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ARTICLE INFO ABSTRACT

Keywords: The integration of membrane distillation with reverse electrodialysis has been investigated as a sustainable
Reverse electrodialysis (RED) sanitation solution to provide clean water and electrical power from urine and waste heat. Reverse electro-
Recycle dialysis was integrated to provide the partial remixing of the concentrate (urine) and diluate (permeate) pro-

Closed-loop

duced from the membrane distillation of urine. Broadly comparable power densities to those of a model salt
Salinity gradient energy

solution (sodium chloride) were determined during evaluation of the individual and combined contribution of
the various monovalent and multivalent inorganic and organic salt constituents in urine. Power densities were
improved through raising feed-side temperature and increasing concentration in the concentrate, without ob-
servation of limiting behaviour imposed by non-ideal salt and water transport. A further unique contribution of
this application is the limited volume of salt concentrate available, which demanded brine recycling to maximise
energy recovery analogous to a battery, operating in a ‘state of charge’. During recycle, around 47% of the Gibbs
free energy was recoverable with up to 80% of the energy extractable before the concentration difference be-
tween the two solutions was halfway towards equilibrium which implies that energy recovery can be optimised
with limited effect on permeate quality. This study has provided the first successful demonstration of an in-
tegrated MD-RED system for energy recovery from a limited resource, and evidences that the recovered power is
sufficient to operate a range of low current fluid pumping technologies that could help deliver off-grid sanitation
and clean water recovery at single household scale.

1. Introduction

Sustainable small scale sanitation systems treating blackwater on-
site have been recently innovated to address the water sustainable de-
velopment goals (SDG 6) in low income countries [1,2]. Source se-
paration is an accepted practice in Europe [6], and is advantageous in
decentralised innovations, since upstream solids/liquid separation [7,8]
advantages technology selection and energy demand for downstream
processing [3-5]. Improving regulatory practice in low income coun-
tries (LICs) now means new technologies are required to meet inter-
national discharge standards for water reuse or discharge [9]. Mem-
brane technology is deemed a practicable choice for liquid phase
treatment, providing a definitive barrier to pathogens, within a mod-
ular and comparatively small footprint [10-12]. However, in many
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cases, electricity supplies are unsafe and unreliable [13]. In contrast,
sources of waste heat are comparatively abundant in LICs, for example
through solar or domestic activities (wood burning stoves) [14]. Con-
sequently, thermally driven membrane separation offers significant
opportunity in LICs for post source separation treatment of the liquid
phase, which comprises primarily of urine; and has been successfully
demonstrated with membrane distillation (MD) for water recovery in
various space missions [10]. A further source of waste heat is in the
direct combustion of human faeces (solid phase) which releases suffi-
cient thermal energy to introduce the necessary vapour pressure gra-
dient for thermal membrane separation, since its calorific value is
equivalent to brown coal [15,16].

Whilst MD primarily requires heat, some electrical energy is in-
evitably demanded which necessitates the identification of an
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Nomenclature and abbreviations

List of symbols

A Cross sectional area of one membrane (m?)

C Concentration (mol L™ 1)

AnmixG Gibbs free energy of mixing (J)

ED Energy density (J kg™")

F Faraday constant (96485.33Cmol ')

G Gibbs free energy

H Enthalpy

I Current (A)

I Current Density (A m~ %)

Js Total salt flux (mol m~2s™ 1)

Jw Total water flux (mol m~2 s~ 1)

x Solution conductivity

L, Average water permeability coefficient for both anion and
cation exchange membranes (kg m ™2 s~ kg™')

M Molar mass of water (kg mol™ 1)

m Mass (kg)

N Number of cell pairs in membrane stack

n Moles (mol)

p Power (W)

P, Power density (W m~2)

P Average salt permeability coefficient for the anion and
cation exchange membrane pair (m? s~ 1)

R Universal gas constant (8.314J K 'mol™)

S Molar entropy (J K~ mol ™)

T Temperature (K)

tw Number of water molecules transported with salt ions
across the membranes (molyager MOl gup¢ 1)

U Potential (V)

Y Number of moles in 1 mol of salt

Z Valency of the ion

a Permselectivity (%)

Al Difference in chemical potential of salt

A, Difference in chemical potential of water

Om Average membrane thickness of the anion and cation ex-
change membrane pair (m)

Y Activity coefficient

%] Osmotic coefficient (unitless)

n Energy extraction efficiency (%); Subscripts; B Mixed
concentrate and diluate; C Concentrate

D Diluate

G Gibbs (e.g. P = Gibbs power)

Stack Measure across the membrane stack

s Salt (e.g. Js = total salt flux)

w Water; Abbreviations; SDG Sustainable development goals

MD Membrane distillation

RED Reverse electrodialysis; NOM Natural organic matter;
VMD Vacuum membrane distillation; COD Chemical
oxygen demand; NH,*-N Ammonical nitrogen; NaCl
Sodium chloride; OCV Open circuit voltage

LC Low concentration (refers to channel)

HC High concentration (refers to channel)

