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Modulation of gamma oscillations recorded from the human motor cortex and basal
ganglia appears to play a key role in movement execution. However, there are still
major questions to be answered about the specific role of cortical gamma activity
in both the planning and execution of movement features such as the scaling of
peak velocity and movement time. In this study, we characterized movement-related
gamma oscillatory dynamics and its relationship with kinematic parameters based
on 256-channels EEG recordings in 64 healthy subjects while performing fast and
uncorrected reaching movements to targets located at three distances. In keeping with
previous studies, we found that movement-related gamma synchronization occurred
during movement execution. As a new finding, we showed that gamma synchronization
occurred also before movement onset, with planning and execution phases involving
different gamma peak frequencies and topographies. Importantly, the amplitude of
gamma synchronization in both planning and execution increased with target distance
and predicted peak velocity and movement time. Additional analysis of phase coherence
revealed a gamma-coordinated long-range network involving occipital, frontal and
central regions during movement execution that was positively related to kinematic
features. This is the first evidence in humans supporting the notion that gamma
synchronization amplitude and phase coherence pattern can reliably predict peak
velocity amplitude and movement time. Therefore, these findings suggest that cortical
gamma oscillations have a crucial role for the selection, implementation and control of
the appropriate kinematic parameters of goal-directed reaching movements.

Keywords: motor control, EEG, gamma oscilations, event-related synchronization, phase coherence, reaching
movement, kinematics, connectivity

INTRODUCTION

Voluntary movements are accompanied by modulation of oscillatory activity of both the beta
(13.5–25 Hz) and gamma frequency ranges (25.5–90 Hz) that have been consistently observed with
EEG, MEG and ECoG over the sensorimotor cortex and with electrode recordings in basal ganglia
structures (Kilavik et al., 2013; Nowak et al., 2018).
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Movement-related beta oscillatory event-related
desynchronization (ERD) and synchronization (ERS) have
been characterized to a great extent in both healthy and clinical
populations (Kilavik et al., 2013; Little and Brown, 2014; Cao and
Hu, 2016; Barone and Rossiter, 2021). On the other hand, the
current knowledge on the functional significance of gamma ERS
is more limited and mostly stems from a small number of studies,
some with ECoG and intracranial recording in small samples of
patients with various neurological problems (Crone et al., 1998;
Pfurtscheller et al., 2003; Androulidakis et al., 2007; Miller et al.,
2007; Ball et al., 2008; Brücke et al., 2008, 2012; Cheyne et al.,
2008; Tan et al., 2013a,b, 2016; Flint et al., 2014; Miocinovic et al.,
2015; Rowland et al., 2015; Gunduz et al., 2016; Ryun et al., 2017;
Lofredi et al., 2018; Jiang et al., 2020), and a very few others with
EEG or MEG in healthy subjects (Muthukumaraswamy, 2010;
Gaetz et al., 2013; Amo et al., 2016).

For instance, the results of some ECoG studies of gamma
ERS in the human primary somatosensory cortex (Miller et al.,
2007; Avanzini et al., 2016; Ryun et al., 2017) have suggested an
association between gamma oscillations and the proprioceptive
feedback ensuing movement and sensorimotor input. However,
this hypothesis has been challenged by reports showing that
passive movements do not elicit gamma synchronization
(Muthukumaraswamy, 2010; Brücke et al., 2012) and that
mirror illusion in absence of proprioceptive feedback prompts
movement-related gamma ERS (Butorina et al., 2014). Together,
these results led into considering movement-related gamma
ERS as directly functional to the active control of the ongoing
movement. Indeed, differently from the beta ERD/ERS dynamics,
gamma activity seems to display a more direct association with
some characteristics of the motor output. In fact, sensorimotor
and subcortical gamma ERS is, in general, time-locked to
movement onset (Crone et al., 1998; Ball et al., 2008; Cheyne
et al., 2008; Muthukumaraswamy, 2010; Brücke et al., 2012;
Joundi et al., 2012; Cheyne and Ferrari, 2013; Gunduz et al.,
2016; Lofredi et al., 2018). Also, the amplitude of gamma ERS
during movement is variably linked to some of the movement
features. In particular, links between gamma ERS amplitude and
the amount of force generated have been described by EcoG
studies of the motor cortex of epileptic patients (Flint et al., 2014;
Jiang et al., 2020), by recordings in the subthalamic nucleus of
patients with Parkinson’s disease (Tan et al., 2013a, 2016) and
by a MEG study over the contralateral sensorimotor region of
eight normal subjects (Muthukumaraswamy, 2010). Also, some
relationships between gamma power and movement amplitude
and velocity have been found with recordings in the globus
pallidus of dystonic patients (Brücke et al., 2012) and in the
subthalamic nucleus of patients with Parkinson’s disease (Lofredi
et al., 2018), respectively.

