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Abstract: A series of fluorenyl-based constrained-geometry-configuration (CGC) allyl-type rare earth
metal monoalkyl complexes bearing the divalent anionicη3:η1-tert-butyl(dimethylfluorenylsilyl)amido
(η3:η1-FluSiMe2NtBu) ligand (η3:η1-FluSiMe2NtBu)Ln(CH2SiMe3)(THF)2 (1–3) have been synthesized
via the alkane elimination reaction between the FluHSiMe2NHtBu ligand and rare earth metal
tri(trimethylsilylmethyl) complexes Ln(CH2SiMe3)3(THF)n. Their structures are characterized
by means of NMR spectrum, elemental analyses, and X-ray diffraction. These complexes 1–3
are isostructural and isomorphous, and each of them adopts a distorted-trigonal-bipyramidal
configuration containing one η3:η1-FluSiMe2NtBu ligand, one CH2SiMe3 ligand, and two THF
molecules. Unlike traditional CGC allyl-type rare earth metal complexes showing no or low activity
and regio-/stereoselectivity in styrene or MMA polymerization, these complexes 1–3 exhibit high
catalytic activities and/or high regio-/stereoselectivities in the cis-1,4-polymerization of isoprene and
myrcene or in the syndiotactic polymerization of styrene under the aid of different activators (borate
or borane) and AlR3. The in situ 1H NMR spectra suggest that the exchanges of chelating ligands
such as alkyl groups and divalent anionic η3:η1-FluSiMe2NtBu ligands between rare earth metal
centers and Al centers result in the formation of a heterobimetallic tetraalkylaluminate complex
R2Al(µ-R)2Ln(R)(µ-R)2AlR2, which is activated by activators to form a divalent cationic species
[Ln(µ-R)2AlR2]2+ as a catalytically active species in the coordination–insertion polymerization
of olefins.

Keywords: fluorenyl-based CGC allyl-type rare earth metal catalyst; η3:η1-tert-butyl(dimethylfluorenylsilyl)
amido ligand; coordination–insertion polymerization; olefins; regio-/stereoselectivity; active species

1. Introduction

The development of highly efficient and highly regio-/stereoselective rare earth metal catalysts
has become a hot topic in the coordination–insertion polymerization of olefin over the past two

Polymers 2019, 11, 836; doi:10.3390/polym11050836 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://www.mdpi.com/2073-4360/11/5/836?type=check_update&version=1
http://dx.doi.org/10.3390/polym11050836
http://www.mdpi.com/journal/polymers


Polymers 2019, 11, 836 2 of 19

decades, which brings new opportunities for the synthesis of high-performance (co)polymers
unavailable from transition metal catalysts [1–11]. So far, a large number of the metallocene [12–15],
constrained-geometry-configuration (CGC) [16–19], half-sandwich [20–23], and non-metallocene rare
earth metal catalysts precursors bearing different chelating ligands [24–26] have emerged for the
polymerization of olefins. Among them, the metallocene or nonmetallocene rare earth metal catalysts
usually show high activities and different regio-/stereoselectivities in the polymerization of conjugated
dienes. The half-sandwich or CGC type rare earth metal catalysts exhibit unprecedentedly high
activities and high syndiotactic or isotactic selectivities in the polymerization of styrene. Despite
of these results, the CGC allyl-type rare earth metal catalysts containing an η3-allyl bonding mode
of cyclopentadiene (Cp), indenyl (Ind), or fluorenyl (Flu) moiety are rare [27–29], and all of them
show no or low activities and regio-/stereoselectivies in olefin polymerization (Chart 1). In 2003,
Carpentier et al. reported the synthesis of the amido-functionalized Flu-based CGC allyl-type
yttrium monoalkyl complexes [η3:η1-(3,6-tBu2Flu)SiR2NtBu]Y(CH2SiMe3)(THF)2. However, such
complexes showed no activities in the ethylene polymerization in a larger range of temperature
or very low activities and tacticities in the polymerization of MMA [27]. In 2012, Cui et al.
synthesized the phosphazene-functionalized Cp-based CGC allyl-type rare earth metal dialkyl
complexes [η3:η1-(C5Me4)PPh2N(2,6-iPr2C6H3)]Y(CH2SiMe3)2(THF), which were inert even in ethylene
polymerization [28]. Subsequently, the pyridyl-functionalized Flu-based CGC allyl-type rare earth metal
dialkyl complexes (η3:η1-FluC5H4N)Ln(CH2SiMe3)2THF and (η3:η1-FluC5H4N)Y(CH2C6H4-o-NMe2)2

also developed by Cui and co-workers could promote the polymerization of styrene (ST) but with
low activities and moderate syndiotacticities [29]. Therefore, it is of great interest to develop highly
efficient and highly regio-/stereoselective CGC allyl-type rare earth metal catalysts and explore their
catalytic performances in the polymerization of olefins.

Polymers 2019, 11, x FOR PEER REVIEW  2 of 19 

 

The development of highly efficient and highly regio-/stereoselective rare earth metal catalysts 
has become a hot topic in the coordination–insertion polymerization of olefin over the past two 
decades, which brings new opportunities for the synthesis of high-performance (co)polymers 
unavailable from transition metal catalysts [1–11]. So far, a large number of the metallocene [12–15], 
constrained-geometry-configuration (CGC) [16–19], half-sandwich [20–23], and non-metallocene rare 
earth metal catalysts precursors bearing different chelating ligands [24–26] have emerged for the 
polymerization of olefins. Among them, the metallocene or nonmetallocene rare earth metal catalysts 
usually show high activities and different regio-/stereoselectivities in the polymerization of 
conjugated dienes. The half-sandwich or CGC type rare earth metal catalysts exhibit unprecedentedly 
high activities and high syndiotactic or isotactic selectivities in the polymerization of styrene. Despite 
of these results, the CGC allyl-type rare earth metal catalysts containing an η3-allyl bonding mode of 
cyclopentadiene (Cp), indenyl (Ind), or fluorenyl (Flu) moiety are rare [27–29], and all of them show 
no or low activities and regio-/stereoselectivies in olefin polymerization (Chart 1). In 2003, Carpentier 
et al. reported the synthesis of the amido-functionalized Flu-based CGC allyl-type yttrium monoalkyl 
complexes [η3:η1-(3,6-tBu2Flu)SiR2NtBu]Y(CH2SiMe3)(THF)2. However, such complexes showed no 
activities in the ethylene polymerization in a larger range of temperature or very low activities and 
tacticities in the polymerization of MMA [27]. In 2012, Cui et al. synthesized the phosphazene-
functionalized Cp-based CGC allyl-type rare earth metal dialkyl complexes [η3:η1-(C5Me4)PPh2N(2,6-
iPr2C6H3)]Y(CH2SiMe3)2(THF), which were inert even in ethylene polymerization [28]. Subsequently, 
the pyridyl-functionalized Flu-based CGC allyl-type rare earth metal dialkyl complexes (η3:η1-
FluC5H4N)Ln(CH2SiMe3)2THF and (η3:η1-FluC5H4N)Y(CH2C6H4-o-NMe2)2 also developed by Cui and 
co-workers could promote the polymerization of styrene (ST) but with low activities and moderate 
syndiotacticities [29]. Therefore, it is of great interest to develop highly efficient and highly regio-
/stereoselective CGC allyl-type rare earth metal catalysts and explore their catalytic performances in 
the polymerization of olefins. 

 
Chart 1. The known constrained-geometry-configuration (CGC) allyl-type rare earth metal catalysts. 

Recently, we have paid much attention to the synthesis of the half-sandwich Flu-ligated rare 
earth metal dialkyl complexes Flu'Ln(CH2SiMe3)2(THF)n and their applications in the coordination–
insertion (co)polymerization of olefins such as ST or conjugated dienes. In 2013, these complexes 
displayed high activities up to 3.4 × 107 (g of polymer)/(molLn h) and syndiotacticities up to >99% in 
ST polymerization when activated by an activator with or without a small amount of AliBu3 [30]. 
Moreover, such complexes also showed very high activities up to 1.9 × 107 (g of polymer)/(molLn h) 
and high cis-1,4-selectivities, 93% in the polymerization of isoprene (IP) in the presence of activator 
and AlR3 [31]. In addition, such catalysts were also active in the regioselective polymerization of 1,3-
cyclohexadiene and copolymerization with ST and IP [32]. These results demonstrate that the 
effective adjustment of the skeleton of the Flu ligand of these complexes has an important impact on 
their catalytical performance in the olefin polymerization, which arouses our interests to explore 
more Flu-based rare earth metal complexes and detect their catalytic performance in olefin 

Chart 1. The known constrained-geometry-configuration (CGC) allyl-type rare earth metal catalysts.

