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Abstract: This describes the application of a visual servo control method to the microrobotic
manipulation of polymer beads on a two-dimensional fluid interface. A microrobot, actuated through
magnetic fields, is utilized to manipulate a non-magnetic polymer bead into a desired position.
The controller utilizes multiple modes of robot actuation to address the different stages of the task.
A filtering strategy employed in separation mode allows the robot to spiral from the manipuland
in a fashion that promotes the manipulation positioning objective. Experiments demonstrate that
our multiphase controller can be used to direct a microrobot to position a manipuland to within an
average positional error of approximately 8 pixels (64 µm) over numerous trials.

Keywords: autonomous robots; micromanipulators; mobile robots; robot control; microassembly

1. Introduction

Microrobotic systems offer the capability to revolutionize healthcare and bioengineering [1,2]
and also are an enabling technology for additive micromanufacturing [3]. A number of groups
have demonstrated the use of magnetically actuated microrobots to manipulate microscale objects in
two-dimensions, using pushing [4,5], capillary gripping [6], or trapping through a locally generated
flow field [7,8]. This work is concerned with the challenge of autonomous control for an electromagnetic
microrobot manipulator based on pushing. Surface forces, such as friction or viscous drag, that counteract
volumetric forces such as magnetic pull or inertia are inherently difficult to quantify at the microscale.
Furthermore, as a microrobot interacts with a manipuland, the robot and manipuland now form a new,
interconnected system with similarly uncertain dynamics. We seek to promote accurate manipulation
of a manipuland by a microrobot in spite of uncertain or inaccurate models at the microscale.

A number of varying control strategies have been applied to magnetic microrobot systems [9–12].
One recent methodology is online estimation of controller parameters using iterative methods such as Broyden’s
method or recursive nonlinear least squares estimation. Such uncalibrated adaptive methods have been
successfully implemented in macro-scale manipulators and mobile robots for a variety of applications with more
complex nonlinear system models and higher degrees of freedoms (DOF) [13–15]. Our group has previously
demonstrated an adaptive microrobot control scheme in two- [16] and three- [17] dimensions that uses recursive
least squares (RLS) estimation to adaptively derive the relationship of the robot velocity to the control signal.

Banerjee and Gupta provide a review of research in automated planning and control for
micromanipulation in [18]. A variety of groups [19–26] have demonstrated micromanipulation of one
or more manipulands in fluidic environments. Table 1 compares a number of these works, looking at
the types and amount of actuation, path planning, feedback control, release strategy, and positioning
accuracy. It is worth noting that none of these works demonstrate a complete sequence of manipulation,
closed-loop positioning, and release of a manipuland or microobject.
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Table 1. Survey of prior work and comparison to present work.

Ref. Actuation Method Path Planning Control Type Release Strategy Positioning Accuracy
(%manip. size)

Floyd [19] Contact and non-contact pushing by
magnetic microrobot Not discussed Open loop Not discussed Not discussed

Zhang [20] Non-contact pulling and pushing
with rotating nanowire Not discussed Not discussed Passive ~30%

Ye [21] Non-contact entrapment by rotating
360 um spherical microrobot Not discussed Not discussed Active (cease rotation) Not discussed

El-Gazzar [22] Non-contact pulling and pushing by
a magnetic cluster Not discussed Teleoperation Active (increase speed) 30–60%

Wong [23] Capillary action at fluid interface Not discussed Closed loop Not discussed Not discussed

Munoz [24] Laser-induced thermocapillary flow Artificial potential fields Closed loop Not required Discussed but not
quantified

