120 groups and

a group size of 50 is mandatory for obtaining of sufficient accuracy of random effects when

prevalence of the outcome is around 20 percent. Additionally, the influence of the number of

groups was substantial on empirical power rates of fixed effects estimates under ML method of

estimation. The power rates for all the fixed effects estimates increased with an increase in the

number of groups. The results obtained in this study are parallel to the previous studies when

the response variable is continuous [22–23].

On the other hand, the fixed effects estimates had the largest biases when group size was at

the lowest, i.e. 5 under PQL method of estimation. However, their biases were negligible when

group size was 50. Unlike the ML method of estimation, the group size was the most signifi-

cant factor that influenced the accuracy of multilevel binary logistic model estimates and esti-

mates standard errors. Furthermore, the accuracy of the fixed effects estimates standard errors

Fig 14. Relative bias for σ1 across all conditions (PQL method).

https://doi.org/10.1371/journal.pone.0225427.g014

Fig 13. Average relative bias for σu across all conditions (PQL method).

https://doi.org/10.1371/journal.pone.0225427.g013

Table 4. 95% CI Coverage rates for estimates of the multilevel binary logistic model by groups (Method = PQL).

Parameters Number of Groups

30 50 100 120 P-Value

γ00

γ10

γ20

γ01

γ11

σu
σ1

0.914

0.913

0.913

0.912

0.904

0.865

0.874

0.925

0.916

0.917

0.916

0.909

0.866

0.874

0.927

0.917

0.918

0.917

0.912

0.869

0.875

0.928

0.919

0.921

0.923

0.916

0.872

0.880

0.0007

0.1056

0.0563

0.0132

0.0049

0.1458

0.2361

https://doi.org/10.1371/journal.pone.0225427.t004
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was not satisfactory even with a group size of 50. Similarly, the random effects estimates and

their standard errors were under estimated under PQL method of estimation. Random effects

estimates standard errors accuracy was far behind than that of ML method across all condi-

tions. The impact of the number of groups in most of the conditions was insignificant on the

accuracy of estimates standard errors. Therefore, a (50/60 rule, i.e. minimum of 50 groups and

60 units per group under PQL method of estimation) is recommended to achieve sufficient

Table 5. 95% CI Coverage rates for estimates of the multilevel binary logistic model by group size

(Method = PQL).

Parameters Group Size

5 30 50 P-Value

γ00

γ10

γ20

γ01

γ11

σu
σ1

0.917

0.905

0.906

0.910

0.900

0.861

0.867

0.924

0.918

0.918

0.918

0.910

0.869

0.876

0.930

0.926

0.928

0.925

0.921

0.874

0.881

0.0000

0.0000

0.0000

0.0000

0.0000

0.0035

0.0000

https://doi.org/10.1371/journal.pone.0225427.t005

Table 6. 95% CI Coverage rates for estimates of the multilevel binary response variable model by ICC

(Method = PQL).

Parameters Group Size

0.1 0.2 0.4 P-Value

γ00

γ10

γ20

γ01

γ11

σu
σ1

0.929

0.920

0.920

0.919

0.914

0.872

0.879

0.923

0.917

0.917

0.917

0.910

0.868

0.876

0.918

0.912

0.914

0.915

0.906

0.863

0.871

0.0011

0.0223

0.1336

0.1531

0.0493

0.0245

0.0421

https://doi.org/10.1371/journal.pone.0225427.t006

Table 7. Power rates for Fixed effects estimates of the multilevel binary response variable model by groups

(Method = ML).

Parameters Number of Groups

30 50 100 120

γ00

γ10

γ20

γ01

γ11

0.475

0.509

0.491

0.516

0.459

0.756

0.792

0.782

0.802

0.743

0.902

0.911

0.900

0.919

0.914

0.999

1.000

0.999

1.000

1.000

https://doi.org/10.1371/journal.pone.0225427.t007

Table 8. Power rates for Fixed effects estimates of the multilevel binary response variable model by groups

(Method = PQL).

Parameters Number of Groups

30 50 100 120

γ00

γ10

γ20

γ01

γ11

0.451

0.465

0.471

0.489

0.442

0.729

0.754

0.749

0.775

0.729

0.876

0.888

0.869

0.891

0.884

0.993

0.996

0.995

0.996

0.995

https://doi.org/10.1371/journal.pone.0225427.t008
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accuracy. In addition, it is also recommended that 120 groups and a group size of 70 may be

used to achieve sufficient accuracy for the variance components estimates and their standard

errors when prevalence of the outcome is around 20 percent. Larger ICC values also decreased

the accuracy of estimates and their standard errors. Similarly, like ML method of estimation,

the power rates for the multilevel binary logistic regression model fixed parameter estimates

increased with the number of groups. The power rates of PQL method of estimation was also

on the lower side as compared to ML method power rates.

Across all conditions, PQL method estimates and estimates standard errors of multilevel

binary logistic model are not comparable to that of ML method. On the basis of the present

study results, it is, therefore, recommended that PQL method for binary outcome variable may

be avoided in situations such as low prevalence of outcome, larger values of random effects

and even when group sizes are 50 or less. However, the significance of Penalized Quasi Likeli-

hood method of estimation was ignored earlier which proved to be an extremely effective

method when random effects are small.
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