Recently, we have paid much attention to the synthesis of the half-sandwich Flu-ligated rare earth
metal dialkyl complexes Flu’Ln(CH2SiMe3)2(THF)n and their applications in the coordination–insertion
(co)polymerization of olefins such as ST or conjugated dienes. In 2013, these complexes displayed high
activities up to 3.4 × 107 (g of polymer)/(molLn h) and syndiotacticities up to >99% in ST polymerization
when activated by an activator with or without a small amount of AliBu3 [30]. Moreover, such
complexes also showed very high activities up to 1.9 × 107 (g of polymer)/(molLn h) and high
cis-1,4-selectivities, 93% in the polymerization of isoprene (IP) in the presence of activator and AlR3 [31].
In addition, such catalysts were also active in the regioselective polymerization of 1,3-cyclohexadiene
and copolymerization with ST and IP [32]. These results demonstrate that the effective adjustment
of the skeleton of the Flu ligand of these complexes has an important impact on their catalytical
performance in the olefin polymerization, which arouses our interests to explore more Flu-based
rare earth metal complexes and detect their catalytic performance in olefin polymerization. Herein,
we report the synthesis and structural characterization of three Flu-based CGC allyl-type rare earth
metal monoalkyl complexes (η3:η1-FluSiMe2NtBu)Ln(CH2SiMe3)(THF)2 1–3 (1: Ln = Sc; 2: Ln = Lu;
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3: Ln = Y) via the alkane elimination reaction between the tert-butyl(dimethylfluorenylsilyl)amido
(FluHSiMe2NHtBu) ligand and the rare earth metal trialkyl complexes Ln(CH2SiMe3)3(THF)n.
Activated by different cocatalysts, these complexes 1–3 unprecedentedly exhibit high activities
and high regio-/stereoselectivities in the polymerization of IP, myrcene (MY), or ST, affording the
cis-1,4-poly(conjugated diene)s or syndiotactic polystyrenes with high molecular weights and moderate
molecular weight distributions. The possible coordination–insertion polymerization mechanism is
investigated by means of the in situ 1H NMR spectrum.

2. Materials and Methods

2.1. Materials

All manipulations that were sensitive to air or moisture were performed in a MBraun glovebox
(Munich, Germany). Activator borate and borane were bought from Tosoh Finechem Corporation
(Tokyo, Japan). LiCH2SiMe3 (1.0 M solution in pentane) and LnCl3 (Ln = Sc, Y, Lu; 99.9% analytically
pure) were bought from Aldrich (St. Louis, MO, USA). AliBu3 (1.0 M solution in hexane), AlMe3

(1.0 M solution in toluene), AlEt3 (1.0 M solution in heptane), fluorine (99% analytically pure),
tert-butylamine (98% analytically pure), triethylamine (analytically pure), dichlorodimethylsilane (98%
analytically pure), n-BuLi (2.4 M in hexane), Na2SO4 (analytically pure), CaH2 (98% analytically pure),
dichloromethane (analytically pure), petroleum ether (analytically pure), and methanol (analytically
pure) were obtained from Energy Chemistry (Beijing, China). The FluHSiMe2NHtBu ligand was
prepared according to the literature (Supplementary Materials) [33]. IP, MY and ST (analytically
pure) were purchased from Aldrich and TCI (Tokyo, Japan). Toluene (Tol), THF, and hexane were
purified by a solvent purification system (SPS-800, Mbraun, Garching, Germany), and dried over Na in
the glovebox. Chlorobenzene (PhCl), ortho-dichlorobenzene (PhCl2), and 1,1,2,2-tetrachloroethane
(C2H2Cl4) were dried over CaH2 under stirring for 48 h and distilled under reduced pressure before
use. The deuterated solvents C6D6 (99.6 atom% D), C7D8 (99.5 atom% D), and CDCl3 (99.8 atom% D)
were purchased from Cambridge Isotope (Tewksbury, MA, USA).

2.2. Method

By using J. Young valve NMR tubes, the samples of rare earth metal catalysts were prepared for
NMR spectroscopic measurements in the glove box. 1H, 13C NMR spectra of ligand and catalysts were
tested on a Bruker AVANCE 400 spectrometer in C6D6 or C7D8 at room temperature. 1H, 13C NMR
spectra of polyisoprene (PIP), polymyrcene (PMY) and polystyrene (PST) samples were recorded on a
Bruker AVANCE 400 spectrometer in CDCl3 at room temperature or at 60 ◦C. The molecular weights
and the molecular weight distributions (PDI) of the poly(conjugated dienes)s were performed at 25 ◦C
by gel permeation chromatography (GPC) on a WATERS 1515 apparatus. THF was selected as the
eluent at a flow rate of 1 mL/min. For SPSTs, GPC data were performed in 1,2,4-trichlorobenzene
at 150 ◦C using IR detection and calibration against polystyrene. Differential scanning calorimetry
(DSC) measurements were carried out on a TA 60 (TA Co.) at a rate of 10 ◦C/min. Any thermal history
difference in the poly(conjugated diene)s was eliminated by first heating the specimen to 100 ◦C,
cooling at 10 ◦C/min to –100 ◦C, and then recording the second DSC scan. For SPSTs, DSC parameter
was set to 10 ◦C/min to speed up to 300 ◦C, then cooled at 10 ◦C/min to room temperature, before
recording the second DSC scan. Elemental analyses were performed on an Elementary Vario MICRO
CUBE (Germany).

2.3. X-ray Crystallographic Analysis

The crystals of complexes 1–3 were oil sealed under a microscope in the glove box. For data
collection at –100 ◦C, a CCD area detector using graphite-monochromated Mo Kα radiation
(λ = 0.71073 Å) was chosen on a Bruker Smart-Apex CCD diffractometer. The SMART program
package was used to determine the crystal class and unit cell parameters. SAINT and SADABS were
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adopted to process the original frame data and generated the reflection data file. Shelxtl-97 program was
applied to solve the structure. F2 anisotropic non-hydrogen atoms were refined by using the full matrix
least square method. All the non-hydrogen atoms were anisotropy refined, and all hydrogen atoms were
introduced in the calculated positions and were included in the structure calculation without further
refinement of the parameters. Crystallographic data (excluding structure factors) have been deposited
with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-1904924
(1), CCDC-1904923 (2), and CCDC-1904925 (3) containing the supplementary crystallographic data for
this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif from
The Cambridge Crystallographic Data Centre.

2.4. Synthesis of (η3:η1-FluSiMe2NtBu)Ln(CH2SiMe3)(THF)2 1–3

To a colorless hexane solution (15.0 mL) of Ln(CH2SiMe3)3(THF)2 1–3 (1: Ln = Sc; 2: Ln = Lu; 3:
Ln = Y. 1.0 mmol) was added a solution of the FluHSiMe2NHtBu ligand (1.0 mmol) in hexane (15.0 mL)
at room temperature. The mixture was stirred at room temperature for 2–3 h. After removal of all
volatiles in vacuo, the residue was recrystallized from toluene/hexane at –30 ◦C to give Flu-based
CGC allyl type rare earth metal monoalkyl complexes [η3:η1-FluSiMe2NtBu]Ln(CH2SiMe3)(THF)2 1–3
(1: Ln = Sc, 63%; 2: Ln = Lu, 67%; 3: Ln = Y, 84%).

1H NMR of complex 1 (400 MHz, Tol-d8): δ 8.10 (d, J = 7.8 Hz, 2H, Flu), 8.02 (d, J = 8.0 Hz, 2H,
Flu), 7.41 (t, J = 7.3 Hz, 2H, Flu), 7.12 (d, J = 7.4 Hz, 2H, Flu), 3.00 (br, 8H, THF-α-CH2), 1.50 (s, 9H,
NC(CH3)3), 1.14 (t, 8H, THF-β-CH2), 0.78 (s, 6H, Si(CH3)2), 0.17 (s, 9H, CH2Si(CH3)3), –1.09 (s, 2H,
CH2Si(CH3)3). 13C NMR of complex 1 (100 MHz, C6D6): δ 142.83, 131.10, 125.80, 120.91, 117.65, 116.96,
84.13 (C1), 69.92 (α-THF), 54.47 (NC(CH3)3), 36.51 (NC(CH3)3), 30.59 (d, J = 45.4 Hz, ScCH2Si(CH3)3),
25.02 (β-THF), 5.94 (Si(CH3)2), 4.62 (CH2Si(CH3)3). Anal. Calcd (%) for C31H50NO2ScSi2: C, 65.45; H,
8.68; N, 2.46. Found: C, 65.40; H, 8.61; N, 2.53.