The notion of a prokinetic nature of gamma oscillations is
also supported by correlations of abnormal gamma oscillations
with motor symptoms of Parkinson’s disease, essential tremor
and dystonia (Rowland et al., 2015; Swann et al., 2016; Nowak
et al., 2018; Guerra et al., 2020, 2021). Although gamma ERS
is prominent during movement execution and linked to motor
symptoms, it worth noting that a few studies reported increased
gamma activity even before movement onset (Brücke et al., 2008;
Gaetz et al., 2013; Gunduz et al., 2016; Jiang et al., 2020), thus

suggesting that gamma oscillations might represent a signature
of processes linked to goal-directed movement representation,
planning and execution.

In recent studies, we have extensively used a reaching task that
allows for the parameterization of peak velocity and acceleration.
In fact, in that task, the fast and uncorrected movements to
different target distances result from a more prominent scaling
of peak velocity rather than of movement duration (Tatti et al.,
2019, 2020, 2021). Using that task, we have demonstrated
that the movement-related beta ERD-ERS dynamics does not
depend on target distance, movement length or peak velocity
(Tatti et al., 2019). In the present study, we parametrically
explored the relationship between movement distance and peak
velocity on movement-related gamma ERS in a large group of
healthy subjects. Specifically, we wished to investigate whether
the amplitude of movement-related gamma ERS scales with
movement distance and peak velocity. We thus recorded high-
density EEG activity in 64 healthy young subjects performing
reaching movements toward targets at three different distances
and characterized changes of gamma oscillatory amplitude
and phase-coherence activity. According to the scanty and
fragmentary evidence on the pro-kinetic nature of movement-
related gamma ERS, we expected that, compared to shorter
movements, longer movements would be associated not only
with higher peak velocities but also with greater gamma ERS
(Muthukumaraswamy, 2010; Brücke et al., 2012; Lofredi et al.,
2018). We also verified whether the scaling of gamma ERS would
occur to the same extent and topography during movement
planning and execution. Further, we tested whether the amplitude
and phase-synchronization of gamma oscillations could reliably
predict such kinematic parameters.

MATERIALS AND METHODS

Subjects and Experimental Design
We enrolled 64 right-handed healthy subjects (mean
23.9 ± 4.5 years, 39 women) with normal or corrected
vision, and without known disorders of the nervous system.
This investigation was approved by the CUNY University
Integrated Institutional Review Board (UI-IRB) and performed
in accordance with the ethical principles of the Declaration
of Helsinki and its subsequent amendments. Each participant
signed an IRB-approved informed consent form before
completing the experiment.

High-density EEG was recorded with the 256-channel
HydroCel Geodesic Sensor Net (Electrical Geodesics Inc.,
Eugene, OR) while the participants performed planar reaching
movements toward target placed at three distances (mov test).

Participants performed 96 out-and-back reaching movements
with their right dominant hand by moving a cursor on a digitizing
tablet to targets appearing on a computer monitor. The targets
were circles randomly presented every 3 s at three distances (4, 7,
and 10 cm; radius: 0.5, 1, 1.25 cm, respectively) in eight directions
(45◦ separation) (Figure 1A). The central starting point and
the cursor position were always visible. Instructions were: to
move the cursor as soon as possible without corrections, but
only after the target presentation, with movements as fast and as
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FIGURE 1 | Mov test depiction, kinematic indexes and performance. (A) Top. mov test. One of 24 targets appeared in unpredictable order every 3 s. Bottom.
Measures of movement characteristics. (B) Mean and standard error for each target distance (Black = short, Gray = medium, White = Long) for the kinematic
parameters. The horizontal lines and asterisk (∗) significant pairwise comparisons after Bonferroni correction (p < 0.05).

accurate as possible, with overlapping strokes with fast reversals
in the target circle.

Kinematic Data Recording and Analyses
The (x,y) coordinates of each trajectory were recorded with
a custom-designed software and analyzed using an ad hoc
MATLAB-based pipeline. First, we filtered the coordinates with a
Butterworth filter and then computed the first, second, and third
derivative of the trajectory to obtain velocity, acceleration, and
jerk for all the movements.