SOC State of charge

alternative energy source to that of distributed networks, which lack
penetration and are often unreliable [13]. Membrane distillation pro-
duces two outputs from urine treatment: a high quality permeate with
an incredibly low concentration of inorganic ions (~0.2mS cm™Y);
and, a salt rich retentate exceeding 20 mS cm ™! (Table 2). On the as-
sumption of the selective remixing of these two solutions, the release of
Gibbs free energy exceeding 337 Jkg™' can be realised; this further
permits partial management of the retentate, which could increase the
concentration factor (or product conversion) that can be achieved with
MD whilst only increasing permeate conductivity by a small amount.
The Gibbs free energy available can be harnessed as electrical energy
via reverse electrodialysis (RED) which uses an alternating series of
cation and anion exchange membranes separating concentrated and
dilute solutions to produce a salinity gradient. The selective flow of
anions and cations through the respective membranes creates an elec-
trochemical potential across the stack, where at the electrodes, a redox
reaction converts the ionic flow to an electric current. Reverse elec-
trodialysis has gained considerable interest since the first demonstra-
tion by Pattle in 1954 where a gross power density of 0.05W m ™2 was
reported [18,19]. Since then, research has been predominantly directed
towards sodium chloride based salinity gradients (seawater and con-
centrated brines) and thermolytic salts, as recently reviewed by Mei and
Tang [20], and Tufa et al. [21] Research advances in these areas have
focused on maximising power density through the optimisation of
module design, membrane materials, fouling mitigation and opera-
tional conditions [20,21]. As a result, higher power densities of
2.2Wm™? for seawater/river water applications (at ambient tem-
perature) have been realised using modified membranes [22], with
theoretical values predicted at 4.2Wm™2 [23], demonstrating the
progress and potential of RED with optimisation.

Whilst salinity gradient technologies can be applied to a broad
range of environmental matrices, few studies have approached RED for
less conventional saline wastewaters, which could provide wider op-
portunities for energy recovery and discharge management. Kingsbury
et al. challenged a RED stack with multiple real waters including
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municipal wastewater effluent, and pickling brine as dilute and con-
centrate examples. It was concluded that organic matter within the
dilute stream was the main hindrance to power density (up to 43%),
with inorganic solutes or organics in the concentrate presenting little
effect [24,25]. However, the application also determines how best to
optimise energy recovery from RED. For example, in several hybrid
RED applications, reverse osmosis [26,27], electrodialysis [28] and
solar evaporation [27], have been used to further concentrate salinity
gradients for higher power densities and discharge management, which
draws close parallels to the complementary proposed with MD [29].
The critical distinction between these previous studies, and that of RED
as an ‘off grid’ solution for energy recovery from decentralised sanita-
tion systems is that the solution volume will be finite. In such a resource
constrained environment, the challenge is therefore in maximising en-
ergy recovery from the available volume of saline solution, which ex-
pectedly necessitates a recycle to maximise energy recovered per unit of
salt, as this becomes the critical focus, rather than the maximisation of
power density with single-pass flow, which is generally prioritised in
larger-scale applications for which both solutions are in abundance.
Importantly, the scalability of RED has been demonstrated from
feed water flows of 2.34 ton h™!, 250 m? surface area and power pro-
duction of 95.8 W [30], to microfluidic and nano-scale devices [31,32]
which evidences the potential to scale-down to the size of an ‘off-grid’
decentralised sanitation system. The synergistic partnership between
MD and RED at this scale would demand limited capital cost, with the
potential to enable dependable local sanitation and the provision of
high quality water (MD facilitated by waste heat), whilst providing a
complementary source of stable power to support treatment (RED fa-
cilitated by MD salinity gradient) in an environment where such ser-
vices and products are economically inaccessible for many [2,13]. This
study therefore aims to evaluate the synergistic potential of a MD-RED
configuration for small scale decentralised sanitation systems to enable
electrical energy recovery in co-operation with the provision of safe
sanitation from thermally driven membrane technology. Specific ob-
jectives are to: (i) understand the impact of the urine salt matrix on
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energy recovery through decoupling urine constituents into discrete
groups; (ii) establish operational boundary conditions (feed con-
centrations, temperature, flowrate) using single-pass feed fluid flow for
characterisation of peak power density; (iii) determine energy extrac-
tion efficiency and recovery with feed fluid flow in recycle mode by
comparing experimentally obtained energy to the theoretical Gibbs free
energy in recycle mode; and (iv) demonstrate MD-RED using real urine
(concentrate) and MD permeate (diluate) recovered from urine treat-
ment.