1H NMR of complex 2 (400 MHz, C6D6): δ 8.21 (d, J = 7.7 Hz, 2H, Flu), 8.07 (d, J = 7.7 Hz, 2H,
Flu), 7.52 (t, J = 7.1 Hz, 2H, Flu), 7.22 (t, J = 7.2 Hz, 2H, Flu), 2.94 (br, 8H, THF-α-CH2), 1.59 (s, 9H,
NC(CH3)3), 1.08 (t, 8H, THF-β-CH2), 0.79 (s, 6H, Si(CH3)2), 0.28 (s, 9H, CH2Si(CH3)3), –0.82 (s, 2H,
CH2Si(CH3)3). 13C NMR of complex 2 (100 MHz, C6D6): δ 144.20, 132.67, 125.73, 120.34, 117.47, 116.83
(s), 84.02 (C1), 69.77 (α-THF), 54.40 (NC(CH3)3), 36.22 (NC(CH3)3), 31.98 (LuCH2Si(CH3)3), 25.22
(β-THF), 5.55 (Si(CH3)2), 4.76 (CH2Si(CH3)3). Anal. Calcd (%) for C31H50NO2LuSi2: C, 53.28; H, 7.07;
N, 2.00. Found: C, 53.21; H, 7.01; N, 2.04.

1H NMR of complex 3 (400 MHz, Tol-d8): δ 8.16 (d, J = 7.8 Hz, 2H, Flu), 8.09 (d, J = 8.1 Hz, 2H,
Flu), 7.47 (t, J = 7.5 Hz, 2H, Flu), 7.19 (s, 2H, Flu), 3.05 (br, 8H, THF-α-CH2), 1.55 (s, 9H, NC(CH3)3), 1.19
(t, 8H, THF-β-CH2), 0.85 (s, 6H, Si(CH3)2), 0.23 (s, 9H, CH2Si(CH3)3), –1.06 (s, 2H, CH2Si(CH3)3). 13C
NMR of complex 3 (100 MHz, C6D6): δ 142.51, 131.62, 124.59, 120.16, 117.53, 116.66, 83.57 (C1), 69.75
(α-THF), 53.97 (NC(CH3)3), 36.41 (NC(CH3)3), 35.62 (YCH2Si(CH3)3), 24.74 (β-THF), 5.34 (Si(CH3)2),
4.38 (CH2Si(CH3)3). Anal. Calcd (%) for C31H50NO2YSi2: C, 60.76; H, 8.06; N, 2.29. Found: C, 60.72; H,
8.00; N, 2.34.

2.5. A Typical Procedure for IP Polymerization in Table 2 Entry 4

In a glovebox at 25 ◦C, toluene solution (3.5 mL), AliBu3 (100 µL, 1.0 M, 100 µmol), complex
1 (0.0057 g, 10 µmol), a toluene solution (1.5 mL) of [Ph3C][B(C6F5)4] (0.0093 g, 10 µmol), and IP
(0.34 g, 5 mmol) were added into a 50 mL round bottom flask in succession. The reaction system
became sticky rapidly. After 2 min, the flask was taken outside and then quenched by addition of
ethanol (50 mL, containing 5% butylhydroxytoluene (BHT) as stabilizing agent). The mixture was
washed with ethanol and then dried under vacuum at 45 ◦C to a constant weight (0.34 g, yield = 100%).
The resulting polymer was soluble in THF and chloroform at room temperature. The isomer contents
of the polyisoprene was calculated from the 1H and 13C NMR spectra according to the following
Formulas (1)–(5):

Mol 1,4-IP% = [IH1/(IH1 + 0.5IH2)] × 100% (1)

www.ccdc.cam.ac.uk/data_request/cif
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Mol 3,4-IP% = [0.5IH2/(IH1 + 0.5IH2)] × 100% (2)

in which IH1 represents the resonance integration of the one vinyl proton of the 1,4-isoprene unit at 5.13
ppm in the 1H NMR spectrum; and IH2 represents the resonance integration of the two vinyl protons
of the 3,4-isoprene unit at 4.72 ppm in the 1H NMR spectrum.

Mol cis-1,4-IP% = [IC1/(IC1 + IC2 + IC3)] × 100% (3)

Mol trans-1,4-IP% = [IC3/(IC1 + IC2 + IC3)] × 100% (4)

Mol 3,4-IP% = [IC2/(IC1 + IC2 + IC3)] × 100% (5)

in which IC1 is the integration of 23.2 ppm signals of the cis-1,4-isoprene unit methyl carbon, and IC2 is
the integration of 18.5 ppm signals of the 3,4-isoprene unit methyl carbon, while IC3 is the integration
of 15.9 ppm signals of the trans-1,4-isoprene unit methyl carbon in the 13C NMR spectrum.

2.6. A Typical Procedure for MY Polymerization in Table 3 Entry 3

In a glovebox at 25 ◦C, toluene solution (3.5 mL), AliBu3 (100 µL, 1.0 M, 100 µmol), complex 3
(0.0063 g, 10 µmol), a toluene solution (1.5 mL) of B(C6F5)3 (0.0052 g, 10 µmol), and MY (0.68 g, 5 mmol)
were added into a 50 mL round bottom flask in succession. The reaction system became sticky rapidly.
After 1 h, the flask was taken outside and then quenched by addition of ethanol (50 mL, containing
5% butylhydroxytoluene (BHT) as stabilizing agent). The mixture was washed with ethanol and then
dried under vacuum at 45 ◦C to a constant weight (0.49 g, yield = 72%). The resulting polymer was
soluble in THF and chloroform at room temperature. The isomer contents of the PMY products were
calculated from the 1H NMR spectra (Formulas (6)–(8) and 13C NMR spectra (Formulas (9)–(12).

Mol 1,2-MY% = [I5.30/(I5.11 + 0.5I4.76)] × 100% (6)

Mol 3,4-MY% = [I4.76-2I5.30/(I5.11 + 0.5I4.76)] × 100% (7)

Mol 1,4-MY% = [(I5.11-0.5I4.76)/(I5.11 + 0.5I4.76)] × 100% (8)

Mol 1,2-MY% = [I29.07/(I29.07 + I37.09 + I37.51 + I42.18)] × 100% (9)

Mol 3,4-MY% = [I42.18/(I29.07 + I37.09 + I37.51 + I42.18)] × 100% (10)

Mol cis-1,4-MY% = [I37.09/(I29.07 + I37.09 + I37.51 + I42.18)] × 100% (11)

Mol trans-1,4-MY% = [I37.51/(I29.07 + I37.09 + I37.51 + I42.18)] × 100% (12)

2.7.A Typical Procedure for ST Polymerization in Table 4 Entry 9

In a glovebox at 25 ◦C, toluene solution (3.5 mL), AliBu3 (100 µL, 1.0 M, 100 µmol), complex 1
(0.0057 g, 10 µmol), a toluene solution (1.5 mL) of [PhNHMe2][B(C6F5)4] (0.0081 g, 10 µmol), and
ST (0.52 g, 5 mmol) were added into a 50 mL round bottom flask in succession. Some solids were
gradually precipitated from the reaction system. After 20 h, the flask was taken outside and then
quenched by addition of ethanol (50 mL, containing 5% butylhydroxytoluene (BHT) as stabilizing
agent). The mixture was washed with ethanol and then dried under vacuum at 45 ◦C to a constant
weight (0.22 g, yield = 43%). The resulting polymer is soluble in CHCl3 and 1,2,4-trichlorobenzene at
high temperature. The isomer contents of the polystyrene products were calculated from the 1H and
13C NMR spectra according to the following Formulas (13) and (14):

Mol isotactic PST% = [IC1/IC1] × 100% (13)

Mol syndiotactic PST% = [IC2/IC3] × 100% (14)
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in which IC1 is the integration of the resonance at 146.8 ppm (mmmm) and IC2 is the integration of the
resonance at 145.4 ppm (rrrr) in the 13C NMR spectrum.