Rahman [25] Microrobot bubbles actuated by
laser-induced thermocapillary flow

Grasping, rotation, and
translation modes

Open loop and hybrid
closed loop Active 5–10%

El-Etriby [26] Flagellar microswimmer contact
pushing Not discussed Teleoperation Active (increase

flagellation frequency) 55%

This work
Magnetic microrobot using contact
pushing and non-contact pushing

and pulling
Behavior based Closed loop Active (feedback driven

escape vector) 33%
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We use a behavior-based planner [27] similar to that described in [28] and [29], in which we have
decomposed the manipulation task into multiple stages. Similar to the microassembly work in [30],
the phases are part of a heuristic control strategy defined by robot positions relative to intermediate
goal and failure regions. By varying the commanded robot position for each phase, we are able
to autonomously direct the microrobot to push the manipuland into position. Many groups have
demonstrated this approach [20,22,24–26]. The separation of the robot from the manipuland once the
manipuland has been brought into position (termed exit stage) can be problematic in micromanipulation
systems in which van der Waals forces and local flow fields can cause the manipuland to retract
with the microrobot [20,26]. Few groups have developed a systematic approach to address the exit
stage. In [5], Pawashe et al. utilized an iterative learning control approach to estimate a compensation
distance so that when the robot retracted, the microsphere remained close to the desired location.
Though validation is presented in [5], the iterative learning algorithm could be disrupted if an
unmodeled/external disturbance is experienced during the learning phase of the controller or if robot
motion is not consistent/periodic.

Therefore, we propose a feedback-driven escape vector approach to extract the robot from
the manipuland in a manner to reduce displacement of the manipuland from its desired position.
Specifically, the robot is commanded to move to a select radius away from manipuland along a path that
promotes movement of the manipuland toward the goal position. The complete process is evaluated
on an experimental testbed. Thus, from arbitrary positions in the fluidic workspace, the system
autonomously controls the microrobot towards an effective position to move the manipuland using
either contact or noncontact pushing or pulling towards a designated target. The system is agnostic
to the type of manipulation that is occurring (contact pushing or noncontact pushing or pulling)
as it monitors the relative positions of the microrobot and the manipuland. The completely closed
loop system positions the manipuland and moves away from the manipuland while maintaining a
manipuland positioning accuracy that averages 33% of the manipuland diameter (demonstrated on
two different manipuland sizes).

2. Experimental Setup

The electromagnetic microrobot system, illustrated in Figure 1, utilizes a ferromagnetic microrobot
suspended at a fluid interface. The microrobot is actuated through attractive magnetic field gradients
generated by two electromagnet pairs. For the subsequent manipulation work, two micro-robots
are utilized to manipulate polymer microspheres of various size. Initially, a triangular (wedge),
nickel structure fabricated through the MEMSCAP®MetalMUMPS process approximately 250 µm in
length and 20 µm thick was employed to manipulate a 200-µm-diameter red polymer microsphere
(ChromoSphereTM-T – see Figure 1). The triangle, which had the greatest nickel mass of the
MetalMUMPS designs tested, was used for the initial set of studies because it was the most responsive to
magnetic fields. It also has a small contact surface with the manipuland, easing the process of separating
the robot from the manipuland. In order to demonstrate the robustness of the approach, a star shaped
robot of similar in size (see Figure 1) was substituted for the wedge microrobot in a subsequent
experimental trial. The robot and manipuland positions are measured at a frequency of approximately
20 Hz and they are calculated by morphology and color on images captured via a microscope-focused
camera to delineate the robot/manipuland within the MATLAB software environment. Note that the
described experiments are conducted in the image workspace (i.e., the robot/manipuland’s position
are expressed in pixels as opposed to microns). At the magnification level used in these experiments,
a pixel corresponds to approximately 8 µm, and the total field of view was 6.0 × 3.8 mm. In addition,
the robot’s velocity in the workspace is calculated by employing a backwards difference approach to
the robot’s position and passing the result through a low pass filter set to a cutoff frequency of 5 Hz.
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The two primary components of the control system are: (1) the Manipulation Control Algorithm
and (2) the Robot Control Algorithm. As an overview, the Manipulation Control Algorithm accepts
manipulation error as its input and then calculates a two-dimensional, desired robot position that
promotes the manipulation objective (this algorithm is presented in detail in Section 3). The Robot
Control Algorithm is responsible for calculating the appropriate pulse width modulated (PWM) signals
to apply to each of the four electromagnets such that the robot’s velocity (ux, uy) vector is tracking
towards the commanded position.