2. Materials and methods
2.1. Chemicals and solutions

All chemicals required for the preparation of synthetic urine and
electrode rinse solution were sourced from Fisher Scientific
(Loughborough, UK) or Sigma Aldrich (Dorset, UK) as laboratory grade.
Deionised water was taken from a PURELAB Elga system (18 QM-cm at
25°C). The composition of the synthetic urine was adapted from ana-
lysis by Putnam which detailed several specific groups of constituents:
inorganic salts, organic ammonium salts, and organic compounds,
providing a total ionic concentration of 248 mEq L~1! (Table 1) [17].
The synthetic urine was benchmarked against several fluids of
equivalent charge to aid diagnosis of governing separation phenomena,
including a sodium chloride (NaCl) control (248 mEq L~ ! as NaCl) and
an inorganic control comprised of monovalent and divalent salts, re-
presentative of those present in human urine (248 mEq L™ ). Real
human urine was collected by consenting anonymous volunteers
through a regime approved by Cranfield University's Research Ethics
System (Project ID 2384), and used directly without dilution or pre-
treatment. Storage of real urine was at 4°C and used or discarded
within three days of collection.

2.2. Reverse electrodialysis cell

The custom RED stack used throughout this study is illustrated in
Fig. 1. The endplates were fabricated from acrylic (Model Products,
Bedford, UK) with stainless steel bolts to secure the stack. The mem-
brane stack consisted of 5 repeating cell units of anion and cation ex-
change membranes (Neosepta AMX and CMX, Eurodia, France) with an
effective area of 100 cm? per membrane. These were sealed with silicon
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gaskets (Silex Silicones, UK) and nylon spacers with an open area of
35% (Sefar, UK) both 0.3 mm in thickness. The concentrate and diluate
were pumped through the stack in a co-current configuration with
peristaltic pumps. Titanium mesh plate electrodes coated with a Ru/Ir
mixed metal oxide (MMO) (10cm X 10 cm, Magneto, Netherlands)
were fixed within the endplates of the stacks and acted as anode and
cathode. An electrode rinse solution of 0.25M NaCl was continuously
circulated within the electrode compartments at a flow rate of
100 mLmin ™! using a peristaltic pump (Watson Marlow, UK). Galva-
nostatic measurements were conducted using an Iviumstat. h (Alvatek,
UK). Current was applied across the mesh working electrodes and Ag/
AgCl reference electrodes (QM711X, ProSense BV) were placed in the
anolyte/catholyte to measure electrical potential across the RED stack.

To determine the ability of RED to convert the Gibbs free energy of
urine to electrical power and directly compare with previous studies of
RED using traditional electrolytic solutions (i.e. sea water/river water),
the system was initially tested in a single-pass configuration (typically
used to determine maximum power density when the electromotive
force is at its greatest potential). In this arrangement, the solutions
passed directly through the stack and the influent concentrations of the
diluate and concentrate were therefore constant and the solutions ex-
iting the stack discarded (Fig. 2). Galvanostatic polarisation measure-
ments were conducted and the current was scanned at a rate of
0.2mA s~ ! from 0 to the maximum value, when the voltage of the stack
reversed [33].

The available volume of urine in any system will ultimately be fi-
nite. To utilise the full Gibbs free energy stored within the MD re-
tentate, a recycle configuration was utilised to enable the complete
mixing of the retentate and permeate within the RED stack (Fig. 2).
Consequently, the system was discharged at a constant current to mimic
analogous discharge studies of galvanostatic cycling tests conducted on
batteries and concentration gradient flow batteries [34-37]. Constant
current discharge experiments were conducted where 1 L of concentrate
and diluate were recirculated through the stack until the potential
across the stack reversed. This allowed for determination of the ex-
tractable energy efficiency and energy recovery of the RED stack. The
conductivity of the bulk concentrate and diluate was recorded with
conductivity probes (CDH SD1, Omega, UK). To measure water flux
through the membranes, the concentrate and diluate were each placed
on balances (Symmetry PT-4202E, Cole Parmer, UK) for the duration of
the experiment. However, no significant change in mass was observed

Table 1
Summary of synthetic urine recipe adapted from Putnam (1971).
Urine category  Chemical group Compound Typical concentration (mg Molar concentration (Mol Cations Anions mEqL~!
LY LY
Control Sodium chloride Sodium chloride 14497 0.248 Na* Cl™ 248.062
Inorganic salts Monovalent Sodium chloride 8001 0.137 Na* Cl™ 136.91
Potassium chloride 1641 0.022 K* Cl™ 22.012
Potassium 661 0.0066 K* HCO3;~ 6.6
bicarbonate
Multivalent Potassium sulphate 2632 0.0151 K* 50,2 30.2
Magnesium sulphate 783 0.0065 Mg?*t S0, ? 13.01
Synthetic urine Inorganic salts Sodium chloride 9524 0.137 Na* Cl™ 162.98
Potassium chloride 1951 0.022 K* cl- 26.2
Potassium 790.79 0.0066 K* HCO3;~ 7.9
bicarbonate
Potassium sulphate 3133 0.0151 K* 50,72 35.95
Magnesium sulphate ~ 932.83 0.0065 Mgt 80,72 15.5
Organic ammonium Ammonium hippurate 1250 0.0064 NH, ™" Ce¢HsCONHCH,CO,~ 6.4
salts
Ammonium formate 88 0.0014 NH,*  HCO,~ 1.4
Ammonium citrate 756 0.0034 NH,* HCgH50, 2 6.8
Ammonium lactate 394 0.0037 NH,*  C3Hs0372 7.4
Organic compounds Urea 13400 0.22
Creatinine 1504 0.0132
Creatine 373 0.0026
Glycine 315 0.0042
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Figure 1. Schematic of reverse electrodialysis cell used in this study.

during the course of the experiments. This is likely due to the small
osmotic pressure difference between the diluate and concentrate
(<9.9 bar), low water permeance (~0.002Lm~2h~! bar~1!) of the ion
exchange membranes [38] and the relatively short time scales of the
experiments (< 24 h).