3. Results and Discussion

3.1. Synthesis of Flu-Based CGC Allyl-Type Rare Earth Metal Monoalkyl Complexes 1–3

The FluSiMe2NtBu ligand was synthesized according to the literature [33]. The alkane
elimination reaction between the FluSiMe2NtBu ligand and 1 equivalent unit of the rare earth metal
tri(trimethylsilylmethyl) complexes Ln(CH2SiMe3)3(THF)n straightforwardly yielded the Flu-based
CGC allyl-type rare earth metal monoalkyl complexes (η3:η1-FluSiMe2NtBu)Ln(CH2SiMe3)(THF)2

1–3 (1: Ln = Sc, 63%; 2: Ln = Lu, 67%; 3: Ln = Y, 84%) with moderate to high yields in
2–3 h (Scheme 1). In comparison with the slow synthesis speed of previous similar results
[η3:η1-(3,6-tBu2Flu)SiR2NtBu]Y(CH2SiMe3)(THF)2 (37% yield after 1 h and 90% yield after a few
days) [27], the rapid synthesis speed of these complexes might be attributed to the lesser bulk of the
FluHSiMe2NHtBu ligand than that of the (3,6-tBu2-FluH)SiR2NHtBu ligand.
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3.2. Structural Characterization of Flu-Based CGC Allyl-Type Rare Earth Metal Monoalkyl Complexes 1–3

These complexes 1–3 have good solubilities in common organic solvents such as hexane, toluene
and THF. In the 1H NMR spectra of the complexes 1–3 in C7D8 and C6D6, the disappearance of the
proton signals attributed to the Flu−H and N−H group of the FluHSiMe2NHtBu ligand suggests
the generation of a dianionic chelating ligand in these complexes. Moreover, the eight Flu protons
are divided into four peaks, indicating an asymmetric coordination mode of the Flu ligand around
the metal center [29]. In each case, the molar ratio of the integral areas of the signals for the
FluSiMe2NtBu ligand, the CH2SiMe3 ligand, and THF molecules is 1:1:2. Similar to the flexible
[(3,6-tBu2C13H6)SiR2NtBu]Y(CH2SiMe3)(THF)2 at room temperature [27], these complexes also have a
flexible structure and the CH2SiMe3 group in these complexes can not be fixed at the NMR time scale
at room temperature since the two methylene protons of the Ln-CH2SiMe3 groups show only a singlet
at high field for 1 at –1.09 ppm, for 2 at –0.82 ppm, and for 3 at –1.06 ppm, respectively.

In a mixed toluene/hexane solution at –30 ◦C, single crystals of the complexes 1–3 were
cultivated for an X-ray determination. The ORTEP (Oak Ridge Thermal-Ellipsoid Plot Program)
drawings of the complexes 1–3 are shown in Figure 1 and the representative bond distances and
angles are summarized in Table 1. The X-ray diffraction study reveals that these complexes 1–3
are isomorphous and isostructural. Similar to the previous Flu-based CGC allyl-type complex
[η3:η1-(3,6-tBu2C13H6)SiR2NtBu]Y(CH2SiMe3)(THF)2 [27], each of them contains one dianionic
FluSiMe2NtBu ligand, one CH2SiMe3 group, and two coordinated THF molecules and adopts a
distorted-trigonal-bipyramidal configuration. Moreover, the 9-position carbon atom (C1) and the two
adjacent carbon atoms (C2, C3) of one phenyl (Ph) ring of the Flu ligand are bound to the metal center
in an asymmetric η3-allyl mode. The distance of Ln–C1 (2.395(3)–2.566(3) Å) is shorter than those of
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Ln–C2 (2.730(3)–2.769(3) Å) and Ln–C3 (3.036(4)–3.067(3) Å), implying the more possible presence of
–C1–C2=C3 than –C3–C2=C1 in such asymmetric η3-Flu ligands. By comparison, the bond distances of
Ln–N1, Ln–O1, Ln–O2, Ln–C1 as well as Ln–C2 increase in the order of 1 < 2 < 3, which are consistent
with the trend of the increased ionic radius of the metal centers (Sc < Lu < Y).
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Table 1. Selected bond distances (Å) and angles (deg) of complexes 1–3.

1 2 3

Ln−N1 2.065(3) 2.180(3) 2.213(3)
Ln−C1 2.395(3) 2.504(4) 2.566(3)
Ln−C2 2.730(3) 2.746(4) 2.769(3)
Ln−C3 3.067(3) 3.044(4) 3.036(4)
Ln−C20 2.226(4) 2.338(4) 2.392(4)

N1−Ln−C20 109.34(13) 111.36(14) 112.29(13)
N1−Ln−C1 75.05(11) 71.80(13) 70.57(11)
C20−Ln−C1 144.95(13) 148.23(15) 149.02(13)
N1−Ln−C2 91.58(11) 88.71(12) 87.82(11)
C20−Ln−C2 113.15(12) 117.13(14) 118.36(13)
C1−Ln−C2 32.52(11) 31.92(13) 31.58(11)
N1−Ln−C3 86.93(11) 85.21(13) 84.56(11)
C20−Ln−C3 89.52(11) 93.24(14) 94.39(12)
C1−Ln−C3 55.57(11) 55.06(13) 54.68(11)
C2−Ln−C3 27.22(10) 27.32(12) 27.47(11)

3.3. Cis-1,4-Polymerization of Ip by the Complexes 1–3/activator/AlR3 Ternary Systems

The complexes 1–3 alone, the complexes 1–3/AlR3 binary systems, and the complexes 1–3/activator
binary systems were inactive in IP polymerization. In the presence of both activator and AlR3, however,
these complexes 1–3 unprecedentedly exhibited high activities and regio-/stereoselectivities in IP
polymerization under mild conditions as shown by 1H and 13C NMR analysis (Table 2 and supporting
information). At the very beginning, the best catalytic system was investigated for IP polymerization.
At first, the Y complex 3 and 2.5 equivalent units of AliBu3 were fixed for screening of activators.
As an activator, trityl borate [Ph3C][B(C6F5)4] (A) showed low activity, approximately 4 × 103 (g of
polymer)/(molLn h) and moderate cis-1,4-selectivity of approximately 83% in 30 min. (Table 2, entry 1),
while anilinum borate [PhNHMe2][B(C6F5)4] (B) displayed moderate activity, approximately 18 × 103

(g of polymer)/(molLn h) and low cis-1,4-selectivity of approximately 65% under the same condition
(Table 2, entry 2). By contrast, neutral borane B(C6F5)3 (C) was inert for the polymerization of IP even
in a long polymerization time (Table 2, entry 3). In order to prepare PIPs with high cis-1,4-selectivities,
the borate A was chosen as an optimum activator in the following IP polymerization. In the presence of
borate A and 10 equivalent units of AliBu3, high activity approximately 1.1 × 106 (g of polymer)/(molLn

h) and high cis-1,4-selectivity of approximately 90% were obtained in IP polymerization catalyzed by
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the Sc complex 1 only in 2 min, affording main cis-1,4-PIP with high molecular weight and moderate
molecular weight distribution (Mn = 700 kg/mol, Mw/Mn = 2.26) (Table 2, entry 4). In comparison, the
Lu complex 2 and the Y complex 3 had moderate activities (1.6 × 104–1.7 × 104 (g of polymer)/(molLn h))
and similar or slightly lower cis-1,4-selectivities (86%–90%) under the same conditions to prepare main
cis-1,4-PIPs with lower molecular weights and broader molecular weight distributions (Mn: 100–300
kg/mol, Mw/Mn: 3.17–3.26) (Table 2, entries 5–6). Therefore, the Sc complex 1 served as an optimized
catalyst in the following polymerization of IP.

