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Glioblastoma (GBM) is the most frequent grade IV pri-
mary brain cancer in adults. The standard-of-care therapy 
for GBM combines surgery, radiation, and chemother-
apy but is not effective due to relapse of the tumor.1 One 
of the key approaches taken to study new interventions 

against GBM is the use of patient-derived GBM cell (GC) 
cultures, a technique based on propagation of tumor cells 
in a defined medium, supplemented with growth fac-
tors.2 Compared with traditional tissue culture models, 
GC cultures retain cells transcriptionally similar to the 
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Abstract
Background. Primary glioblastoma cell (GC) cultures have emerged as a key model in brain tumor research, with 
the potential to uncover patient-specific differences in therapy response. However, there is limited quantitative 
information about the stability of such cells during the initial 20–30 passages of culture.
Methods. We interrogated 3 patient-derived GC cultures at dense time intervals during the first 30 passages of 
culture. Combining state-of-the-art signal processing methods with a mathematical model of growth, we esti-
mated clonal composition, rates of change, affected pathways, and correlations between altered gene dosage and 
transcription.
Results. We demonstrate that GC cultures undergo sequential clonal takeovers, observed through variable propor-
tions of specific subchromosomal lesions, variations in aneuploid cell content, and variations in subpopulation cell 
cycling times. The GC cultures also show significant transcriptional drift in several metabolic and signaling path-
ways, including ribosomal synthesis, telomere packaging and signaling via the mammalian target of rapamycin, 
Wnt, and interferon pathways, to a high degree explained by changes in gene dosage. In addition to these adapta-
tions, the cultured GCs showed signs of shifting transcriptional subtype. Compared with chromosomal aberrations 
and gene expression, DNA methylations remained comparatively stable during passaging, and may be favorable 
as a biomarker.
Conclusion. Taken together, GC cultures undergo significant genomic and transcriptional changes that need to be 
considered in functional experiments and biomarker studies that involve primary glioblastoma cells.
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tumor of origin, and retain properties important for the 
study of tumor regeneration.3 One promising application 
of GCs is based on their potential to facilitate functional 
studies on cells across a population of patients4,5 (eg, to 
determine biomarkers of drug response). For such stud-
ies to be efficient, however, it is necessary to consider the 
stability of the GC cultures, and the possible impact of 
time-dependent fluctuations in clonal substructure.6 Both 
GBMs and GC cultures have been shown to exhibit intra- 
and intergenomic heterogeneity,4,7 with observable con-
sequences at the level of drug responses, in vivo tumor 
initiation capacity, and in vitro cell culture properties.8,9 
Given the importance of GC cultures as a model for GBM, 
it is therefore necessary to understand how clonal com-
position develops over time, and to determine to what 
degree such clonal changes impact the transcriptional or 
epigenetic state of the cells. It is also important to inves-
tigate which pathways are affected by such changes and 
which are not. As part of a larger characterization effort 
of patient-derived GC cultures in our laboratory,4 we 
therefore studied the clonal stability of 3 patient-derived 
GC cultures over time, from early (<10) to late (<30) pas-
sages, sampled at regular intervals. High-resolution 
profiling of DNA copy number aberrations, DNA methy-
lation, targeted exome sequencing, and transcriptomes 
were combined with mathematical modeling to charac-
terize the rate and impact of genomic changes of the GC 
cultures.

Materials and Methods

GBM Cell Culture Establishment and Passaging

All surgical samples and records used in this study were 
obtained from Uppsala University Hospital in accord-
ance with protocols approved by the regional ethical 
review board and after obtaining written consent from 
all patients. Passage 6 GC cultures were established and 
stored at −150°C using the procedures of our Human 
Glioma Cell Culture (HGCC) biobank.4 One million cell 
frozen vials of U3021MG, U3028MG, and U3088MG GC 
cultures from this collection were grown in Neurobasal 
and Dulbecco’s modified Eagle’s medium/F12 (1:1 mix) 
supplemented with N2, B27 (ThermoFisher Scientific), 
human recombinant fibroblast growth factor 2 (10  ng/
mL, Peprotech), and epidermal growth factor (10 ng/mL, 
Peprotech), maintained at 37°C in 5% CO2. As in previous 
work by us4 and others,2 thawing results in only a lim-
ited loss of approximately 10% of cells, unlikely to affect 

the temporal evolution of cultures. During passages 7–29 
the GC cultures were grown in mouse laminin coated 
6-well BD Primaria plates. At each passage, once the cells 
reached 80%–90% confluence, we pooled all cells from 6 
wells into one tube and counted the cells using the trypan 
blue method (Countess, Invitrogen). For the next passage, 
we seeded 100,000 cells per well into a new 6-well plate 
and the remaining cells were frozen and stored at −150°C. 
At regular intervals, an aliquot of cells was used for prep-
aration of DNA and RNA.