3. Manipulation Control Algorithm

Our non-sequential phased approach to the micromanipulation task is illustrated in Figure 2,
in which the robot is represented by the triangle with a centroid at position xr, the manipuland is the
red circle with centroid position xm, and the target location is the cross with position x∗m. Five phases
or modes are defined. The ‘maneuver’ mode is used to bring the robot around to the back of the
manipuland, and sets the goal position at the intermediate point, x∗r,mnvr, from which the microrobot
can subsequently approach the manipuland without driving the manipuland further away from the
manipuland target location. The ‘approach’ mode is used to bring the robot into a position near to the
manipuland and directly opposite the manipuland target location, at a position labeled x∗r,appr.

Once the robot is brought within a specified tolerance of x∗r,appr (denoted by dtol in the following
table), the controller then switches to the ‘manipulate’ mode, in which the algorithm commands
the microrobot to transition along the manipuland error vector towards x∗m (effectively, the robot is
attempting to move towards x∗m through the manipuland). With the calculations of the manipuland
error vector updated each control cycle, the robot is able to push along a path that reduces the
manipuland error.

Once the manipuland is brought to within a specified tolerance of the target position x∗m,
the controller switches to an ‘exit’ mode wherein the robot is directed away from the manipuland. If the
microrobot simply attempts to move away, the manipuland often is ‘pulled’ along with moving fluid.
In order to prevent such displacement of the manipuland away from x∗m, the proposed separation mode
attempts to move the robot to a specified radius out (large enough that robot movement minimally
influences the manipuland) from the target location x∗m in a manner (filtered) that promotes a reduction
of the manipuland error. If the manipuland is pulled away from x∗m then the robot’s desired position
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is set to the opposite side of the manipuland such that the manipuland is driven back towards x∗m.
Eventually, through this closed-loop process, the robot spirals to a distance from x∗m where its movement
does not significantly influence the manipuland and can be driven to its final ‘parking point’ in a select
corner of the image workspace.
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Figure 2. Illustration of manipulation modes. From the initial state (a), the system proceeds to the
maneuver mode (b) where the robot is directed around the back of the manipuland to a position, x∗r,mnvr.
The approach mode (c) is utilized when the robot is far from the manipuland but not between the
manipuland and the target, and the robot is directed to come into close proximity with the manipuland
from behind at position x∗r,appr. In the manipulate mode, (d) the robot drives the manipuland towards
the target, x∗m. Once the manipuland target position is reached (e), the exit mode (f) is used to drive the
robot away from the manipuland.

Table 2 summarizes the commanded robot positions that are used by each controller mode, and
Table 3 provides the underlying equations calculate the critical positions.

Table 2. Description of the error function for each controller mode.

Mode Commanded robot position

Maneuver x∗r,mnvr
Approach x∗r,appr

Manipulate x∗r,manp
Exit x∗r,exit

Table 3. List of auxiliary variables

Symbol Description Equation

x∗m
Manipuland target

position Given

m‖ Radial unit vector ( xm − x∗m)/
∣∣∣xm − x∗m

∣∣∣ (1)
m⊥ Tangential unit vector (( xm − x∗m)·m⊥)/

∣∣∣xm − x∗m
∣∣∣= 0 (2)

x∗r,mnvr Maneuver targets xm + d‖m‖ ± d⊥m⊥ (3)
x∗r,appr Approach target xm + dappm‖ (4)
x∗r,manp Manipulate target xm + dmm‖ (5)

x∗r,exit
Robot exit/separation

position x∗m − drm‖ (6)

The equations for x∗r,appr and x∗r,mnvr make use of the unit vectors m‖ and m⊥ (illustrated in Figure 3)
which capture the radial and tangential directions with respect to a circle circumscribing the manipuland
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target position x∗m, with a radius equal to
∣∣∣xm − x∗m

∣∣∣. Tunable parameters d‖, d⊥, dapp, dm, and dr are
selected by the operator before executing the controller.
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Figure 3. Detail of vector quantities used for critical point determination. The critical points are
referenced to the manipuland position by the use of the m⊥ and m‖ vectors, which are unit vectors
representing the radial and tangential components, respectively, of the manipuland position xm relative
to the desired manipuland position x∗m.