Table 2. Cis-1,4-polymerization of isoprene by complexes 1–3/activator/AlR3 ternary systems.a
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entry Cat. Ab AlR3 [Al]/[Ln] [IP]/[Ln] Sol. t
(h)

T
(◦C)

Y
(%) Ac

Microstructure
(%)d Mn

e

(105)
Mw/Mn

e Tg
f

(◦C)c-1,4 t-1,4 3,4

1 3 A AliBu3 2.5 500 Tol 0.5 25 6 4 83 0 17 1 3.23 −55
2 3 B AliBu3 2.5 500 Tol 0.5 25 26 18 65 23 12 7 2.31 −52
3 3 C AliBu3 2.5 500 Tol 48 25 - - - - - - - -
4 1 A AliBu3 10 500 Tol 0.03 25 100 1135 90 1 9 7 2.26 −56
5 2 A AliBu3 10 500 Tol 1 25 51 17 90 0 10 3 3.17 −57
6 3 A AliBu3 10 500 Tol 1 25 47 16 86 0 14 1 3.26 −55
7 1 A AlMe3 10 500 Tol 2 25 76 13 94 1 5 2 2.55 −62
8 1 A AlEt3 10 500 Tol 0.08 25 99 421 92 0 8 10 1.78 −59
9 1 A AlMe3 10 500 PhCl 18 25 14 0.3 91 4 5 2 2.58 −57

10 1 A AlMe3 10 500 PhCl2 2 25 100 17 94 1 5 5 1.79 −58
11 1 A AlMe3 5 500 PhCl2 2 25 100 17 94 1 5 6 2.33 −60
12 1 A AlMe3 20 500 PhCl2 2 25 76 13 94 1 5 4 2.67 −58
13 1 A AlMe3 10 500 PhCl2 5 –10 50 3 96 0 4 10 1.80 −66
14 1 A AlMe3 10 500 PhCl2 2 0 44 7 95 1 4 7 2.10 −62
15 1 A AlMe3 10 500 PhCl2 0.5 50 100 68 93 1 6 5 2.36 −60
16 1 A AlMe3 10 500 PhCl2 0.5 70 94 64 90 3 7 2 3.71 −55
17 1 A AlMe3 10 100 PhCl2 1 25 13 0.9 94 2 4 4 2.23 −59
18 1 A AlMe3 10 300 PhCl2 1 25 51 10 95 1 4 6 2.05 −62
19 1 A AlMe3 10 800 PhCl2 0.5 25 100 109 94 3 3 5 2.10 −58
20 Scg A AlMe3 10 500 PhCl2 2 25 21 4 93 4 3 0.9 2.18 −60
21 Scg Ah AlMe3 10 500 PhCl2 2 25 89 15 94 2 4 4 3.70 −60

a Conditions unless specified otherwise: 10 µmol of Ln complex, 10 µmol of activator, 5 mL of solvent. b Activator: A
= [Ph3C][B(C6F5)4]; B = [PhNHMe2][B(C6F5)4]; C = B(C6F5)3. c Activity in 103 g of polymer/(molLn h). d Determined
by 1H and 13C NMR spectrum: c-1,4: cis-1,4-selectivity; t-1,4: trans-1,4-selectivity; 3,4: 3,4-selectivity. e Determined
by GPC in THF at 40 ◦C against polystyrene standard. f Measured by DSC. g Sc = Sc(CH2SiMe3)3(THF)2. h 20 µmol
of activator.

Then, the influence of alkyl aluminum on the catalytic performance of the Sc complex 1/A
system was studied (Table 2, entries 4, 7–8). In comparison with PIP obtained by AliBu3 in entry
4, PIP obtained by AlEt3 had lower yield in long polymerization time (99% in 5 min), but higher
molecular weight (Mn = 1000 kg/mol), narrower molecular weight distribution (Mw/Mn = 1.78), and
higher cis-1,4-selectivity (92%) (Table 2, entry 8). While PIP obtained by AlMe3 had the highest
cis-1,4-selectivity, up to 94%, its yield, molecular weight, and molecular weight distribution were lower
than those obtained in the above two cases (Table 2, entry 7). Therefore, the complex 1/A/AlMe3 ternary
system was identified as the optimum catalytic system for IP polymerization and was used for choosing
the optimized polymerization conditions. Solvent, [Al]:[1] molar ratio, polymerization temperature,
and [IP]:[1] molar ratio had an effect on yield, regio-/stereoselectivity, molecular weight, and molecular
weight distribution of the resulting PIPs (Table 2, entries 7, 9–19). When the IP polymerization catalyzed
by the Sc complex 1/A/AlMe3 ternary system was carried out in different solvents such as Tol, PhCl, and
PhCl2, the catalytic activity obtained in PhCl2 (1.7 × 104 (g of polymer)/(molLn h)) was higher than those
obtained in Tol and PhCl (0.3 × 103–1.3 × 104 (g of polymer)/(molLn h)), while the cis-1,4-selectivities
of PIPs obtained in Tol and PhCl2 (94%) were higher than that obtained in PhCl (91%). When the
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[Al]:[1] molar ratio was decreased to 5:1, the catalytic activity and the PIP’s cis-1,4-selectivity and
molecular weight did not change practically (Table 2, entries 10–11). In contrast, with the increasing
[Al]:[1] molar ratio to 20:1, the catalytic activity and the PIP’s molecular weight slightly decreased,
while the PIP’s cis-1,4-selectivity was still retained (Table 2, entries 10, 12). The PIPs obtained in low
polymerization temperatures approximately −10 ◦C and 0 ◦C had higher cis-1,4-selectivities (95%–96%),
higher molecular weights (Mn: 700–1000 kg/mol), narrower molecular weight distributions (Mw/Mn:
1.80–2.10), but resulted in lower yields (Table 2, entries 10, 13–14). Moreover, the complex 1/A/AlMe3

ternary system had a certain tolerance to the high polymerization temperatures of approximately
50 and 70 ◦C with increasing catalytic activities but decreasing cis-1,4-selectivity (Table 2, entries 10,
15–16). With the increasing [IP]:[1] molar ratio from 100:1 to 800:1, the catalytic activities gradually
increased from 0.9 × 103 (g of polymer)/(molLn h) to 1.1 × 105 (g of polymer)/(molLn h), and the
cis-1,4-selectivities of the resulting PIPs remained almost unchanged (Table 2, entries 10, 17–19).
For comparison, IP polymerization was also carried out by use of the Sc(CH2SiMe3)3(THF)2/A/AlMe3

ternary system with molar ratios of 1:1:10 and 1:2:10 (Table 2, entries 20,21). The commonality of
these three catalytic systems was the similar cis-1,4-selectivities of the resulting PIPs, but the catalytic
activities of these three catalytic systems were different in decreasing order of the Sc complex 1/A/AlMe3

ternary system, the Sc(CH2SiMe3)3(THF)2/A/AlMe3 ternary system with a molar ratio of 1:2:10, and
the Sc(CH2SiMe3)3(THF)2/A/AlMe3 ternary system with a molar ratio of 1:1:10.

All of the resulting PIPs have good solubilities in THF and CHCl3. The 1H NMR spectra of these
PIPs in CDCl3 indicate the presence of main 1,4-PIP unit and a trace amount of 3,4-PIP unit. The 13C
NMR spectra of these PIPs give diagnostic signals assigned as main cis-1,4 configuration (δ = 23.6, 26.6,
32.4, 125.2, and 135.4 ppm) and a small amount of 3,4-configuration (δ = 18.8, 26.6, 32.4, 125.2, and
135.4 ppm) with or without a trace amount of trans-1,4-configuration (δ = 16.1, 26.6, 32.4, 125.2, and
135.4 ppm) (see supporting information). The GPC curves reveal that these main cis-1,4-PIPs have
moderate to high molecular weights in the range of 100–1000 kg/mol and bimodal molecular weight
distributions (Mw/Mn = 1.78–3.71) similar to natural rubber. The DSC curves of these PIPs show the
glass transition temperature (Tg) in the range of –52 to –66 ◦C, consistent with the thermoplasticity of
the CPIP (see Supporting Information).

3.4. Cis-1,4-Polymerization of MY by the Complexes 1–3/Activator/AlR3 Ternary Systems

Similarly, the complexes 1–3/activator/AlR3 ternary systems also served as highly efficient and
regio-/stereoselective catalyst for the cis-1,4-polymerization of MY (Table 3). In pursuit of high
cis-1,4-selectivity, the Y complex 3/borane C/AliBu3 ternary system was chosen as the optimum catalytic
system for MY polymerization since it showed the highest cis-1,4-selectivity up to 99% among these
different ternary systems under similar condition in toluene (Table 3, entries 1–5). In comparison with
MY polymerization in toluene, the Y complex 3/C/AliBu3 ternary system demonstrated low activities,
approximately 8 × 103–1.1 × 104 (g of polymer)/(molLn h) and low cis-1,4-selectivities of approximately
95%–96% in MY polymerization in PhCl and PhCl2 (Table 3, entries 3,6,7). The amount of AliBu3 had
an impact on the catalytic activity (Table 3, entries 3, 8–10). With an increase of the molar ratio of
[Al]:[3] from 5:1 to 40:1, the activity first increased from 2 × 103 (g of polymer)/(molLn h) to 4.9 × 104 (g
of polymer)/(molLn h), then decreased to 3.2 × 104 (g of polymer)/(molLn h) (Table 3, entries 3, 8–10).
The cis-1,4-selectivities, molecular weights, and molecular weight distributions of the resulting PMYs
remained constant or made small changes. In low polymerization temperature, approximately 0 ◦C,
the complete cis-1,4-PMY (cis-1,4-selectivity of approximately 100%) was obtained with the highest
molecular weight (Mn = 700 kg/mol) and the narrowest molecular weight distribution (Mw/Mn = 1.66)
(Table 3, entry 11). In high polymerization temperature, approximately 50 ◦C or 70 ◦C, the catalytic
activities and the cis-1,4-selectivities gradually decreased, implying the instability of this catalyst
in high temperatures (Table 3, entries 12–13). The concentration of MY monomer also affected the
catalytic activity (Table 3, entries 3, 14–17). With a gradually increasing [MY]:[3] molar ratio from
250:1 to 4000:1, the activity gradually increased from 1.3 × 104 (g of polymer)/(molLn h) to 1.2 × 105