As detailed in previous publications (Ghilardi et al., 2000;
Perfetti et al., 2011; Nelson et al., 2017), we computed several
measures for each movement. In this study, we focused on:
reaction time (i.e., the time from target appearance to movement
onset), movement time (i.e., the duration of the outgoing
movement), total movement time (i.e., the duration of the out
and back movement), amplitude of peak velocity of the out-going
segment (Figure 1A). Movements with any of such measures
outside two standard deviations and those rejected from EEG
preprocessing were excluded from EEG analyses.

Following Kolmogorov-Smirnov and Shapiro-Wilk normality
tests on standardized residuals of each kinematic parameter, two
participants were excluded from the analyses. Therefore, analyses
of kinematic data were performed on the movements of 62
participants. Repeated measures ANOVA were run on reaction
time, movement time, peak velocity amplitude and timing,
and movement extent, with target distance (short, medium
and long) as within-subjects factor. Violations of sphericity
assumption were Greenhouse-Geisser-corrected and significant
main effects (p < 0.05) were followed by Bonferroni-corrected
pairwise comparisons. Further, we computed linear mixed-effect
regression models using the MATLAB function fitlme to unveil
the specific contribution of peak velocity and movement time on

movement extent. Linear mixed-effects regression analysis is a
versatile extension of simple linear regression models that allows
the estimate of both fixed and random effects, thus controlling
some expected variation on the independent variable (e.g., inter-
subject variability). Importantly, as mixed-effect models fit an
intercept and/or a slope for each random-effect, they address
the problem of the non-independency of the data (i.e., the
inclusion of multiple trials per subject), while respecting between-
subject variability.

For each subject, we included all the available trials and set
peak velocity and movement time as fixed-effect factors; the 62
participants were instead included as a random-effect factor. To
best account for between-subjects variability, we tested the fit of
a model including either an individual intercept or intercept and
slope for each participant. To ascertain whether and which fitted
model provided the best fit to the data, the following metrics
were assessed: adjusted R2, Bayesian Information Criterion (BIC,
an index used in Bayesian statistics to select among two or
more models), and the Theoretical Likelihood Ratio Test (TLRT),
which is commonly used to compare the goodness of fit of two
statistical models. Specifically, the TLRT compared the model
with random intercept and slope and the one with random
intercept by computing their likelihood ratio test under the
Chi-square distribution.

Importantly, even if visual inspection of residual plots did
not reveal heteroscedasticity and deviations from normality, and
Kolmogorov-Smirnov and Shapiro-Wilk tests on the residuals
were not significant, all the included values were z-transformed
to obtain standardized estimates from the regression models.

EEG Recording and Analyses
High-density (HD) EEG data were acquired using a 256-channel
HydroCel Geodesic Sensor Net (Electrical Geodesic Inc.) with a
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Net Amp 300 amplifier (250 Hz sampling rate, online reference
electrode: Cz) and Net Station software (version 5.0). Sampling
frequency was 250 Hz and channel impedances were maintained
below 50 k� throughout the recording to preserve a good signal-
to-noise ratio.

All recorded data were preprocessed using the public Matlab
toolbox EEGLAB version 13.6.5b (v.2016b) (Delorme and
Makeig, 2004). The continuous signal was first filtered using
a Finite Impulse Response Filter (FIR) between 1 and 80 Hz
and Notch filtered at 60 Hz (59–61 Hz). Then, the signal was
divided in 4-s epochs centered on target onset (–1 to 3 s) and
visually inspected to remove sporadic artifacts and channels with
poor signal quality.

Independent Component Analysis (ICA) with Principal
Component Analysis (PCA)-based dimension reduction (max
108 components) was run to delete stereotypical artifacts, such
as eye blinks, muscular activity and heartbeat. After a visual
inspection of the power spectral density, topographical maps
and time course of each estimated component, we retained
an average of 16.05 ± 6.27 components per subject. Channels
previously removed due to bad signal quality were reconstructed
using spherical spline interpolation, whereas those located on the
cheeks and neck were removed. Re-reference to overall signal
average was finally applied on the resulting 180 channels.

All the subsequent analyses were carried out using custom
data analysis scripts with the MATLAB-based Fieldtrip Toolbox
(Oostenveld et al., 2011).

Importantly, to avoid ambiguous effects from improperly
executed movements, after the preprocessing, we discarded
epochs representing movements whose kinematic parameters
exceeded two SD.