During manipulation mode, if the gradient of the normalized manipuland error
∣∣∣xm − x∗m

∣∣∣ is
increasing for more than 0.5s (i.e., the manipuland to moving away from the target position), the mode
is switched back to maneuver mode. Since such obstacle avoidance approaches as [31] are not currently
implemented, the robot is safely commanded back to a maneuver point to prevent interfering with the
manipuland upon reset.

Based directly on Equation (6), the robot exit/separation mode attempts to move to a desired
radius dr out from x∗m along m‖. In essence, this represents a direct oscillatory (push/pull) robot motion
along m‖ in an attempt to eventually separate the robot from the manipuland. Though moderately
effective, this approach produced somewhat aggressive robot motion while also having the potential
for lengthy oscillations if the manipuland moves back and forth across x∗m. To alleviate these issues,
the following low pass filter was utilized to smooth the robot’s commanded position

G(s) =
x∗r,exit

x∗m − drm‖
=

α

(s + α)
(1)

where α represents a user selected time constant. By employing the filter of Equation (7), the robot
now attempts to track an arcing (spiraling) motion along dr arriving at x∗m − drm‖ at a time specified by
the value of α (assuming the manipuland position remains constant). An example of the approach can
be observed in Figure 4 for a value of α = 1 (approximately 4s settling time).
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4. Robot Control Algorithm

The primary objective of the robot control algorithm is to achieve set point regulation of the robot
to the desired position provided by the Manipulation Control Algorithm. To this end, many control
algorithms have been investigated [9–12] for microrobots to provide positioning capabilities. In an
effort to highlight the manipulation control strategy while simultaneously attempting to account for
unmodeled dynamics of the microrobot system, the following proportional integral (PI) robot velocity
controller was employed to drive the robot towards the commanded position

eu = kp(x∗r − xr) − ur (2)

dc =
[
dcx dcy

]T
= kueu + ki

∫ t

0
eudt (3)

where eu is the robot velocity tracking error, ur represents the robot’s measured velocity signal, dc is the
signed duty cycle input, and kp, ku, and ki denote positive, constant, control gains. Since the system of
Figure 1 is equipped with an opposing pair arrangement of electro magnets, the following allocation
scheme is utilized in order to properly energize each coil

dcN =
(
dcy/2

)
·

(
1 + sign

(
dcy

))
(4)

dcS =
(
dcy/2

)
·

(
1− sign

(
dcy

))
(5)

dcS =
(
dcy/2

)
·

(
1− sign

(
dcy

))
(6)

dcW = (dcx/2)·(1− sign(dcx)) (7)

where dcN, dcS, dcE, and dcW represents the individual duty cycles applied to the north, south, east,
and west electromagnets, respectively.

5. Results and Discussion

For the experimental trials, the manipuland’s desired final position was selected as (372,240)
pixels (approximately the center of image workspace). The manipuland and the microrobot were
actuated to random initial positions within the workspace prior to initiating the control sequence.
Table 4 summarizes the parameters and control gains utilized for the experiments.

Table 4. Experimental parameter values.

Parameter Description Value

dtol Set point arrival tolerance 10 (pixels)
d‖ Radial offset from manipuland for maneuver point 35 (pixels)
d⊥ Tangential offset from manipuland for maneuver point 70 (pixels)

dapp Radial offset from manipuland for approach mode 35 (pixels)
dm Radial offset from manipuland for manipulate mode −5 (pixels)
dr Radius from x∗m for robot to exit mode to park position 175 (pixels)
α Filter time constant for separation/exit mode 1
kp Velocity gain per pixel error 2 (s−1)
ku Proportional velocity gain 10−3

ki Integral velocity gain 10−2

The pixel related parameters of Table 4 were determined based on the utilized magnification of
the microscope. For example, the 200-µm sphere is approximately 25 pixels in diameter; therefore, the
set point arrival tolerance was selected approximately to 1