Polymers 2019, 11, 836 10 of 19

(g of polymer)/(molLn h), but at the same time the cis-1,4-selectivity of PMYs were retained (Table 3,
entries 3, 14–17). By contrast, low activities approximately 0.2–1 (kg of polymer)/(molLn h) and low
cis-1,4-selectivities of approximately 95% were obtained by the Y(CH2SiMe3)3(THF)2/C/AliBu3 ternary
system with different molar ratios as 1:1:10 and 1:2:10 under similar conditions (Table 3, entries 18,19).
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1 3 A 10 500 Tol 1 25 100 68 76 0 24 0 3 3.47 −60
2 3 B 10 500 Tol 1 25 100 68 80 0 20 0 3 2.56 −60
3 3 C 10 500 Tol 1 25 72 49 >99 0 0 0 4 1.93 −65
4 1 C 10 500 Tol 2 25 72 24 88 0 12 0 9 1.97 −60
5 2 C 10 500 Tol 48 25 6 0.002 93 0 7 0 2 2.51 −60
6 3 C 10 500 PhCl 8 25 99 8 95 0 5 0 4 2.24 −61
7 3 C 10 500 PhCl2 6 25 99 11 96 0 4 0 5 2.73 −61
8 3 C 5 500 Tol 2 25 7 2 99 0 1 0 6 2.58 −63
9 3 C 20 500 Tol 2 25 99 34 99 0 1 0 5 2.61 −63

10 3 C 40 500 Tol 2 25 94 32 98 0 2 0 3 4.26 −62
11 3 C 10 500 Tol 5 0 82 11 100 0 0 0 7 1.66 −67
12 3 C 10 500 Tol 2 50 78 27 98 0 2 0 5 3.01 −66
13 3 C 10 500 Tol 2 70 22 7 96 0 4 0 1 3.31 −60
14 3 C 10 250 Tol 2 25 78 13 99 0 1 0 6 2.71 −62
15 3 C 10 1000 Tol 2 25 75 51 100 0 0 0 5 1.75 −67
16 3 C 10 2000 Tol 2 25 61 83 99 0 1 0 7 1.96 −66
17 3 C 10 4000 Tol 3 25 65 118 99 0 1 0 9 1.76 −64
18 Yg C 10 500 Tol 48 25 20 0.23 95 0 5 0 0.1 7.01 −60
19 Yg Ch 10 500 Tol 12 25 22 1 95 2 3 0 1 7.19 −60

a Conditions unless specified otherwise: 10 µmol of Ln complex, 10 µmol of activator, only AliBu3 as AlR3, 5 mL
of solvent. b Activator: A = [Ph3C][B(C6F5)4]; B = [PhNHMe2][B(C6F5)4]; C = B(C6F5)3. c Activity in 103 g of
polymer/(molLn h). d Determined by 1H and 13C NMR spectrum: c-1,4: cis-1,4-selectivity; t-1,4: trans-1,4-selectivity;
3,4: 3,4-selectivity; 1,2: 1,2-selectivity. e Determined by GPC in THF at 40 ◦C against polystyrene standard.
f Measured by DSC. g Y = Y(CH2SiMe3)3(THF)2. h 20 µmol of activator.

All of the PMYs obtained by the complexes 1–3/activator/AliBu3 systems were also soluble in
THF and CHCl3. The 1H NMR spectra in CDCl3 demonstrate that these PMYs contained mainly
1,4-microstructure and a trace amount of 3,4-microstructure (see supporting information). The 13C
NMR spectra display that these PMYs had mainly cis-1,4 configuration (δ = 17.86, 25.84, 26.96, 27.14,
30.79, 37.09, 124.63, 124.82, 131.34, and 139.16 ppm) and trace amount of 3,4-configuration (δ = 17.81,
25.81, 26.61, 32.32, 37.08, 47.55, 109.28, 124.63, 131.34, and 151.77 ppm) (see supporting information).
By GPC analysis, these cis-1,4-PMYs had high molecular weights in the range of 100–900 kg/mol and
bimodal molecular weight distributions (Mw/Mn = 1.66–4.26). The glass transition temperature (Tg) in
the range of –60 ◦C to –67 ◦C was obtained for these cis-1,4-PMYs by DSC.

3.5. Syndiotactic Polymerization of ST by the Complexes 1–3/Activator/AlR3 Ternary Systems

The complexes 1–3/activator/AlR3 ternary systems could also promote the syndiotactic
polymerization of ST (Table 4). By contrast, the Sc complex 1/B/AliBu3 ternary system was the
best catalytic system for ST polymerization since such a catalyst exhibited the highest catalytic
activity, approximately 2.8 × 103 (g of polymer)/(molLn h) and the highest syndiotacticity up to
99% in PhCl2, affording SPST with the highest molecular weight and moderate molecular weight
distribution (Mn = 900 kg/mol, Mw/Mn = 2.38) (Table 4, entries 1–6). The solvent had a significant effect
on syndiotacticity. When the ST polymerization was carried out in PhCl2 or Tol, the syndiotactic PSTs
(SPSTs) with high syndiotacticities (rrrr up to 99%) were obtained (Table 4, entries 2, 9). While the PSTs
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with moderate syndiotacticities (rrrr in the range of 61% to 65%) were prepared in ST polymerization
in PhCl and C2H2Cl4 (Table 4, entries 7,8,10). Different from the polymerization of conjugated dienes,
the amount of AliBu3, polymerization temperature, and the concentration of ST monomer only had
influence on catalytic activity instead of syndiotacticity of the Sc complex 1/B/AliBu3 ternary system
(Table 4, entries 2, 11–18). With the increasing molar ratio of [Al]/[Ln] from 5:1 to 15:1, the activity first
increased from 0.2 × 103 (g of polymer)/(molLn h) to 2.8 × 103 (g of polymer)/(molLn h) then decreased
to 1.8 × 103 (g of polymer)/(molLn h). When the polymerization temperature rose from 25 ◦C to 90 ◦C,
the activity slightly dropped from 2.8 × 103 (g of polymer)/(molLn h) to 2.6 × 103 (g of polymer)/(molLn

h), suggesting that such catalyst is very stable in high polymerization temperatures (Table 4, entries
2, 13–15). Moreover, the activity went up from 0.7 × 103 (g of polymer)/(molLn h) to 2.8 × 103 (g of
polymer)/(molLn h) then declined to 2.1 × 103 (g of polymer)/(molLn h) with the gradually increasing
[St]:[1] molar ratio from 200:1 to 700:1 (Table 4, entries 2, 16–18). In the above cases, the resulting SPSTs
always had complete syndiotacticities up to 99%. In comparison, the Sc(CH2SiMe3)3(THF)2/B/AliBu3

ternary system with the molar ratio of 1:1:10 produced PST with complete syndioselectivity (rrrr > 99%)
similar to the Sc complex 1/B/AliBu3 ternary system, while the Sc(CH2SiMe3)3(THF)2/B/AliBu3 ternary
system with the molar ratio of 1:1:10 only afforded PST with moderate syndioselectivity (rrrr = 78%)
under similar conditions (Table 4, entries 19–20).