2.3. Membrane distillation

Vacuum membrane distillation (VMD) was used to recover high
quality water from real urine, whilst also producing a urine con-
centrate, rich in inorganic salts, as the retentate (Fig. S1). The feed was
heated in a water bath (TC120, Grant, UK) at 40 °C whilst being re-
circulated through the lumen of the membrane module (G542, Mini-
Module, Membrana, DE) using a peristaltic pump (520S, Watson
Marlow, UK). A vacuum was applied to the shell side of the membrane
and the permeate condensed at 2 °C with a glass condenser connected to
a heater chiller (GD120, Grant, UK). The concentrated urine feed and
permeate were stored at < 5 °C until use. The characteristics of the MD
feed, permeate and retentate expressed as chemical oxygen demand
(COD), ammoniacal nitrogen (NH4*-N) and conductivity is presented
in Table 2.

3. Theory
3.1. Energy density

The Gibbs free energy of mixing (A,,G) is defined as the potential
energy that is released after the spontaneous mixing of two solutions of
salt with differing concentrations:

ApmixG = AGp — (AG¢ + AGp) (€D)]

where the subscripts C and D relate to the concentrate and diluate and B
refers to the final mixed solution. If the solutions are considered to be
ideal there is no enthalpy of mixing (AH = 0) and the Gibbs free energy
of mixing can therefore be calculated from the molar entropy of each
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solution as [39]:

AmLxG = —(l’lc + nD) TASB - (—ncTASC — Nnp TASD) (2)

where nc and np are the total moles in the concentrate and diluate
respectively (mol), T the temperature (K) and AS the molar entropy of
each solution (J K~! mol™%). The molar entropy is calculated as [39]:

AS = —R Z Xx; Inx;
i

3

where R is the universal gas constant (8.314 J K 'mol™!) and x; the
mole fraction of each component within the solution (e.g. H,O, Na*,
Cl7). Due to the very large number of ions and non-charged solutes
within urine, and the infinitely variable concentration of these within
real samples the calculation of molar entropy was simplified. The
conductivity of solutions of synthetic or real urine were taken and a
relative concentration of NaCl determined from a calibration curve. The
entropy term was then calculated from this equivalent concentration of
NaCl. The effect inclusion of multiple ionic species into this term would
ultimately depend on their individual concentrations and activity
coefficients. Replacing divalent ions (such as MgSO,4) for NaCl would
decrease the overall contribution to energy generation due to the re-
latively low activity coefficients of these ions, however, other mono-
valent ions such as acetate” or K* would have minimal effect due to
possessing similar activity coefficients to Na* and Cl ™.

For the experiments conducted at a constant current in a recycle
configuration, the obtained experimental energy density (J kg ™) of the
system can be determined from [36]:

Ji Eldt
ED= ———
(m¢ + mp)

4

where E is the potential (V), I the current (A), t the time (s) and m the
starting mass of either the concentrate or diluate (kg). From this and the
Gibbs free energy of mixing calculated using Equation (1), energy re-
covery can be calculated [36]:
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Fig. 2. Schematic of the operation modes (single pass, recycle) practiced in this study.

Table 2
Real urine characteristics and membrane distillation permeate trialled in this
study.

Conductivity (mS pH NH,"-N (mg COD (mg
ecm™h) LY LY
Urine 1 x Concentrated 12.65 6.585 207 6330
Urine 2 x Concentrated 24.8 6.92 548 9630
Permeate 0.207 8.5 38.9 253
ED
Energy recovery (%) = ( ) X 100 %
Amix G 5)

3.2. Power density

For RED conducted in a single-pass configuration where the influent
concentrations to the stack are continuous and therefore the available
power output constant, the power density of the membrane stack
(PDstack, W m™2) has been calculated as [33,401:

L]stack Id

Ustack L
PDStack — Stack L Stack — o

2NA (6)

where Ugx is the voltage (V) over the membrane stack, Isq, is the
current (A) scanned, A is the cross sectional area of one membrane
(m?), N is the number of cell pairs in the stack and I; the current density
representing the current normalised to membrane area (A m~32).