Longitudinal Genomic Profiling of GC Cultures

DNA and RNA samples were obtained from the lon-
gitudinally passaged GC cultures, as specified in 
Supplementary Table S1. DNA was isolated from the GCs 
and formalin-fixed paraffin-embedded (FFPE) GBM tis-
sues by using the DNeasy Blood & Tissue Kit (Qiagen) 
and the QIAamp DNA FFPE Tissue Kit (Qiagen) according 
to manufacturer’s protocol. Total RNA was extracted from 
GCs by the miRNeasy Mini Kit (Qiagen). DNA copy num-
ber profiles were measured using Affymetrix CytoScan 
(DNA from cells) and OncoScan (DNA from FFPE tissues) 
in accordance with the manufacturer’s instructions. Raw 
intensities were processed into copy number estimates 
with the R packages Rawcopy and TAPS.10,11 Copy num-
ber data (log ratio and single nucleotide polymorphism 
allele ratio) were studied for signs of segments with 
non-integer copy number caused by underlying gen-
etic heterogeneity, as previously described.10–13 Where 
such heterogeneity was detected, the relative abun-
dance of cells with each copy number composition was 
then estimated from the observed allele ratio or log ratio 
of the segment and their expected value(s) if they had 
been homogeneous. Exome sequencing for 597 selected 
genes was performed using the Illumina sequencing 
platform InView assay (GATC Biotech). Single nucleo-
tide variants, insertions, and deletions were detected 
by using LoFreq.14 Variants detected were screened 
for known clinical significance by using the ClinVar 
database.15 Methylomes were profiled using Illumina 
HumMeth450K assays following the manufacturer’s 
instructions. Bisulfite conversion was performed using 
the EZ-96 DNA Methylation Gold Kit (Zymo D5007). 
The data were processed using the R package ChAMP16 
to obtain DNA methylation beta values. RNA profiles 
were measured using the Affymetrix GeneChip HTA 2.0 
arrays, and robust multi-array averages were normalized 
employing the Affymetrix Expression Console.

Importance of the study
Patient-derived cancer cell cultures are an increasingly 
important tool for oncological research. Such cell cul-
tures are an improvement over classical cancer cell 
lines, but their properties are not fully scrutinized. We 
analyzed the stability of patient-derived cell cultures 
from the brain tumor glioblastoma. Using molecular 

and mathematical analyses, our results show that the 
cells undergo both systematic adaptations and sequen-
tial clonal takeovers. Such changes tend to affect a 
broad spectrum of pathways. A systematic analysis of 
cell culture stability will therefore be essential to make 
use of primary cells for translational oncology.

https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data


 1082 Baskaran et al. Glioblastoma cells for precision medicine

Validation of Ploidy Status by Fluorescence In 
Situ Hybridization and Flow Cytometry

The fluorescence in situ hybridization (FISH) probes CEp4 
(cat no: 06J54-004), C5p (cat no:05J03-005), and C5q (cat 
no:05J04-005) were purchased from Abbott. The procedure 
was followed according to the manufacturer’s instruction. 
The individual cells were quantified for signals under the 
fluorescence microscope. For each cell line, at least 200 
cells were counted for fluorescent signals, and graph was 
plotted in terms of percentage. GCs were analyzed for DNA 
content and ploidy status by flow cytometry (FC) as previ-
ously described.17 The raw data from flow cytometry were 
analyzed by using ModFit LT software.