Table 4. Syndiotactic polymerization of styrene by complexes 1–3/activator/AlR3 ternary systems.a
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entry Cat. Ab AlR3 [Al]/[Ln] [ST]/[Ln] Sol. (h) (oC) (%) Ac (%) (105) Mw/Mne (°C) 
1 1 A AliBu3 10 500 PhCl2 12 25 18 781 >99 7 2.05 272 
2 1 B AliBu3 10 500 PhCl2 6 25 32 2777 >99 9 2.38 271 
3 1 C AliBu3 10 500 PhCl2 24 25 7 152 >99 3 2.36 274 
4 2 B AliBu3 10 500 PhCl2 24 25 6 130 54 n.d. n.d. 260 
5 3 B AliBu3 10 500 PhCl2 24 25 23 499 >99 9 2.21 271 

6 1 B AlEt3 10 500 PhCl2 24 25 10 217 >99 0.1 6.42 271 
7 1 A AliBu3 10 500 PhCl 24 25 26 564 63 n.d. n.d. 265 

entry Cat. Ab AlR3 [Al]/[Ln] [Al]/[Ln] Sol. t T Y Ac rrrrd Mn
e

Mw/Mn
e Tm

f

(h) (◦C) (%) (%) (105) (◦C)

1 1 A AliBu3 10 500 PhCl2 12 25 18 781 >99 7 2.05 272
2 1 B AliBu3 10 500 PhCl2 6 25 32 2777 >99 9 2.38 271
3 1 C AliBu3 10 500 PhCl2 24 25 7 152 >99 3 2.36 274
4 2 B AliBu3 10 500 PhCl2 24 25 6 130 54 n.d. n.d. 260
5 3 B AliBu3 10 500 PhCl2 24 25 23 499 >99 9 2.21 271
7 1 B AlEt3 10 500 PhCl2 24 25 10.4 225.66 >99 0.07 6.42
6 1 B AlEt3 10 500 PhCl2 24 25 10 217 >99 0.1 6.42 271
7 1 A AliBu3 10 500 PhCl 24 25 26 564 63 n.d. n.d. 265
8 1 B AliBu3 10 500 PhCl 24 25 17 369 65 n.d. n.d. 267
9 1 B AliBu3 10 500 Tol 20 25 43 1120 >99 7 2.27 270

10 1 B AliBu3 10 500 C2H2Cl4 48 25 17 184 61 n.d. n.d. 265
11 1 B AliBu3 5 500 PhCl2 12 25 5 217 >99 n.d. n.d. 272
12 1 B AliBu3 15 500 PhCl2 12 25 42 1822 >99 6 2.09 271
13 1 B AliBu3 10 500 PhCl2 12 50 60 2604 >99 5 2.00 273
14 1 B AliBu3 10 500 PhCl2 12 70 59 2561 >99 4 1.98 272
15 1 B AliBu3 10 500 PhCl2 12 90 61 2647 >99 0.1 18.78 271
16 1 B AliBu3 10 200 PhCl2 12 25 41 712 >99 5 2.02 275
17 1 B AliBu3 10 400 PhCl2 12 25 35 1215 >99 8 2.02 273
18 1 B AliBu3 10 700 PhCl2 12 25 35 2126 >99 13 1.49 271
19 Scg B AliBu3 10 500 PhCl2 48 25 7 76 78 n.d. n.d. 268
20 Scg Bh AliBu3 10 500 PhCl2 12 25 9 390 >99 n.d. n.d. 272

a Conditions unless specified otherwise: 10 µmol of Ln complex, 10 µmol of activator, 5 mL of solvent. b Activator:
A = [Ph3C][B(C6F5)4]; B = [PhNHMe2][B(C6F5)4]; C = B(C6F5)3. c Activity in (g of polymer)/(molLn h). d Determined
by 1H and 13C NMR spectrum. e Determined by GPC in 1,2,4-trichlorobenzene at 150 ◦C against polystyrene
standard. f Measured by DSC. g Sc = Sc(CH2SiMe3)3(THF)2. h 20 µmol of activator.

The resulting SPSTs are soluble in PhCl2 and C2H2Cl4 in high temperatures. The 13C NMR spectra
in CDCl3 indicate that these SPSTs have complete syndiotactic-microstructure with only a singlet at
145.35 ppm (see Supporting Information). GPC curves display that these SPSTs have moderate to
high molecular weights in the range of 10–900 kg/mol and bimodal molecular weight distributions
(Mw/Mn = 1.98–18.78). As demonstrated by DSC, the melting points (Tm) of these SPSTs are in the
range of 260 ◦C to 275 ◦C (see Supporting Information).
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3.6. Polymerization Mechanism Study

In general, the catalytically active species in the coordination–insertion polymerization of olefin is
usually generated from the rare earth metal dialkyl/dihalides complex and activator with or without
AlR3 (Chart 2a,b) [8]. In such catalytic systems, an activator usually eliminates one alkyl group from
the metal center to afford cationic species containing a metal–alkyl (Ln–R) bond for the coordination
and insertion of olefin monomer to finally give polyolefin with different regio-/stereoselectivity and
microstructure. Unlike an activator, AlR3 can perform a lot of functions in olefin polymerization,
such as scavenging impurities, transforming (alkylating and reducing) the cationic species, and/or
acting as a chain transfer agent [34–36]. Later, AlR3, especially AlMe3, was found to react with the rare
earth metal trialkyl/dialkyl complex to form a heterobimetallic tetraalkylaluminate complex as a catalyst
precursor. Activated by an activator, the corresponding cationic heterobimetallic tetraalkylaluminate
complex was formed as a truly active species in the olefin polymerization (Chart 2b) [37–39]. Recently,
AlR3 was found to remove coordinated solvent molecules such as THF or pyridine from the metal
center or transfer the anionic chelating ligand from the rare earth metal center (Chart 2b) [40–43]. But in
comparison, the catalytically active species in the coordination–insertion polymerization of olefins by
use of rare earth metal monoalkyl complex/activator/AlR3 ternary system is difficult to calculate and
understand (Chart 2c). According to the conventional synthesis method a, the resulting cationic species
does not have the alkyl group, which inhibits coordination and insertion of olefin monomer into the
Ln–R bond. As a result, the high regio-/stereoselective polymerization of olefins can’t occur. Therefore,
some special reaction must be happened during the formation of cationic active species. More recently,
we found that in the cis-1,4-polymerization of isoprene catalyzed by the dipyrromethene ligated
scandium monoalkyl complex/activator/AlR3 ternary system, both of two anionic dipyrromethene
chelating ligands transferred from the Sc center to the Al center. This was observable by using naked
eyes, UV irradiation, fluorescence spectrum, and in situ 1H NMR spectrum, and affords a catalyst
precursor heterobimetallic tetraalkylaluminate complex (Chart 2d) [40]. Then, one alkyl group of such
catalyst precursor was removed by an activator to form the cationic heterobimetallic tetraalkylaluminate
complex as a truly active species in cis-1,4-polymerization of IP (Chart 2d). In this paper, these Flu-based
CGC allyl-type rare earth metal monoalkyl complexes/activator/AlR3 ternary system also exhibited
high regio-/stereoselectivities and/or high activities in the polymerization of olefins such as IP, MY, and
ST. The catalytically active species of such ternary systems in the coordination–insertion polymerization
of olefins also aroused our interest. Therefore, the polymerization initiation processes by the Y complex
3/activator/AlR3 ternary systems under different [Ln]/[AlR3] molar ratios were monitored by use of the
in situ 1H NMR spectrum in d-toluene or d-THF at 25 ◦C (Figure 2 and supporting information).
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The analysis of the in situ 1H NMR spectra of the active species generated from the Y complex
3/[Ph3C][B(C6F5)4]/AlMe3 ternary system in d-toluene at 25 ◦C was taken as an example (Figure 2).
Firstly, the reaction between the Y complex 3 and 5 equivalent units of AlMe3 was carried out in a J.
Young valve NMR tube for 5 min consistent with polymerization procedure (Figure 2E). The in situ 1H
NMR spectrum demonstrated that the peaks assigned to the dianionic FluSiMe2NtBu ligand became
weak and moved to the high field. Moreover, the position of peaks assigned to the coordinated THF
molecules and AlMe3 had obvious changes. It was very interesting that this 1H NMR spectrum very
much looked like the in situ 1H NMR spectrum of the reaction of Y(CH2SiMe3)3(THF)2 and 5 equivalent
units of AlMe3 after 5 min in d-toluene at 25 ◦C, in which the heterobimetallic tetramethylaluminate
complex Y(Me)[(µ-Me)2Al(Me)2]2 was formed with a broad signal at –0.3 ppm for all of the methyl
groups (slightly different with AlMe3) in addition with the byproduct Al(CH2SiMe3)3 (Figure 2F).
These results implied that the Y complex 3 had decomposed during this reaction. In view that no
free FluHSiMe2NHtBu ligand was observed from the above in situ 1H NMR spectrum, the dianionic
FluSiMe2NtBu ligand should precipitate from the polymerization solvent. Then 1 equivalent unit of
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activator [Ph3C][B(C6F5)4] was added to the NMR tube in order to generate cationic species. Almost
no peaks assigned to the dianionic FluSiMe2NtBu ligand were found in the in situ 1H NMR spectrum,
identifying the precipitation of an insoluble complex containing the dianionic FluSiMe2NtBu ligand
(Figure 2G). Similarly, this 1H NMR spectrum and the in situ 1H NMR spectrum of the reaction of
Y(Me)[(µ-Me)2Al(Me)2]2 with 2 equivalent units of [Ph3C][B(C6F5)4] (Figure 2H) were nearly identical.
The chemical shift of the main peak at –0.3 ppm was similar to that of the main peak of the cationic
heterobimetallic tetramethylaluminate complex [(Me)2Al(µ-Me)2Y]2+[B(C6F5)4]2−. Meanwhile, a new
peak assigned as byproduct Ph3CCH3 also appeared at 2.0 ppm. Such results identified the formation
of cationic species [(Me)2Al(µ-Me)2Y]2+[B(C6F5)4]2− from the Y complex 3/[Ph3C][B(C6F5)4]/AlMe3