2 the sphere diameter. To avoid potential
collisions, d‖, d⊥, and dapp were selected to be approximately 1× to 2× the sphere diameter. The radius
of influence parameter value dr (this is the distance where robot motion does not influence the
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manipuland) was observed in situ. Note that the negative value for dm in Table 4 projects the robot’s
desired position along the manipuland’s error vector 5 pixels to the front of the manipuland while in
manipulation mode. The lower level proportion integral values were based on commonly utilized
tuning practices such as [31] and limited experimental tuning. Figure 5 displays operation of the
microrobot through all modes of operation (Video demonstration aviable in Supplementary Materials).Micromachines 2020, 11, 132 8 of 13 
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Figure 5. Experimental manipulation sequence to achieve exit mode status. (a) Initial system
configuration; (b) microrobot transitioning to maneuver point; (c) microrobot moving to approach
point; (d) microrobot in first manipulation attempt; (e) microrobot moving to second maneuver point;
(f) microrobot moving to second approach point; (g) microrobot in second manipulation attempt; (h)
microrobot moving to exit radius and then to the ‘parking’ point.

From Figure 5, the proposed manipulation algorithm of Table 2 actuated the manipuland to
within the exit mode tolerance (denoted by the green circle of radius 25 pixels Figure 3g) in 17.8 s
using two cycles through the control modes. In Figure 5d, the manipulation algorithm switched from
‘manipulation’ mode back to ‘maneuver’ mode since the gradient of manipulation error was positive
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for more than 0.5 s (i.e., the robot was pushing the manipuland away from the desired final location).
This switching is not unexpected as the robot is unable to accurately ‘pivot’ around the perimeter
of the manipuland while in contact to align along manipuland error vector. Furthermore, the exit
mode took approximately 21.4 s to actuate the robot to its final parking place in the northeast corner
of the workspace at a location of (600,400) with a final manipuland position of (369,247) producing a
normalized error of 8.3 pixels, or 66 µm. It should be noted that in this implementation of the exit
strategy, the robot will proceed to the commanded park position when the robot achieves the desired
distance from the manipuland regardless of the manipuland error. The algorithm could easily be
modified so that the separation mode is continued while the manipuland error position (and possibly
velocity) are outside a specified tolerance as was done in [5].

From Figure 5e, the microrobot took a parabolic/exponential shaped path to the second maneuver
point. Ideally, the robot should have followed a straight line between two position points; however,
the fixed proportional integral robot velocity controller may have experienced difficulties in achieving
precise actuation due to the unmodeled, nonlinear interactions on the robot at the microscale. It was
observed that the robot position performance was influenced differently depending on its location
within the workspace. This varying disturbance may be attributed to such inconsistencies as changing
viscosity of the fluid, presence of air bubbles at the fluid interface, or possibly variations in the applied
magnetic field across the workspace.

From Figure 6, one can observe that at approximately 9 s the error norm began to increase over
time thereby triggering the system to reset to ‘maneuver’ mode. As the robot moved away in maneuver
mode, the manipuland also followed causing significance increase in the error norm (i.e., the ‘pulling’
effect). Interestingly in ‘exit’ mode, even though the robot was trying to escape to its parking location
along the manipuland error vector, the normalized error of the manipuland was further decreased
from 25 to approximately 8 pixels through the interaction with the fluid (i.e., the robot was not in
contact with the manipuland).Micromachines 2020, 11, 132 9 of 13 
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Figure 6. Normalization of manipuland error.

In order to demonstrate the robustness of the control method, a star shaped robot was substituted
for the triangular robot, and the manipulation trial re-conducted utilizing the same control gain values
of Table 4.

From Figure 7, the proposed scheme is shown to actuate the manipuland to within 9 pixels of the
desired target position while exiting the robot to its park position in 31.8 s. It should also be noted that
a control cycle reset was not needed for this particular trial as the 200-µm sphere mated nicely with
the microrobot protrusions. The proposed manipulation algorithm was further tested by replacing
the 200-µm sphere with a smaller 50-µm bead again utilizing the gain values of Table 4 as shown in
Figure 8.
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From Figure 8, the proposed method manipulated the 50-µm sphere to within 6.7 pixels of the
desired target position parking the robot in 39.1 s. For this trial, algorithm stayed in exit mode
of approximately 32.4 s as the robot experienced difficulty separating itself from the manipuland
(this appeared be more of an adhesion phenomenon as opposed to a fluid interaction). Table 5 provides
a summary of metrics over the conducted trials of the manipuland/robot control scheme.