Mathematical Model of Subpopulation Differential 
Growth Rate

To quantify cell growth rates, we used the exponential 
model n t t n t r t+( ) = ( )∆ ∆2 ,  in which n(t) is the number of 
cells as a given time point, ∆t  is a time interval (in days), 
and r is the growth rate parameter (in doublings per day). 
From this basic assumption, we first derived equations 
to (i) estimate growth rates ( )r̂  in the unit doublings/day, 
and (ii) estimate corresponding of doubling times ( )tD  in 
the unit hours/doubling, described in the Supplementary 
Methods. Next, we derived a technique to estimate the 
difference in growth rate r̂  from alteration fraction data 
as follows. Consider a mixture of 2 populations of cells, 
where n1(t) is the number of cells of type 1 at time t and 
n2(t) is the number of cells of type 2 at time t. The propor-
tion of cells of type 2 at an arbitrary starting time point t0 is 
defined as 

 p
n t

n t n t0
2 0

1 0 2 0

=
( )

( ) + ( ) ,  (1)

ie, the fraction of type 2 cells of the total pool of cells. 
Assume that cells grow exponentially from time 
t t t0 0totime + ∆ .  The number of cells of types 1 and 2 are 
given by 
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where r is the doubling rate in 1/hours and and ∆r  is 
the difference in doubling rate between population 2 and 
population 1.  At time t t0 + ∆ ,  the proportion of cells in 
population 2 is given by 

 p
n t t

n t t n t t
=

+( )
+( ) + +( )

2 0

1 0 2 0

∆
∆ ∆

.  (3)

Substitution of equations 1 and 2 into equation 3, fol-
lowed by simplification and solving for ∆r  (details 
in Supplementary equations S1) gives the result in 
equation 4 (Results, below).

Solving equations 2 and 3 for ∆r  gives the result in 
equation 1. Note that the time unit t is arbitrary, where pas-
sage is used, implying that ∆r  calculated using equation 1 
is the differential cell growth per passage is exp( ).∆r

Analysis of Pathways, Gene Dosage Effects, and 
Glioblastoma Subtypes

To detect consistently altered pathways between early 
and late passages, we used the Gene Set Enrichment 
Analysis (GSEA)–PreRanked algorithm, as described in 
the Supplementary Methods. To quantify the effect of gene 
dosage on transcription between early and late passages, 
we used linear regression in which the log fold change of 
each transcript, ∆RNA RNA RNAlate early= − ,  was modeled 
as a linear function of the corresponding change in gene 
dosage, ∆CNA CNA CNAlate early= −  as the predictor vari-
able. We applied this approach both to the full set of human 
genes in our data, as well as to each of the pathways avail-
able in the Kyoto Encyclopedia of Genes and Genomes 
database. Permutation tests and P-value false discovery 
rate (FDR) correction were used to find significant associa-
tions, as described in the Supplementary Methods.

Comparison of Stability for Different Genomic 
Data Types

To assess and compare the stability of DNA copy number, 
DNA methylation, and RNA expression data, we used linear 
regression with each data type (Fig. 5A), in which X = the 
earlier time point sample and Y = the later time point sam-
ple. To compare the different assays (Fig. 5B), we used a 
nonparametric assessment. We thus used Kruskal–Wallis 
test statistic H, with cell cultures as 3 groups and the early 
and late time points as replicates within each group. We 
then used 1000 permutations to obtain simulated P-values 
and kept probes as P < 0.1 as differential between cases. 
(We are aware that 0.1 is too high a cutoff to call individual 
probes, but the present design with 3 groups does not per-
mit a stricter calling; what matters here is the differential 
percentage of probes between the technologies, for which 
a 0.1 cutoff is adequate.) For Fig.  5C, standard principal 
component analysis (PCA) was applied to row-centered 
data for each data type separately.

Results

Genetically Different Cells Appear and Expand in 
GC Cultures

We selected 3 GC cultures (U3021MG, U3028MG, and 
U3088MG) from our HGCC biobank of GC cultures from 
Swedish patients.4 The 3 cultures were propagated from 
passage 6 to 30 in defined, serum-free medium. We sub-
sequently collected samples for profiling, at regular 
intervals of ~2–8 passages (Supplementary Table S1). We 
used high-resolution arrays (Affymetrix CytoScanHD) to 
probe the genome with approximately one probe every 
1000 base pairs. We first visualized the results using 
Rawcopy10 and TAPS,11 which were used to determine the 
genome-wide absolute copy number at each time point. 
When there was evidence of genetic heterogeneity, the 
fraction of cells and their associated copy number were 
estimated as previously described.12,13 In all 3 GC cul-
tures, we found evidence that subpopulations expanded 

