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1  | INTRODUCTION

Since the introduction of the concept by Wright (1931), effective popu-
lation size (Ne) has been adopted as a parameter in scores of evolution-
ary models, adaptive and neutral alike (Crow, 2010). The concept has 
found important applications in animal breeding (Caballero, Santiago, 
& Toro, 1996) and in conservation biology (Nunney & Elam, 1994). Two 
categories of methods to estimate Ne from field data were developed 
in the early 1980s, a single-sample approach based on disequilibrium 
between alleles at unlinked loci and a two-sample approach based on 
variance in allelic frequencies between generations (Caballero, 1994). 
Several single-sample methods not relying on linkage disequilibrium 
have more recently been proposed.

Despite the importance of the concept, however, effective popu-
lation size has rarely been estimated for any gastropod population in 
the field. Crow and Morton (1955) used variance in progeny number 
to estimate the Ne/n ratio in a laboratory culture of the freshwater 
pulmonate Lymnaea (Pseudosuccinea) columella. The earliest field es-
timates were those of Murray (1964) and Greenwood (1974), who 

applied simple single-sample approaches to shell color polymorphism 
in an English population of the important land snail model Cepaea 
nemoralis. But another thirty years would elapse before estimates of 
effective population size were offered for other land snail populations, 
those of Arnaud and Laval (2004) using microsatellite markers and a 
two-sample method, and Ursenbacher, Alvarez, Armbruster, and Baur 
(2010) using a one-sample approach.

We are aware of two estimates of the effective size of marine 
gastropod populations, both inhabiting the European intertidal. 
Fernandez et al. (2005) followed variation at allozyme-encoding loci 
over 14 years in incipient species of Littorina saxatilis, estimating ef-
fective population size using a two-sample approach. Riquet, Le Cam, 
Fonteneau, and Viard (2016) analyzed microsatellite variation in an in-
vasive population of Crepidula fornicata over 9 years, comparing both 
one-sample and two-sample estimates.

In the freshwater gastropods, Meunier, Hurtrez-Bousses, Durand, 
Rondelaud, and Renaud (2004) used both one-sample and two-sample 
analyses of microsatellite polymorphism to estimate the effective 
sizes of six French populations of the (predominantly self-fertilizing) 
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pulmonate Lymnaea (Galba) truncatula. Microsatellites and two-sample 
techniques were also used by Trouve, Degen, and Goudet (2005) on 
six populations of L. truncatula sampled from Switzerland. The liter-
ature contains two single-sample microsatellite studies on Chinese 
populations of viviparid snails—Bellamya quadrata (Gu, Zhang, et al., 
2015) and B. purificata (Gu, Zhou, et al., 2015).

In recent years, the freshwater basommatophoran pulmonate 
snail Physa acuta has found widespread use as a model organism for 
a variety of evolutionary studies (Figure 1). Populations of P. acuta 
in both field and laboratory settings have played important roles in 
studies of mating behavior (Janicke, Vellnow, Lamy, Chapuis, & David, 
2014; Janicke, Vellnow, Sarda, & David, 2013; Wethington & Dillon, 
1996), sex allocation (Janicke & Chapuis, 2016; Wethington & Dillon, 
1993), inbreeding depression (Jarne, Perdieu, Pernot, Delay, & David, 
2000; Noel et al., 2016), reproductive isolation (Dillon, Robinson, & 
Wethington, 2007), gene flow (Bousset, Henry, Sourrouille, & Jarne, 
2004; Van Leeuwen et al., 2013), speciation (Dillon, Wethington, & 
Lydeard, 2011), and ecophenotypic plasticity (Auld & Relyea, 2011; 
Dillon & Jacquemin, 2015; Gustafson, Kensinger, Bolek, & Luttbeg, 
2014).

Native to North America, invasive populations of P. acuta have 
been introduced around the world and are now established on six 
continents, typically in rich, disturbed, and lentic environments 
(Albrecht, Kroll, Terrazas, & Wilke, 2009; Dillon, Wethington, Rhett, 
& Smith, 2002). The snail is simultaneously hermaphroditic and ca-
pable of self-fertilization (Dillon, McCullough, & Earnhardt, 2005), al-
though outcrossing is preferred (Escobar et al., 2011; Wethington & 
Dillon, 1997). Generation time in the laboratory can be as short as 
6 weeks (Wethington & Dillon, 1993), although wild populations typ-
ically complete only one or two generations per year, both effectively 
semelparous (Life cycles A or C of Dillon, 2000: 158).