After trial rejection, the average number of trials per subject
was 76.2± 13.2 SD, with a similar number of trials for each target
distance (short: 25.6± 4.6, medium: 26.2± 5.9, long: 24.4± 5.2).
Data were then time-locked to movement onset (–1 to 2.5 s).
Time-frequency representations (1–80 Hz) were computed by
convolving the signal using Complex Morlet Wavelets at linearly
spaced frequencies (1–80 Hz, 0.5 Hz bins steps) and a constant
time-window (–1 to 2.5 s). The number of wavelet cycles and
length were increased as a function of frequency (cycles 3–10,
3.14–0.11 s). We applied this approach to obtain a good balance
between frequency and temporal resolution (i.e., lower wavelet
width will increase temporal resolution and reduce frequency
resolution and vice versa).

Each trial was baseline corrected by subtracting and dividing
the average signal of the entire time-window of all trials. In
keeping with our previous works (Tatti et al., 2019, 2020, 2021) on
movement-related beta oscillations (13.5–25 Hz), here we defined
gamma oscillatory activity as ranging from 25.5 to 80 Hz.

Movement-Related Gamma Oscillatory Dynamics
EEG spectral and time-frequency analyses were run using
the non-parametric cluster-based permutation procedure
implemented in Fieldtrip (Maris and Oostenveld, 2007). Briefly,
t or F statistics was first computed for each data point using a
critical alpha of 0.001 and a minimum number of four significant
neighboring electrodes to form a cluster. Cluster-level statistics

was then run using the sum of the t/F values within each cluster
of electrodes; the largest statistic value from the cluster-level
analysis was then compared with a distribution of maximum
cluster values obtained with 10,000 permutations (Monte Carlo
method, alpha = 0.0005).

In order to characterize gamma oscillatory activity (25.5–
80 Hz) during the planning and execution phases of the reaching
movements, we first ran non-parametric permutation statistics
and compared the broad gamma band time-course activity with
the average spectral power (paired t-statistics, time window: -500
to 2,400 ms in 24 ms-time bins). Significant consecutive time-
windows were then used to run second-level analyses against
the average spectral power to summarize the topography of
different sub-bands of gamma (gamma: 25.5–80 Hz, low gamma:
25.5–40 Hz, medium gamma: 40.5–55 Hz, high gamma: 55.5–
80 Hz). With the resulting clusters of electrodes (ROIs), time-
windows and gamma frequency bands, we then explored whether
target distance affected gamma amplitude. Thus, cluster-based
permutation statistics were run with target-distance as within-
subjects factor (repeated-measure ANOVA, planning time-
window: –152 to –52 ms; movement execution time-window:
52–500 ms), along with the correspondent permutation-based
post-hoc tests.

Movement-Related Gamma Peak Frequency Analysis
To investigate whether the different phases of the reaching
movements would be also characterized by spectral differences
within the gamma range, we extracted for each subject
the peak frequency value during the two significant time
windows (planning and execution, see above) and a
post-movement control time-window (1,500–2,000 ms
after movement onset), when movements were certainly
completed. Due to the distribution of the independent variable,
normality assumption could not be satisfied (Shapiro-Wilk
test on both data and residuals resulted in p < 0.05).
Therefore, non-parametric related-samples Friedman’s test
was run to check for peak frequency differences in the
three time-windows. Post-hoc pairwise comparisons were
obtained with Dunn’s test and Bonferroni correction for
multiple-comparisons (alpha = 0.05).

EEG Functional Connectivity Analysis
To characterize gamma functional connectivity during
movement planning, execution and post-movement control
window, we computed the squared weighted phase lag index
(wPLI), a measure of phase-synchronization implemented in
Fieldtrip as the debiased wPLI (Vinck et al., 2011).

The wPLI derives from Stam’s Phase Lag Index (Stam
et al., 2007), as it introduces a phase-difference weighting
normalization with the imaginary component of the cross-
spectrum (Nolte et al., 2004), thus improving robustness to noise.
Also, the wPLI has the advantage of not being spuriously affected
by the volume conduction of independent sources to different
sensors or by a common reference, and shows increased statistical
power to highlight true changes in phase-synchronization. The
debiased WPLI estimator is obtained by computing (1) the
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spectrum and cross-spectrum of a signal, (2) weighting the cross-
spectrum with the average imaginary component of the cross-
spectrum. Thus, the debiased WPLI can summarized with the
following formula, as detailed in Vinck et al. (2011):

8 =
E {I {X}}

E {|I {X} |}
=
|E{|I {X}| sgn ({I{X})}

E{ |I {X}|}

where E denotes the expected value operator and I{X} the
imaginary component of the cross-spectrum.