https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
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and retracted. This was observed both as a change in the 
estimated population fraction of specific genetic altera-
tions over time and as the appearance of specific altera-
tions (Fig. 1A–C). Situations in which a genetic alteration 
increased from a moderate fraction to 100% of the culture 
were designated as clonal takeovers. The data also indi-
cated that while the cultures were heterogeneous at the 
copy number level, many or most copy number alteration 
(CNA) events were shared between subpopulations of 
the same cell line, proving a common ancestry in the pri-
mary tumor (Fig. 1D). This was also supported by a direct 
genetic comparison between the parental tumor and the 
cell cultures by both CNA profiling and targeted exome 
sequencing (597 genes, Supplementary Tables S2 and S3, 
Supplementary Fig. S1).

The GC culture U3021MG, derived from a 50-year-old 
male, first displayed a complex copy number profile at 
passage 7, interpreted as a mixture of near-tetraploid and 
near-diploid cells. At passage 13, however, U3021MG was 
74% near-tetraploid, with 3–4 copies per cell of most of 

the genome. The tetraploid subpopulation was gradually 
reduced after passage 13 and was no longer detected at 
passage 21, when all cells appeared near diploid (Fig. 1A).

U3028MG, derived from a 72-year-old female patient, 
was near-diploid at passage 7 but contained a duplica-
tion of chromosome 7 (in 50% of the cells) and a complex 
chromosome 8 rearrangement (in 20% of cells). At passage 
9, the events on chromosomes 7–8 were fully clonal, indi-
cating a rapid clonal takeover. From passage 9 the copy 
number profile remained homogeneous and unchanged 
until at least passage 15 (Fig. 1B).

The GC culture U3088MG, derived from a 67-year-old 
female patient, started as a near-diploid, apparently homo-
geneous cell population at passage 7. It carried a deletion 
on chromosome 1q where a few segments of otherwise 
deleted material had formed a high-level amplification, 
likely in the form of a circular double-minute chromo-
some.18 Such a 1q amplification is recurrent in GBM and 
present in about 10% of primary tumors.19 At passage 9, 
the copy number profile had become more complex and 

1 copy
2 copies
3 copies

4 copies

2 copies
3 copies

1 copy
2 copies

1 copy
2 copies
3 copies
4 copies

1 copy
2 copies
3 copies

3 copies
4 copies
5 copies

1 3 5 7 9 12 16 X202 4 6 8 10 1814

1 3 5 7 9 12 16 X202 4 6 8 10 1814

1 3 5 7 9 12 16 X202 4 6 8 10 1814

pa
ss

ag
e 

13

U
30

28
M

G
 

U
30

88
M

G
 

U
30

21
M

G
 

pa
ss

ag
e 

21
pa

ss
ag

e 
7

pa
ss

ag
e 

11
pa

ss
ag

e 
7

pa
ss

ag
e 

15

0

0.5

1
U3021MG

Tetraploid
Gain 14q
Loss 13pq

0

0.5

1
U3028MG

Loss/gain 8pq
Gain 7pq
Loss 21pq
Gain 1q

5 10 15 20 25

5 10 15 20 3025

5 10 15 20 25

Culture passage

0

0.5

1
U3088MG

Pentaploidy
Gain 20pq
Del 11pq
Gain 3pq
Gain 13q

A

C

B

D

al
te

ra
tio

n 
fr

ac
tio

n
al

te
ra

tio
n 

fr
ac

tio
n

al
te

ra
tio

n 
fr

ac
tio

n

Fig. 1 Genetically different cells appear and expand in GC cultures. (A–C) Emergence, expansion, and diminishing of clones over time in 3 GCs. 
(D) Absolute genome-wide copy number of each set of matched subclone genomes at one earlier and one later passage. Note the detected 
overall change in ploidy in U3021MG and U3088MG.

https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
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contained a higher-ploidy subpopulation with a median 
copy number of 5 (near pentaploid). The pentaploid sub-
population constituted the majority of cells at passage 11 
and virtually all cells at passages 13 and 15. Meanwhile, 
the cell fraction of the 1q amplification fell steadily from 
passage 7 through 15 and was absent at passage 28. About 
60% of the cells also had gain of 13q, which means that at 
least 2 subpopulations were present at passage 28. Thus, 
near-pentaploid subpopulations have taken over the cul-
ture (Fig. 1C).