We originally sampled the population of P. acuta inhabiting the 
Quarterman Park “Duck Pond” in North Charleston, SC, as part 
of a 1991 population genetic survey of the Carolina Sea Islands 
(population “NPK” of Dillon & Wethington, 1995). The popula-
tion demonstrated allozyme variation interpretable as the product 
of codominant alleles segregating in Mendelian fashion at three 
loci: isocitrate dehydrogenase (Isdh), 6-phosphogluconate dehy-
drogenase (6pgd), and esterase-3 (Est3). Mendelian inheritance 
at the (strong, slow) Est3 locus has been confirmed by Dillon and 
Wethington (1994).

The Duck Pond drains directly into the brackish Cooper River, ef-
fectively isolating the population of freshwater snails it contains by 
both land and sea. The nearest neighboring population of P. acuta 
is probably that inhabiting the upper, freshwater marshes of Filbin 
Creek, approximately 2 km north overland. Ducks and other waterfowl 
doubtless visit both habitats, providing some opportunity for genetic 
exchange, albeit infrequent. The effects of migration on Ne have been 
studied by Gilbert and Whitlock (2015).

2  | MATERIALS AND METHODS

The Quarterman Park Duck Pond (32.87822, −79.98077) was con-
structed from a marshy embayment of the Cooper River in the early 
20th century. For most of its history, it was tidally influenced and 
slightly brackish, but recent drainage improvements have rendered it 
entirely fresh, fed by local runoff. Its area at present is approximately 
1.0 hectare, and depth is no more than 2 m.

The pond is maintained by city personnel at irregular intervals and 
has been kept free of macrophytic vegetation in recent years. Water 
temperatures can rise above 35°C during summer months, depressing 
dissolved oxygen to low levels, despite city efforts at artificial aeration. 
Its population of P. acuta reaches maximum density on allochthonous 
leaves and debris floating at the eastern (windward) end of the pond, 
at the drain.

We visited the pond each spring from 2009 to 2015, beginning 
in March, examining debris at the eastern end to qualitatively assess 
snail densities. If the apparent census size was sufficient to yield 
several hundred snails with reasonable effort, an annual sample was 
taken. Otherwise, we postponed the sample and returned a few weeks 
later. Approximately 150–200 P. acuta were ultimately sampled every 
spring, with one exception. The exception was 2012, when the snail 
population never reached an abundance at which it could be sampled, 
from March to August.

Snails collected at each sampling year were returned to the lab-
oratory and frozen individually in 80–160 μl of tris tissue buffer for 
analysis of allozyme polymorphism. We used horizontal starch gel 
electrophoresis in a TEB8 buffer system to resolve variation at the 
Est3, Isdh, and 6pgd loci and an aminopropylmorpholine pH 6 buffer 
system for a second examination of Isdh and 6pgd. Details regarding 
our electrophoretic methods, including a description of our equipment 
and recipes for all stains and buffers employed, have been published 
by Dillon (1992) and Dillon and Wethington (1995).F IGURE  1 Physa acuta (9 mm shell length), courtesy D. Liebman
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Allele frequencies and tests of fit to Hardy–Weinberg expectation 
were calculated using GenePop version 4.5.1 (Raymond & Rousset, 
1995; Rousset, 2008). Values of FIS were computed using the method 
of Weir and Cockerham (1984), and exact p-values were by the Markov 
chain method.

NeEstimator v2.01 is freely available software designed to esti-
mate effective population size using three single-sample methods 
and three-two-sample (moment-based temporal) methods (Do et al., 
2014). Among the single-sample methods, Gilbert and Whitlock 
(2015) reported that the linkage disequilibrium (LDNe) method of 
Waples and Do (2008) consistently returned the lowest root square 
mean error across the range of effective population numbers simu-
lated, absent migration.

The three-two-sample methods implemented by NeEstimator 2.01 
employ the standard temporal method (ST) of Waples (1989), with dif-
ferent approaches to computing standardized allele frequency vari-
ance: the Fc of Nei and Tajima (1981), the Fk of Pollak (1983), and the 
Fs of Jorde and Ryman (2007). The simulations of Gilbert and Whitlock 
(2015) suggested that all three of these two-sample methods perform 
with equivalent efficiency. Thus, we elected to estimate the effective 
population size of the Quarterman Park P. acuta population using four 
approaches: LDNe, STFc, STFk, and STFs. Jackknife methods were 
used to calculate 95% confidence intervals (CI) for all Ne estimates.