For a system where the influent concentrations will be continuously

changing such as the experiments conducted in a recycle configuration
with feedwaters recirculating through the RED stack, the voltage will be
constantly changing due to a continuous change in solution ionic con-
centration, as such there will be a continual change in power.
Therefore, the average power density can be used over the discharge of
the salinity gradient of the finite volumes of solution [36]. The average
power density (PDgyg, W m™2) has been calculated as [36]:
PDavg — l ]‘ UStackIStack dt

t 0 2NA )

where t is the time taken for the discharge. The energy extraction ef-
ficiency () is determined by the ratio of the electric power harvested by
the RED stack over the potential Gibbs power (Pg) released [34]:

_ P, Stack

Ps (€)]

The theoretical Gibbs free energy that is released per second within
the RED cell from the solutions can be calculated by [34,35]:

Fs = Jo(=4p,) + (=4 9

where J,, is the total water flux (mol m~2 s 1), Ay, difference in
chemical potential of water, J; is the total salt flux (mol m~2 s~ !) and
Ay, the difference in chemical potential of the salt. The total water flux

can be calculated from the following [35,41]:
Ty = 2L, (=Ap,) + KtyM (10)

where L, is the average water permeability coefficient of both the anion
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and cation exchange membranes (kg m~2 s~ ! kg 1), t,, is the number
of water molecules transported with salt ions across the membrane
(mOlyyarer molgyy, ~ 1) and M is the molar mass of water (kg mol™1). The
difference in chemical potential of water of the two solutions is calcu-
lated with [35,41]:

Au,, = =VRT (@cCc — @pCp) an

where @ is an osmotic coefficient. The total salt flux can be calculated
using [35,41]:

_ I

b= F

+2§%Qr—%)

m

12)

where I; is the current density (A m~2), F is the Faraday constant
(96485.33Cmol ™ 1), P, is the average salt permeability coefficient for
the anion and cation exchange membranes (m?s™ 1), 8, is the average
membrane thickness of the anion and cation exchange membranes (m).
The chemical potential difference of salt in two solutions that are se-
parated by a membrane has been calculated using [35,41]:

13

where v is the number of moles of ions in 1 mol of salt, R is the ideal gas
constant (8.314JK ™ 'mol™1), T is the temperature (K), C is the con-
centration of the concentrate and diluate denoted C and D respectively
(mol L™ and vy an activity coefficient to account for the non-ideal
behaviour of the solutions. Activity coefficients have been estimated for
NaCl solutions using the Pitzer model (Section S4) [34-36,42,43].

3.3. Open circuit voltage

For RED the open circuit voltage (OCV, V) is the electrochemical
potential difference across the stack. Assuming ideal solutions of dif-
fering concentrations of a single salt either side of a perfectly selective
membrane the OCV; across that membrane can be calculated from the
Nernst equation [24]:

RT

C
ocy, = 2Ly ree
F

7 Cp

14

where z is the valency of the ion (e.g. Na* = +1), F is the Faraday
constant (96485C mol ™), v is the mean ionic activity coefficient of the
counter-ion (the ion with opposite charge to the membrane, di-
mensionless) and C the concentration of the counter-ion in either the
concentrate or diluate (mol L™1). To calculate the potential across a
RED stack this calculated OCV; can be multiplied by the number of
membranes in the stack, therefore [24]:

OCVigeat = 2N-OCV; (15)

Calculation of OCV;; however, becomes increasingly onerous when
considering complex waters consisting of many ions as each counter-ion
has a unique concentration gradient across the membrane. Multivalent
ions have been shown to decrease the stack voltage and therefore power
density [44-46]. Counter-ions are exchanged across the membrane
until an equilibrium in chemical potential is achieved where each ionic
species has an equal OCV and therefore the uphill transport of divalent
ions exchanging for a number of monovalent ions can occur [45,47,48].
Kingsbury et al. have reported the calculation of OCV; when a greater
number of counter-ions are present [24]. through estimating the OC-
Vigea from the conductivity (x) of the concentrate and diluate [24]:

0V, = 2NRE 1 X
2F

XD (16)

The permselectivity (a, %) of an ion exchange membrane represents
its ability to reject co-ions compared to that of an ideal selective ion
exchange membrane (which will completely reject co-ions). Defined as
the ratio of the measured and calculated ideal OCV it has therefore been
calculated using: [24]:
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(ocww

) % 100 %
OCVeona

17

where OCV.,,, is the experimentally determined open circuit voltage
(V), OCV_ynq the open circuit voltage calculated from the conductivity
of the concentrate and diluate, and the permselectivity (a, %) char-
acterises the average over all the cation and anion exchange mem-
branes within the stack.