Near-Diploid Cells May Harbor Pseudo-Subclones 
with Doubled Genomes

We used 2 independent experimental methods, FISH 
and FC, to confirm the observed differences in ploidy 
and clonal heterogeneity. The results confirmed the 
detection of aneuploidy populations in U3021MG, but 
at higher proportions than originally observed on the 
array copy number data. For instance, FISH showed that 
U3021MG still contained >40% tetraploid cells at passage 
21 (Fig.  2A, B) and that U3028MG contained approxi-
mately  20% tetraploid cells at passage 16 (Fig.  2C, D). 
The dramatic increase of pentaploid cells in U3088MG 
at passage 16 was confirmed, but a tetraploid popu-
lation was also detected (Fig.  2E, F). Consistent results 
were obtained using FC (Supplementary Fig.  S2). The 
quantitative difference to the array data likely reflects 
a technical limitation; with array technology, the DNA 
of a genome-doubled cell is indistinguishable from the 
DNA of 2 nondoubled cells. As FISH data consistently 
showed evidence of the tetraploids, and FC data (Fig. 2, 
Supplementary Fig. S2) confirmed their existence, pres-
ence of the near-tetraploid cells is unquestionable. But 
the observation of such tetraploid cells that are similar to 
the near-diploid population in all 3 cultures casts doubt 
over whether they constitute actual subclones. The data 
are likely best explained by a process in which tetraploid 
cells indeed arise frequently through whole genome dou-
blings during cell culture. Thus, the near-tetraploid cells 
can be viewed as a whole genome doubled version of the 
near-diploid cells in the culture at that time. Subsequent 
segregation errors in near-tetraploid cells could then 
form a source of new aneuploid cells. The implication of 
such tetraploid cells for functional experiments, if any, 
remains to be investigated.

High Rates of Clonal Takeover in GC Cultures

In order to further analyze cell growth and clonal takeover, 
we interpreted our array data in the context of a mathem-
atical model of exponential cell growth. An exponential 
model of cell growth states that at any interval in time, the 
cell population expands by a factor of 2r t∆ ,  where ∆t  is 
the number of days in culture, and r is the rate parameter 
r (in the unit doublings per day). Using data from 29 pas-
sages (209 days) of culture, we found that r varied in all 
3 cultures between about 0.1 and 0.5 doublings per day, 
corresponding to approximately 48–240 hours per dou-
bling. There was some evidence that r changes over time: 
U3021MG reduced its growth rate (Fig.  3A, P  =  0.034), 

whereas U3028MG showed signs of accelerated growth 
(Fig. 3B, P = 0.025).

To estimate the rate of clonal takeover, we next consid-
ered a model with 2 cell populations, called population 1 
(the background population) and population 2 (carrying a 
distinct genetic aberration compared with the background 
population). In this model, we assume that while popula-
tion 1 grows at a default rate r, population 2 grows at a 
modified rate r r+ ∆ .  In other words, a genetically altered 
subpopulation for which ∆r > 0  will tend to take over the 
whole population, whereas one with ∆r < 0  will tend to 
disappear. A useful feature of the model is that it implies 
(proof in the Supplementary Methods) that ∆r  can be dir-
ectly estimated from knowing the fraction of population 2 
at 2 different time points: 

  ∆
∆

r
t

p p
p p

 = −
−

−
1 1

12
0

0

log
( )
( )

 (4)

where p0  is the alteration fraction at the starting time 
point, and p is the corresponding alteration fraction after 
an observation time of ∆t.  Using this result, we obtained 
relative growth rate of cells with different alterations 
(Table 1). The results were consistent with differential rates 
of subpopulation growth. For instance, in U3028MG, one 
subpopulation carrying chr 8 alterations had a doubling 
time that was 40 hours faster, whereas a second subpopu-
lation with chr 21 loss had a doubling time of more than 
120 hours slower (Supplementary Table S4). While this ana-
lytical model is clearly an approximation (eg, it assumes 
exponential growth and analyses one single alteration at a 
time), our results do provide a first estimate of rates of sub-
clonal genetic drift in primary GBM cultures; genetically 
different cancer cells may coexist in the culture and rapidly 
change their proportions.