ternary system. The similar results were also obtained from the in situ 1H NMR spectra of the Y complex
3/activator/AlR3 ternary systems in d-THF at 25 ◦C (Supporting Information). Based on these facts, it is
guessed that AlMe3 firstly removes two coordinated THF molecules from the Y center of complex 3 to
give (FluSiMe2NtBu)Y(CH2SiMe3) as an intermediate. Then the alkyl exchange between the Y center
of the above intermediate and the Al center of AlMe3 forms a new Y complex (FluSiMe2NtBu)YMe
and a byproduct Al complex AlMe2(CH2SiMe3). Similar to the previous (DPM)2ScR/activator/AlR3

ternary system [40], the dianionic FluSiMe2NtBu ligand of (FluSiMe2NtBu)LnMe immediately transfers
from the Y center to the Al center to produce the heterobimetallic tetramethylaluminate complex
(Me)2Al(µ-Me)2Y(Me)(µ-Me)2Al(Me)2 as a catalyst precursor and the insoluble Y-Aluminum salt solid
[(Me)2Al(µ-Me)2Y(µ-Me)2Al(Me)2][Al(FluSiMe2NtBu)2] as a byproduct. Such a rapid exchange of the
FluSiMe2NtBu ligand from the Y center to the Al center is also observed in the in situ 1H NMR spectra
when AlEt3 or AliBu3 was used as AlR3 (see Supporting Information). Although the transference
of monodentate or bidentate ligand from the Y center to the Al center to form the heterobimetallic
tetramethylaluminate complex LY[(µ-Me)2AlMe2]n have been reported previously by Anwander [41],
Hou [42], and Kempe [43], this is the first discussion of the transference of dianionic CGC allyl-type
chelating ligand. Later, in the presence of 2 equivalent units of activator [Ph3C][B(C6F5)4], a divalent
cationic heterobimetallic tetramethylaluminate species [(Me)2Al(µ-Me)2Y]2+[B(C6F5)4]2− was obtained,
in combination with Ph3CCH3 as a byproduct.
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Taking above results into account, a plausible coordination–insertion mechanism is proposed
for the regio-/stereoselective polymerization of olefins catalyzed by the Flu-based CGC allyl-type
rare earth monoalkyl complexes (η3:η1-FluSiMe2NtBu)Ln(CH2SiMe3)(THF)2 (1–3)/activator/AlR3

ternary systems in Scheme 2. At first, 2 equivalent units of AlR3 abstracts two coordinated
THF molecules from the rare earth metal center of these complexes 1–3 to produce intermediate
(η3:η1-FluSiMe2NtBu)Ln(CH2SiMe3) (a). Then the exchange of the CH2SiMe3 group of a and
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alkyl group of AlR3 gives a new rare earth metal alkyl complex (η3:η1-FluSiMe2NtBu)LnR (c)
with the release of AlR2(CH2SiMe3). The continued ligand exchange between metal center of
0.5 equivalent units of the above intermediate c and Al center of AlR3 forms 0.5 equivalent units
of a heterobimetallic tetraalkylaluminate complex (R)2Al(µ-R)2Ln(R)(µ-R)2Al(R)2 (h) as catalyst
precursor and 0.5 equivalent units of (η3:η1-FluSiMe2NtBu)AlR (g). Then the 0.5 equivalent units of g
continues to react with the other 0.5 equivalent units of c to finally give an insoluble Y–Aluminum
salt solid [(R)2Al(µ-R)2Ln(µ-R)2Al(R)2]+[Al(η3:η1-FluSiMe2NtBu)2]− (k) as a byproduct. Then two
alkyl groups of 0.5 equivalent units of the catalyst precursor h are removed from metal center by 1
equivalent unit of activator to finally generate a divalent cationic species {Ln[(µ-R)2AlR2]2+} (l) as
catalytically active species in the regio-/stereoselective polymerization of olefins. Based on the actual
circumstance of syndiotactic polymerization of ST by the Y complex 3/B/AliBu3 ternary system and
the Sc(CH2SiMe3)3(THF)2/B/AliBu3 ternary system with different molar ratios as 1:1:20 and 1:1:10 in
Table 4, such a divalent cationic active species is quite reasonable. The less steric hindrance around
the metal center of this cationic species permits the coordination and insertion of IP/MY monomers
in cis-1,4 mode to form the anti-allyl form intermediate, which finally affords the cis-1,4-PIPs/PMYs
with cis-1,4-selectivities up to 96% or 100%. Such high cis-1,4-selectivity in the coordination–insertion
polymerization of conjugated dienes is in agreement with the high cis-1,4-selectivity obtained
by the heterobimetallic tetraalkylaluminate active species {LLn[(µ-Me)2AlMe2]2+} in the isoprene
polymerization [40,41]. Similarly, such a cationic species also promotes the backbiting of the last phenyl
group in PST chains with a metal center. As a result, the SPSTs are obtained by such Flu-based CGC
allyl-type rare earth monoalkyl complexes 1–3/activator/AlR3 ternary systems.
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4. Conclusions

In summary, three Flu-based CGC allyl-type rare earth metal monoalkyl complexes 1–3 have been
easily synthesized in moderate to high yields and structural characterization by 1H and 13C NMR
spectrum, elemental analyses as well as X-ray diffraction. In the presence of cocatalyst activator borate
[Ph3C][B(C6F5)4] (A) and AlMe3, these complexes 1–3 exhibit moderate activities from 0.3 × 103 (g of
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polymer)/(molLn h) to 1.1 × 106 (g of polymer)/(molLn h) and high cis-1,4-selectivities up to 96% in IP
polymerization in PhCl2, yielding the main cis-1,4-PIPs with high molecular weights (Mn up to 1000
kg/mol) and bimodal molecular weight distributions (Mw/Mn = 1.78–3.71). Activated by the cocatalyst
borane B(C6F5)3 (C) and AliBu3, these complexes 1–3 display high activities up to 1.2 × 105 (g of
polymer)/(molLn h) and high cis-1,4-selectivities up to 100% in MY polymerization in Tol, producing
the cis-1,4-PMYs with high molecular weights (Mn up to 900 kg/mol) and bimodal molecular weight
distributions (Mw/Mn = 1.66–3.47). Moreover, these complexes 1–3/[PhNHMe2][B(C6F5)4] (B)/AliBu3

ternary systems also promote the syndiotactic polymerization of ST with moderate activities up to
2.8 × 103 (g of polymer)/(molLn h) in PhCl2 to give SPSTs with high molecular weights (Mn up to
1300 kg/mol) and bimodal molecular weight distributions (Mw/Mn = 1.49–18.78). In comparison with
no, or very low activity and regio-/stereoselectivity of the previous CGC allyl type rare earth metal
complexes, such results demonstrate that the transfer of the chelating ligand from the rare earth metal
center to the Al center to form the heterobimetallic tetraalkylaluminate complex plays a key role on the
excellent catalytic performance of these CGC allyl-type rare earth metal monoalkyl complexes in olefin
polymerization. These findings will benefit the design of highly efficient and regio-/stereoselective rare
earth metal catalysts as well as the precise synthesis of natural rubber. Further studies will be focused
on the research of excellent rare earth metal catalysts for the polymerization of olefins.
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