3  | RESULTS

We resolved allozyme variation apparently encoded by two codomi-
nant alleles at the Est3 and 6pgd loci and three codominant alleles 
at Isdh. These alleles were named by the mobility of their allozyme 
bands relative to the standards set by Dillon and Wethington (1995) 
and plotted by their frequencies in Figure 2.

Sample sizes, values of FIS, and values of p from goodness-of-fit 
tests to Hardy–Weinberg expectation are reported in Table 1. Over 
the entire data set of 3 loci × 6 years, 15 of the values of FIS were pos-
itive, some strikingly so, and three were slightly negative. Four values 
of FIS suggested significant heterozygote deficiencies (three at the 
Est3 locus and one at 6pgd), although not significant after Bonferroni 
correction.

The six single-sample estimates of effective population size based 
on linkage disequilibrium between the three loci are reported at the 
bottom of Table 1, with 95% CI. Table 2 shows the five-two-sample 
estimates of effective population size based on allele frequency vari-
ance across pairs of consecutive samples. Each two-sample calculation 
was performed using Fc, Fk, and Fs methods, yielding 3 × 5 = 15 Ne 
estimates, with confidence intervals.

4  | DISCUSSION

Tables 1 and 2 suggest that the effective size of the P. acuta popula-
tion inhabiting the Quarterman Park Duck Pond was strikingly volatile, 
dipping from infinite in 2009 down to (remarkably consistent) values 

of 44.0 ± 10.8 by static estimate, or 49.8 ± 8.1 by two-sample esti-
mate, and then back up to infinity again. The dramatic fluctuation in Ne 
seemed to correspond to a fluctuation in apparent census size notice-
able in the field, from (surely) thousands in the spring of 2009 to a very 
few in 2012, and then back up to thousands.

The spring of 2012 was exceptionally warm in North Charleston. 
The average temperature recorded by the National Weather Service 
over the month of March, 2012, was 65.3°F (18.5°C), the second 
highest mean March temperature in the 80-year record. It was our 
pond side observation that the P. acuta population at Quarterman Park 
never bloomed in the spring of 2012, which seemed to depress its size 
for the remainder of the year.

Both the effective size and the apparent census size of the P. acuta 
population in the Quarterman Duck Pond apparently returned to many 
thousands (at minimum) in just 2 years, perhaps four generations. So 

F IGURE  2 Allele frequencies at three allozyme-encoding loci in 
the Quarterman Park Physa acuta population, sampled over 7 years. 
Bars are 95% CI



     |  2749DILLON Jr

the most obvious hypothesis to account for the depression in effec-
tive size observed between 2011 and 2013 would be a population 
bottleneck. But Ne is not expected to recover from such a striking bot-
tleneck event until many generations have passed, absent migration 
(Caballero, 1994).

A less obvious hypothesis might be fluctuation in the selfing rate, 
such that the population of P. acuta in Quarterman Park shifted from 
outbreeding to inbreeding and then back again over the study interval. 
The only estimates of Ne remotely comparable to ours in the published 
literature are the works of Meunier et al. (2004) and Trouve et al. (2005) 
on European populations of the preferentially selfing Lymnaea (Galba) 
truncatula. The French populations studied by the former authors gen-
erally demonstrated Ne < 30, and the Swiss populations studied by the 
latter Ne < 10. But the selfing rates inferred for all L. truncatula popu-
lations in both studies, estimated from FIS, consistently exceeded 80%. 
The heterozygosities we observed in our study population of P. acuta 
did not vary from expectation through our 7-year observation period.

We suggest that cryptic population subdivision may be the most 
likely hypothesis to account for the apparent volatility of Ne in our 

7-year record. We sampled the Quarterman Park population of P. acuta 
at the east end of the pond for convenience. Snails were also observed 
elsewhere around the entire margin of the one-hectare pond, but not 
in densities sufficient to sample in the quantities required. Perhaps the 
striking dip in apparent population census size we observed in 2012 
was localized on the east end, and its subsequent recovery was due to 
immigration from elsewhere within a subdivided population.