The precise mechanism of the clonal fluctuations would 
require further study. For instance, the fluctuations of the 
tetraploid subpopulation in U3021MG and chr 11 deletion 
in U3088MG suggest that the relative growth of genetic-
ally distinct subpopulations ( )∆r  may depend on func-
tional interactions with other subpopulations, or effects 
due to long-term culture, like senescence. The one cell line 
(U3028MG) that increased its growth rate (Fig.  3) did so 
after an initial takeover of a subpopulation with chr 7 gains 
(Fig. 1B), both known as recurrent events in GBM.19,20 The 
increased rate may thus be a result of acquisition of add-
itional oncogenic changes.

Transcriptional Stability of GC Cultures: 
Adaptations, Gene Dosage, and Subtype

What were the transcriptional effects of clonal takeover? 
We analyzed global mRNA profiles from pairs of samples, 
selected to represent time points before and after clonal 
takeover. We first identified the number of genes that 
were detected with at least 2-fold differences in expres-
sion. Identified were 1592 genes in U3021MG, 517 genes 
in U3028MG, and 2148 genes in U3088MG (Supplementary 
Table  S5). Thus, the genomic changes are in all 3 cases 
accompanied by profound changes in gene expression 
that affect large numbers of genes. Secondly, we tested the 

https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
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hypothesis that cells would show consistent transcriptional 
changes between earlier and later passages. For this, we 
scored each individual transcript by a moderated t statistic, 
which had a positive sign for transcripts that were consist-
ently upregulated during passaging and a negative sign for 
transcripts that were downregulated. We then scored path-
ways in the Broad Institute Molecular Signatures Database 
(MSigDB) for consistent positive or negative bias of t scores 
using GSEA (Fig. 4A). The 3 GC cultures showed strongly 
significant (FDR q-value < 0.001) induction of pathways 
associated with ribosomal biogenesis, oxidative phosphor-
ylation, tricarboxylic acid cycle, mammalian target of rapa-
mycin signaling, and hypoxia (q =  0), which is consistent 
with broad metabolic adaptations to culture conditions.21 
Downregulated pathways included telomere end packaging 
(q = 0.0), opening of RNA pol 1 promoter (q = 0.0), as well as 
downregulation of Wnt/beta catenin (q = 0.035) and alpha-
interferon pathways (q = 0) (Fig. 4A). A full set of results is 
provided in a browsable format in (Supplementary File S1).

A similar application of GSEA to DNA copy number 
aberrations indicated consistent gain and loss of multiple 
chromosomal bands (Supplementary Fig.  S3), suggest-
ing that some of the pathway alterations may be due to 
altered gene dosage. To quantify the gene dosage effect, 

we considered a regression model in which the change of 
DNA copy number for each gene locus ( )∆CNA  was cor-
related with the corresponding change of gene expression 
for that locus ( ).∆RNA  First considering all transcripts, 
there was clear evidence that drift in gene dosage affects 
transcript levels (r > 0.11, P < 10‒20, Fig. 4B). Based on this 
observation, we next tested the idea that particular path-
ways may be more strongly affected by CNA-driven gene 
dosage changes. To quantify this, we computed the correl-
ation between ∆CNA  and ∆RNA  in each pathway in the 
MSigDB to obtain a pathway-specific P-value by simulation 
(Fig. 4B). Using a pooled statistical test of correlation, we 
identified 21 pathways for which ∆CNA  and ∆RNA  cor-
related more than expected at random (Supplementary 
Table  S4). The most extreme example of this was the 
MSigDB subset of ribosomal genes, MYC transcriptional 
targets, oxidative phosphorylation genes, and ubiquitin 
pathway components (Fig. 4B). These observations would 
suggest that the observed clonal takeover is associated 
with changes in metabolism and protein turnover driven by 
CNA changes. For these pathways, high R-square between 
∆CNA  and ∆RNA  in combination with a slope near 1:1 
also seems to suggest that in some cases few other factors 
than CNA changes are at play. A more detailed functional 
investigation would be required to explore this effect.
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https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy024#supplementary-data
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It has previously been suggested that GC culturing in mice 
has resulted in shifts of the observable transcriptional sub-
type of the culture.4 We investigated whether a similar shift 
occurred during clonal takeover by applying the transcrip-
tional subtype calling algorithm (bootstrapped k-nearest 
neighbor4) to assign subtype status (classical, proneural, 
mesenchymal22). As a result, we observed 2 GCs shifted status 
to mesenchymal from classical (Fig. 4C). This observation fur-
ther illustrates that subtype status is not a constant property 
of a GBM cell culture, which raises a question of relevance 
of subtype scoring in therapeutic aspects.23,24 By comparison, 
classification by the German Cancer Research Center (DKFZ) 
brain tumor methylation classifier25 was relatively stable; all 
samples were classified as isocitrate dehydrogenase wild-
type GBM, and either receptor tyrosine kinase (RTK)1 or RTK2 
subtype at relatively constant scores (Fig. 4D).