4. Results and discussion
4.1. Power density from urine approaches sodium chloride

An initial benchmarking experiment using sea water/river water
(45.8 and 1.9 mS cm ~ ! respectively) was carried out, achieving a power
density of 0.57 Wm ™2, which is comparable to the literature using the
same membranes (Table S2). The NaCl control, which was char-
acterised by a conductivity around that of human urine but comprising
only NaCl (20.7 mS em™ 1), achieved a power density of 0.32Wm™ 2,
which can be expected since the conductivity is less than half that of sea
water. A multivalent ion control was subsequently evaluated, which
comprised comparable conductivity (21.3mS cm™!) but with a lower
NaCl fraction, and the inclusion of divalent salts (Table 1). This in-
troduced a small immediate reduction in OCV, permselectivity and
power density (Fig. 3). Multivalent ions have been shown to decrease
the stack voltage and therefore power density, when transported from
the diluate to the concentrate due to uphill transport [44-46]. How-
ever, comparable OCV, permselectivity and power density was
achieved with synthetic urine (20.7 mS ecm™1), despite comprising a
more complex salt matrix, which included organic salts and organic
compounds (Table 1); where in contrast, a considerable organic con-
centration has been previously associated with fouling [24,49]. No
significant change in performance was observed between experiments
when the various inorganic and organic constituents of urine were in-
cluded within the salt matrix, as post use characterisation of the
membrane stack with pure NaCl solutions (Seawater/River Water) to
determine loss in performance from membrane fouling resulted in the
same performance as before use (OCV: + 0.02V, P4: + 0.01 W). This
indicated an absence of significant fouling within the relatively short
experimental timeframes; however, longer term studies will be required
to reveal the extent to which this “absence of fouling” would last,

14 100
90
1.2 =
80
O
a1 70 _
g A
ES 60 =
:1 0.8 = 5
5 50 8
< °
> 0.6 40 é
2 8
3 0.4 30
20
0.2
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0 0
Sea water NaCl Multi-ion Synthetic  Real Real Real
(45.8)/ Control Control  Urine Urine Urine  Urine x2
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water Permeate Permeate

(1.9) 0.2)
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mode.
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particularly at higher solute concentrations. Electrodialysis studies have
shown that organic fouling behaviour is determined by specific prop-
erties of organic matter and not necessarily concentration [50-52].
Kingsbury et al. suggested there is a negative linear relationship be-
tween permselectivity and UV,s4nm, absorbing organics within the dil-
uate but little relationship between their concentration in the con-
centrate and permselectivity [24]. Therefore, it is proposed that the
limited organic concentration in the diluate limited any detrimental
impact on the attainable OCV. When comparing synthetic urine to real
urine using the same diluate solution comprising 0.004 M NaCl
(0.5mScm™1!), the power density was 20% greater for the synthetic,
which we propose is due to a higher concentrate conductivity (21 and
12mSem ™! respectively). However, the conductivity was 40% higher,
which should have resulted in a proportionately lower power density,
which we ascribe to the wider transient properties of urine [17]. Real
urine was subsequently evaluated using MD permeate as the diluate
(0.2mScm™ 1), which resulted in a 13% reduction in power density
(Fig. S3), most likely attributable to the increased solution resistance in
the diluate compartment due to a lower conductivity. Importantly, the
power densities achieved using urine were not markedly below those
nominally observed for NaCl at an equivalent conductivity suggesting
that whilst important, the complexity of the feed matrix is not the
primary factor in determining the OCV.

The impact of solution concentration was further investigated in
order to understand the dynamic conditions within MD-RED associated
with gradual ion transfer into the permeate in recycle mode (Fig. 4a),
and MD retentate concentration factors (Fig. 4b). Although comprising
the greatest concentration gradient and therefore highest electromotive
force, the initial diluate conductivity (0.026 mS cm ™ 1) demonstrated a
detrimental effect on power density (0.025 Wm~2) due to the large
internal resistance (75 Q2), attributable to high resistance of the diluate.
Power density peaked (0.3Wm~2) at a diluate conductivity of
0.5mScm™! and declined to 0.165W m™? as the rapid decline of in-
ternal resistance to 1.5Qat 3.8mScm ™! is offset by the decrease in
electromotive force [53]. Weiner et al. reported an optimal diluate
concentration of 0.01 M NaCl [21,54], whilst Veerman et al. considered
0.005 M NaCl to be optimum, both studies using 0.5 M NacCl (seawater)
as the high concentration [21,55]. Whilst the optimum conductivity
range for urine is greater than the conductivity of the real MD
permeate, this concentration can be approached as solution mixing
progresses during recycling. When increasing the concentrate con-
ductivity by a factor of eight, power density responded linearly by a
factor of 3.4, which corresponded with reduced internal resistance
(52%) and OCV increased (38%) as a result of a higher concentration
gradient (Fig. 4b). The slightly disproportionate increase in OCV illus-
trates reduced membrane permselectivity at higher retentate con-
centrations, associated with non-ideal salt transport [21], potentially
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attributed to swelling of the ion exchange membranes. In addition in-
creased organic concentration within the HC (such as urea) will have a
detrimental impact through increasing the entropy of the solution and
therefore increasing water transport and/or membrane fouling whilst
not contributing to energy generation. Zhu et al. reported that 3.6 M
NaCl was the upper concentrate boundary condition for RED stack
power production, theoretically allowing for the urine to be con-
centrated by a factor of 18 (~ 0.2 M starting concentration) through MD
before dramatically affecting power density [40], which demonstrates
that RED can undergo substantial optimisation for power density and
energy recovery in a MD-RED hybrid configuration.