Some of the most influential studies of population subdivision 
published to date have been conducted using land snail models. Cain 
and Currey (1963) described small-scale variation in the frequencies 
of shell color morphs in the English land snail Cepaea as “area effects,” 
attributing the phenomenon to genetic drift. Among the earliest ex-
amples of parapatric speciation to be proposed was that of Murray and 
Clarke (1968), working with the localized clines in shell color polymor-
phisms demonstrated by the tropical land snail, Partula. Selander and 
Kaufman (1975) documented significant variance in the frequencies of 
allozyme-encoding genes in a population of the land snail Helix (Cornu) 
aspersa inhabiting two city blocks in Bryan, Texas. Some of this vari-
ance could be correlated with observable barriers to dispersal such as 
roads or walkways, but some could not.

The published literature also contains many reports of significant 
values of Fst among subpopulations of freshwater snails. Most of 
these studies have been conducted where subpopulations are divided 
by identifiable barriers to dispersal, however, which is not the case 
in the Duck Pond at Quarterman Park. Jarne and Delay (1990) esti-
mated values of FIS and FST within and among several subpopulations 
of Lymnaea peregra (“Radix balthica”) sampled from Lake Geneva, re-
porting large values of the former but rather small values of the latter. 
Dybdahl and Lively (1996) reported significant values of FST between 
subpopulations of Potamopyrgus antipodarium sampled within several 
New Zealand lakes.

Like Lymnaea truncatula, the freshwater pulmonate snail Bulinus 
truncatus is a preferential self-fertilizer, Viard, Justy, and Jarne (1997) 
estimating selfing rates across 38 West African populations from 80% 
to 100%. The authors noted surprising variation in the levels of micro-
satellite polymorphism demonstrated by these populations, however, 
some showing no polymorphism at any of the four loci examined, oth-
ers averaging over 10 alleles per locus. Viard and colleagues suggested 
some unseen variation in population sizes as a possible explanation for 
this phenomenon.

Puurtinen, Knott, Suonpaa, Van Ooik, and Kaitala (2004) reported 
significant positive correlations between the microsatellite polymor-
phism demonstrated by eight Finnish populations of the preferentially 

TABLE  1 Sample sizes, values of FIS, and values of p from 
goodness-of-fit tests to Hardy–Weinberg expectation at three 
allozyme-encoding loci analyzed for the Quarterman Park Physa 
acuta population 2009–2015. The bottom two rows report single-
sample estimates of effective population size. Inf., effectively infinite

2009 2010 2011 2013 2014 2015

Est3

 N 217 217 217 184 217 186

 FIS 0.054 0.149 −0.002 0.184 0.207 0.060

 p .461 .034 1.00 .022 .005 .465

6pgd

 N 217 217 216 186 217 186

 FIS −0.009 0.157 −0.057 0.053 −0.023 0.088

 p 1.00 .029 .700 .366 1.00 .204

Isdh

 N 210 215 215 186 217 186

 FIS 0.032 0.069 0.114 0.037 0.090 0.107

 p .631 .568 .138 .673 .086 .079

LDNe Inf. Inf. 125.8 44.0 190.8 9,752

95% 
CI

34.6 10.8 2.0 51.0

2009–2010 2010–2011 2011–2013 2013–2014 2014–2015

STFc Inf. 131.5 49.8 255.8 Inf.

95% CI 9.2 8.1 7.3

STFs Inf. 113.6 40.6 205.4 15,361

95% CI 34.8 17.3 35.9 453

STFk Inf. 104.7 56.5 354.2 Inf.

95% CI 8.0 9.0 8.1

TABLE  2 Two-sample estimates of 
effective population size calculated for the 
Quarterman Park Physa acuta population 
2009–2015, using three different 
approaches to estimate standardized allele 
frequency variance. Inf., effectively infinite
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outcrossing freshwater pulmonate, Lymnaea stagnalis, and several 
measures of fitness, including maturation age and fecundity. The 
authors suggested that their measures of genetic variation might in-
directly estimate effective population size, with lower values of Ne 
promoting the random fixation of deleterious alleles. But Puurtinen 
and colleagues could not demonstrate a correlation between either 
genetic variability or population fitness and the current densities of 
the snail populations they sampled.

It should be cautioned that the number of genetic markers 
employed for the present study was small. The effectively infinite 
population sizes we estimated 2009–2010 and 2015 might result 
from fluctuating sampling variance. But our results, suggesting as 
they do striking volatility in the effective population size of a com-
mon and widespread pulmonate snail, offer a potential resolution 
to quandaries such as those reported by Viard, Puurtinen, and their 
colleagues.
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