Glioblastoma Cell DNA Methylation Patterns Are 
Robust to Clonal Takeover

We went on to analyze the impact of clonal takeovers on 
DNA methylation of the GC cultures. Passages nearly match-
ing those analyzed for gene expression (U3021MG passage 
[P]13; P24, U3028MG P7; P15 and U3088MG P7; P15) were 
thus analyzed for genome-wide methylation status using 
Illumina 450k arrays. The DNA methylation patterns remain 
comparatively stable in samples from the same culture that 
had undergone CNAs and showed large differences in gene 
expression and doubling times (Fig. 5). Firstly, the correlation 

of the methylome profile between earlier and later passage 
was high (R2 > 0.9) in all 3 GC cultures. This suggested that 
DNA methylation profiles were more preserved than CNA 
profiles (R2 0.59 to 0.84) but not necessarily mRNA profiles 
(R2 > 0.95) (Fig. 5A). This motivated us to analyze how the 
gradual change in genomic patterns would affect our ability 
to use each type of measurement as a biomarker. To quan-
tify this, we applied a Kruskal–Wallis H statistic to relate the 
variation across the 3 cell cultures to the variation within 
each cell culture between passages. Applied to our data, this 
nonparametric test should thus identify mRNAs, gene loci, 
or methylation probes that contain robust signals useful to 
separate individual cases. Among the 3 data types tested, 
DNA methylation had approximately twice as many vari-
ables with a positive H test (Fig. 5B). This significantly higher 
proportion (chi-square test, P  <  10−20) indicates that DNA 
methylation is a comparatively robust choice for biomarker 
analyses in GC cultures. The robustness of DNA methylation 
to separate cases (in terms of relative distances) was also 
evident in a PCA of each GC (Fig. 5C). Overall, no regions of 
differential methylation could be detected except in regions 
that had undergone unbalanced allele-specific CNA. Thus, 
the observed DNA methylation differences are largely a 
result of different composition of chromosomes with similar 
DNA methylation. We thus concluded that DNA methylation 
was relatively unaffected by multiple passages, and may in 
that particular sense be a stable biomarker, with differences 
in methylation between different tumor cell cultures. Those 
are likely to be caused by differences in methylation in the 
progenitor cells.

Table 1 Relative growth rate of the different observed alterations

Culture Event Between 
Passages

Delta r  
(doublings/day)

Population  
Doubling Time (h)

Altered Fraction 
Doubling Time (h)

Difference (h)

U3021MG gain14q 21–24 >0.096 61 <49 <−12

tetraploid 7–13 0.027 57 −4

13–15 −0.076 76 15

15–18 −0.058 72 11

18–21 −0.103 83 22

loss13pq 7–13 −0.057 72 10

U3028MG loss_gain8pq 7–9 >0.346 78 <37 <−41

gain7pq >0.234 <44 <−34

loss21pq <−0.187 >200 >121

gain1q <−0.126 >132 >54

U3088MG pentaploid 7–9 0.23 82 46 −36

9–11 0.153 54 −28

11–13 >0.219 <47 <−35

gain20pq 7–9 >0.129 <57 <−25

15–28 >0.064 <67 <−15

del11pq 13–15 >0.256 <44 <−38

15–28 <−0.037 >93 >12

gain3pq 15–28 >0.087 <63 <−19

gain13q 15–28 >0.043 <71 <−10

Note. The ∆r  is estimated as the difference in growth rate for cells harboring a particular genetic alteration. Model does not assume alterations to 
be mutually exclusive; it is therefore possible that an individual subclone carries more than one alteration.
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Discussion