Temperature increased power density and reduced overall cell re-
sistance (Fig. 4c). Increased temperature facilitates ion mobility which
reduces ion transport resistance through the membrane, ohmic re-
sistance and hydrodynamic losses (from reduced viscosity) [21,29].
From 22 °C to 50 °C, resistance decreased by 66% which coincided with
a power density increase of 70%. The direct relationship between re-
sistance and power density has also been observed by Tedesco et al.,
who reported an internal resistance decline of 30-50% with increased
power density of 40-50% when increasing temperature from 20 °C to
40 °C, using brackish water and brine [56]. Benneker et al. demon-
strated a 38% increase in power density from 20 °C to 40 °C (sea water/
river water) compared to a 32% increase from 22 °C to 40 °C in this
work, demonstrating relatability to other salt matrices [57]. Open cir-
cuit voltage was minimally affected within this temperature range
(22-50°C) indicating that permselectivity was not compromised. Da-
niilidis et al. reported that energy efficiency and permselectivity were
severely affected above 50 °C, due to ionic shortcuts and therefore 50 °C
was a suitable boundary condition for MD-RED [58]. Such a tempera-
ture is accessible by waste heat and provides the opportunity to in-
crease power output and accelerate energy recovery.

4.2. Hydrodynamic optimisation is critical for energy recovery

Hydrodynamic conditions were trialled in single pass and recycle
mode to understand the impact on power density and energy recovery.
In single pass mode, power density and OCV increased by 54% and 18%
respectively from operation between 5 and 200 mL min ' (Fig. 5), and
plateaued at 50 mLmin~'. Increasing solution flowrate improved hy-
drodynamic mixing, subsequently reducing concentration polarisation
and boundary layer thickness, therefore maintaining the maximum
concentration gradient [21,59]. As hydrodynamic and pumping losses
occur at higher flowrates, there is a compromise for net power density.
As a plateau was approached for power density with flowrates greater
than 50 mLmin ™", the cell was subsequently trialled at 50 mL min~ .
Zhu et al. identified that pumping losses were reduced further by op-
erating the diluate solution at a higher linear velocity than the
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Fig. 4. Influence of (a) diluate concentration; (b) synthetic urine concentration and (c) temperature on power density (P4), open circuit voltage (OCV) and resistance.
Single pass mode. Diluate 0.5mS cm ™!, concentrate 21 mScm ™! and temperature 22 °C, unless stated otherwise.
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Figure 5. Effect of varying feed flowrates on open circuit voltage (OCV) and

power density (P4). Synthetic urine concentrate, 0.004 M NaCl diluate, single
pass mode.

concentrate solution [33]. Results were comparable to Zhu et al. and
demonstrated similar linear velocity boundary conditions (represented
as the dotted lines on Fig. 6) at 0.4cms™ 'LC and 0.015cms™ ' HC
which equates to 10 mLmin~! LC and 2.5mLmin "' HC according to
channel thicknesses of 0.3 mm [33]. Subsequently, the power densities
for operating at 10 mL min ™! HC and 2.5 mL min ~ ! were comparable at
0.23Wm™2 (Fig. S4). The advantage of the higher diluate linear ve-
locity, can be ascribed to the reduction in fluid resistance introduced
through reducing the concentration gradient in the boundary layer that
develops in the diluate channel. A reduction in concentrate channel
flowrate can therefore reduce pumping energy.

4.3. Maximising energy recovery from a finite volume in recycle mode

Within ISO standard 30500 on ‘non-sewered sanitation’, a single use
system is engineered to withstand an average of ten users per day,
which based on the median daily production of human urine of 1.4L
cap ! day !, provides a total volume of around 15Ld~?! required for
treatment [60]. This is in contrast to the traditional electrolytic solu-
tions ordinarily associated for energy generation within RED such as sea
water and river water as these have effectively infinite available vo-
lumes. Due to the limited volume, and to elicit maximum energy re-
covery from the available MD urine concentrate, a closed loop config-
uration is proposed (recycle mode). The system can therefore be
described similar to a battery with the state of charge (SOC) described
as the difference in concentration between the concentrate and diluate.
In recycle mode, a contrasting outcome was evidenced between high
and low flowrates (Fig. 7). Due to the evolving concentration gradient
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and increasing LC ohmic resistance [33], low flowrates (2.5 mL min !

concentrate/10 mL min~! diluate) provided an average power density
of 0.043Wm~2 for 0.1h, compared to 0.048 Wm~™2 for 17h
(140 mLmin ! both compartments). Therefore, higher flowrates were
required to accommodate for the dynamic conditions experienced in
recycle mode, particularly the increasing diluate concentration. Ac-
cording to the theoretical values calculated from the Gibbs power,
higher current densities achieve greater power densities as the con-
centrate and diluate approach equilibrium (Fig. 8a). When operating
current draws of 7.5, 5.0 and 2.5 Am ™2, initial power densities (at
0.175 A mol kg~ ') were 0.38, 0.26 and 0.14 W m 2 respectively. For
comparison, respective experimentally obtained power densities were
0.18,0.20 and 0.13 Wm 2 (Fig. 8b) and reached full extraction at 0.08,
0.05 and 0.05molkg ™' (A molality). The energy extraction efficiency
(n) illustrates how closely experimentally obtained power represents
the theoretically available power at varying current draws (Fig. 8c). In
this study, the lowest current density (2.5 Am™2) provided the overall
greatest n, particularly until reaching a molality difference of
0.1 molkg ' where 1 remained above 60%.