From Table 5, the average final manipuland error over all trials is on the order of 8.33 pixels,
or 66 µm. For comparison, the diameter of the manipuland sphere is approximately 25 pixels and the
length of the microrobot is on the order of 30 pixels. In order to evaluate the robustness of algorithm to
the low-level gain values, trials 12 and 13 of Table 5 were conducted with 75% and 125% of the values
for kp, ku, and ki, respectively. In trial 12, a significant increase in final manipuland error was observed
when the control values are decreased by 25%. With the lower gain values, the robot was observed
to experience larger position trajectory tracking errors thus not following the commanded filtered
exit path. As mentioned previously, the current implementation of the exit/separation strategy does
not attempt to keep the manipuland error within a select tolerance (i.e., this set of control gains may
reduce error if allowed to execute longer). Future work will investigate utilizing more robust control
methodologies such as that of [16] to improve positioning capabilities.
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Table 5. Summary of experimental trials.

Trial Initial Manipuland
Error (pixels)

Initial
Robot/Manipuland
Separation (pixels)

Time to Exit
Mode (s)

Time in Exit
Mode (s)

Final Manipuland
Error (pixels)

Robot/Manipuland
Type

1 33.10 299.50 17.70 47.88 4.41 Wedge, 200-µm
2 28.00 275.11 8.17 72.75 3.49 Wedge, 200-µm
3 16.74 140.39 8.66 21.82 7.89 Wedge, 200-µm
4 171.38 81.63 9.34 39.50 12.26 Wedge, 200-µm
5 27.86 13.17 7.71 33.62 7.43 Wedge, 200-µm
6 5.85 100.48 16.91 9.83 9.42 Wedge, 200-µm
7 8.88 262.05 11.88 18.87 4.91 Wedge, 200-µm
8 109.71 87.85 17.86 21.29 8.31 Wedge, 200-µm
9 37.79 204.80 6.66 29.78 6.33 Wedge, 200-µm
10 102.45 134.01 8.88 14.07 8.38 Wedge, 200-µm

11 202.97 110.30 14.07 17.70 9.37 Star, 200-µm
12 150.17 226.13 25.17 40.72 26.26 Star, 200-µm
13 213.66 234.12 32.1 41.25 1.52 Star, 200-µm

14 74.77 62.67 6.72 32.38 6.70 Star, 50-µm

Avg: 84.52 159.44 13.70 31.53 8.33
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6. Conclusions

The experiments demonstrated that our multiphase controller can be used to direct a microrobot
to position a manipuland. Average positional accuracies of 8.33 pixels (66 µm) were demonstrated over
numerous trials, which is comparable to the positional accuracies described in prior work [20,22,25,26].
The performance of this controller could be improved by basing the controller mode not simply
on microrobot-manipuland separation but on the measured observation of the degree to which
manipuland position is affected by microrobot motion. Further improvement could also be gained
by not separating the ‘approach’ and ‘maneuver’ modes, but instead utilizing a potential function
approach to obstacle avoidance [32]. Further performance improvements could also be realized by
combining the described multi-stage approach with an adaptive controller that would compensate
for variations in the system gain parameters. The proportional integral robot velocity control system
proved adequate for the described experiments in the absence of disturbances and with fixed gain
values; however, the positioning performance of the robot could be further improved through utilization
of more robust control methodologies such as the recursive least squares (RLS) estimation of [16].
Specifically, the adaptive nature of [16] will be better poised to compensate for the varying influences
the microrobot is subject to across the entire workspace. Integration of an adaptive controller will
be particularly important as we apply this control strategy to a wider variety of microrobot shapes,
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materials, and actuation technologies. Theoretically, this scheme should work for any two-dimensional,
vision-based, microrobot-manipuland system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/2/132/s1,
Video S1: usna_autonomous_microrobotic_manipulation_using_visual_servo_control.avi.
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