A fundamental challenge for cancer research is to estab-
lish models that are, on the one hand, accessible for large-
scale experimentation and, on the other hand, retain 
key aspects of patient-specific biology. Ongoing efforts 
such as the HGCC program aim to establish patient-spe-
cific GC cultures4 and xenograft mouse models26 across 
multiple molecular variants of GBM. In our own HGCC 
biobank, which is a public resource with widespread inter-
national distribution, there is currently a high demand 
for GC cultures that (i) harbor particular genomic lesions,  
(ii) show high or low activation of particular pathways, or (iii) 
cover different GBM subtypes.4 In brain tumor research, these 
primary GC cultures have emerged as a standard model to 
study drug sensitivity and identify new molecular targets.5,27–30 
Considerable effort has been invested in supporting the repre-
sentivity of primary GC cultures and comparing cell cultures 
isolated from the same tumor.2–4 By comparison, we have 
relatively little information on the temporal evolution of GC 

cultures. In one study, Garcia-Romero et al demonstrated that 
long-term passaging of glioma sphere cultures can affect the 
drug response of cells,6 warranting a systematic longitudinal 
investigation across several layers of genomic observation.

Our analysis of 3 of the GC cultures from HGCC illustrates 
clearly that each of these factors (mutation status, pathway 
activation, and subtype) is subject to time-dependent changes. 
The genomic copy number changes are often rapid and can be 
sequential, as illustrated by the succession of different dom-
inant subpopulations. The genomic changes are in all cases 
accompanied by profound changes in mRNA expression. 
Some of these changes in specific pathways are likely to be 
caused directly by gene dosage effects. Some of the pathways 
with correlation between gene dosage and expression were 
recurrently affected in all 3 GC cultures. This suggests that the 
culturing of GC cells in itself may lead to changes in particular 
pathways or characteristics. However, further experimentation 
is required to more closely describe how often specific path-
ways are affected. Our analysis of growth rates shows that the 
drift in the cell cultures is likely associated with changes in cell 
phenotype, including phenotypes of key interest for GBM drug 
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development. For instance, further work will be needed to elu-
cidate the stability of in vitro drug responses, tumor-initiating 
capability in mice, or migratory capacity in GC cultures grown 
from both primary lesions and recurrent lesions, respectively. 
It will also be of considerable interest to understand how the 
pathway-specific temporal changes of GC cultures detected in 
our analysis relate to intratumor heterogeneity of GBM.7–9,31–33 
This would require an extended experimental design, in which 
multiple tumor regions are sampled and analyzed over time to 
identify common and divergent time trends; such extensions 
are reserved for future work.

Using a simple mathematical technique (equation 4), clonal 
fluctuations can be used to obtain rates of relative growth of a 
clone or subpopulation. Future development of this model is 
needed to understand the mechanisms of clonal drift, which 
may involve functional interactions (eg, cooperative growth) 
between multiple subpopulations or non-exponential growth 
modes. In addition to the clonal turnover, we suggest that 
pseudo-subclones of tetraploid cells are continuously gener-
ated. The functional significance of such polyploid GBM cells 
warrants further study. While polyploidy per se does not cause 
changes in relative gene dosage, it can potentially affect other 
cellular phenotypes, like size, increased tolerance to chromo-
somal instability, and stress tolerance.34,35

It is important to emphasize that while there are time-
dependent changes, patient-specific information is clearly 
retained to a high degree. This bodes well for future stud-
ies that use GC cultures to extract biomarkers. But our 
results underline that such studies must be designed 
with an awareness of the effect of passaging, particularly 
when pathways prone to drift—as defined in this work—
are under study. Possible solutions will be to involve DNA 
methylation as a biomarker (since it is stable) and to evalu-
ate if the genomic composition of the cultured cells has 
changed during the experiment.

Supplementary material

Supplementary material is available at Neuro-Oncology 
online.
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