In recycle mode, total power dissipation is affected by osmotic
transport, non-ideal salt transport and internal resistance. Osmotic
transport was insignificant, as the maximum concentration demon-
strated was 0.2 M, providing an osmotic pressure of ~9.9 bar. Previous
literature has reported that higher concentrate concentrations facilitate
water transport, particularly higher than 1.5M (urine concentration
factor of 7.5; ~70 bar osmotic pressure) [35,36], where non-ideal salt
transport and internal resistance provide little contribution. Egmond
et al. [34] demonstrated that increased temperature also exaggerates
the rate of water transport, predominantly at lower current draws
which require a greater recycle time to achieve full discharge. Another
study by Egmond et al. [35] identified that non-ideal salt transport
energy dissipation is also linked to higher concentration gradients, due
to the facilitation of co-ion diffusion. As osmotic transport and non-
ideal salt transport did not play a role in the reduction of 1 in this study,
dissipation was primarily caused by internal resistance which was
prevalent at higher current draws following Ohm's law (Fig. 8c).
Therefore, when considering operation at higher temperatures or with
greater retentate concentration factors required to maximise power
output, higher current draws should be trialled, which can increase the
rate of electro-osmosis to negate the rate of water transport, whilst
identifying a compromise with internal resistance at higher current
draws [35].

Fig. 9 illustrates the energy recovered (47%) using the most efficient
energy extraction current draw (2.5 Am~2) against the theoretical
Gibbs free energy, under the conditions trialled (Am = 0.175 mol kg~ ?,
22 °C), which is consistent with other similar studies obtaining between
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Fig. 6. Power density as a function of linear velocity (a) when LC flowrate is variable and HC flowrate is maintained at 50 mL min~! and (b) when HC flowrate is
variable and LC flowrate is maintained at 50 mL min~ . Synthetic urine concentrate, 0.004 M NaCl diluate, single pass mode.
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45 and 60% when equal volumes of concentrate and diluate are utilised
[36]. Vermaas et al. suggest that higher energy recoveries can be ob-
tained when the diluate volume is relatively larger than the concentrate
volume if osmotic transport occurs [61]. For urine MD-RED, this can be
straightforwardly achieved by greater retentate concentration factors to
increase permeate volume.

5. Conclusions

This study has provided the first successful demonstration of hybrid
MD-RED using urine, to create a synergistic relationship in which high
quality water can be produced using waste heat, and the subsequent
salinity gradient generated in membrane distillation utilised for the
production of electrical energy. The urine salt matrix combined with
the high quality MD permeate (COD 253mgL~!, conductivity
0.21mScm™ 1Y) provided comparable power densities (0.2 W m 3toa
simple NaCl matrix 0.32Wm~2) despite the complexity of the salt
matrix, organic salts and organic constituents. Around 47% of the Gibbs
free energy available was recoverable, which can be used in low power
fluidic devices to permit overall water recovery from MD. For example,
the mixing energy from IL urine and 1L permeate is sufficient to

operate an axial fan for sweep gas, or a micro-pump for the provision of
liquid transport at head pressures and flow rates up to 500 mbar and
350 mL min~! respectively. An increase in system surface area and cell
pair number will scale the device to increase both current densities and
voltage achievable to power larger scale devices [62]. Concentrating
the retentate can improve power density, as can operating the feedside
of RED at temperatures comparable to those employed in MD, which
evidences system compatibility. Whilst not observed within the
boundary conditions evaluated within the present study, limiting phe-
nomena such as non-ideal salt and water transport [34-36] will define
the upper limit to operation without identifying membrane materials
which possess preferential permselectivity, resistance and water per-
meability criteria. However, discharging energy over shorter timescales
will minimise parasitic and hydrodynamic losses associated with sus-
tained operation, but would favour peak power in short cycles rather
than sustained energy delivery which has implications for process op-
eration and energy storage. Up to 80% of the available energy is ex-
tractable when the concentration difference between the two solutions
is halfway towards equilibrium [34] which implies that energy recovery
can be optimised with limited effect on permeate quality. While further
optimisation, including technology scale-up and long term field trials
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current draw. Synthetic urine concentrate, 0.004 M NaCl diluate, recycle mode.

are warranted, the partnership between MD and RED has the potential
to provide water for safe discharge or reuse within small scale decen-
tralised sanitation systems, using waste heat as the primary energy
source, whilst providing sufficient electrical energy to support the
limited power requirements for off-grid operation, thus overcoming the
present technical constraints of the low income country setting.
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