Therefore, we first computed the power and cross-spectrum
during the planning and execution time-windows using Complex
Morlet wavelets (0.5 Hz bins, width = 7) for two gamma
frequency-bands (all gamma: 25.5–80 Hz, high-gamma: 55.5–
80 Hz) and then estimated the debiased wPLI across all channel-
pairs. The result of this process was a weighted network (for
each time-window and each frequency band) represented as
a 180 x 180 adjacency matrix C = [cij], where each node
is represented by a given electrode and each edge as the
node-wise functional connectivity estimated by the wPLI. The
functional connectivity matrices (Supplementary Figure 1) were
exported to be statistically analyzed with Network Based Statistics
(Zalesky et al., 2010).

Movement-Related Gamma Functional Connectivity
The Network Based Statistics (NBS) method was applied to detect
eventual differences among the movement, planning and post-
movement windows in their wPLI-based functional connectivity
subnetworks [i.e., subsets of nodes and their connecting edge
of a network that are separable from the remaining nodes and
edges (Schirmer et al., 2019)]. This approach permits multiple
hypothesis testing at the level of interconnected subnetworks,
while controlling the family-wise error when performing analyses
associated with a particular effect or contrast of interest
(Zalesky et al., 2010).

NBS performs a mass univariate testing in order to identify
the connections exceeding a test statistical threshold belonging
to a given connected component. Then, a corrected p-value is
computed for each component using the null distribution of
maximal connected component size, which is empirically derived
via a nonparametric permutation method. Here, a test with
5,000 random permutations was performed to compute statistical
significance for the identified network component. Finally, the
hypothesis test is performed for the empirically determined
components by comparing their extent with the proportion of
permutations yielding a component with equal or greater size,
correcting for the family-wise error rate at cluster level with
p < 0.05. Importantly, here we defined the subnetworks in terms
of connected graph components, including nodes and edges,
associated with statistical effects above a predefined threshold
t-score of 4.8 (Zalesky et al., 2010).

Connectivity matrices of all subjects for the planning,
execution and post-movement control windows were entered
into one-way repeated measures ANOVA within the NBS
approach. Post-hoc paired t-tests were performed to assess
between-group differences.

The results of the NBS procedure are presented as three-
dimensional graph visualizations, which represented p < 0.05

connection pairs surviving multiple comparison correction. For
each subject, we also computed the average of weights, in terms
of wPLI values, of the edges belonging to each subnetwork
identified by NBS. The resulting functional connectivity values
were then used to fit linear regression models to unveil a possible
relation between gamma phase-synchronization in the identified
subnetwork and kinematic performance (see below).

Linear Regression Model on EEG Data
Finally, in order to unveil a possible relationship between
the observed changes in gamma oscillatory activity and the
peak velocity amplitude and movement time, we fitted linear
regression models to predict the kinematic parameters based
on the gamma power during the planning and execution time-
windows and the network connectivity values. Specifically, for
the regression models with gamma amplitude as the predictor,
we entered the average gamma power for the significant
time-window (planning and execution), gamma sub-band and
electrodes as independent variable and peak velocity and
movement time as dependent variables. Furthermore, to establish
whether the average gamma power during the significant
movement could be a good predictor, we also extracted the
amplitude of gamma oscillations at the timing of the peak velocity
for both the out and back movements. Specifically, for each trial,
we computed the timing of the peak velocity for both the out-
going and return movements and extracted the corresponding
broad and high-gamma amplitude in the electrodes that showed
significant gamma ERS in the movement window (52–500 ms).
These values were averaged across trials and used as linear
predictors of the peak velocity amplitude. For these analyses, we
had to exclude additional 3 participants due to technical problems
in their raw kinematic data files (N = 59).

For the connectivity regression analyses, we extracted the
average debiased wPLI value for the significant subnetwork
differences between planning and execution and used to predict
peak velocity and movement time.

As reported for the kinematic analysis, in order to satisfy
normality assumption, the data were z-transformed before model
fitting. Further, two subjects were removed from all regression
analyses as their kinematic average values were more than 2 SD
lower than the mean performance.

RESULTS

Movement Characteristics Depend on
Target Distance
Sixty-four subjects performed 96 fast and uncorrected out and
back movements from a central starting point to one of 24 targets
(three distances and eight directions, Figure 1A) appearing
in a random order. In general, the resulting movements were
straight and their temporal velocity profiles were on average
bell-shaped and appropriately scaled to the target distance, as
displayed in Figure 1A and in previous publications (Tatti
et al., 2019, 2020, 2021). Repeated measure ANOVAs showed
that movement extent, peak velocity amplitude and timing,
as well as movement duration increased with target distance
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(Supplementary Table 1 and Figure 1B). Post-hoc tests revealed
significant differences between the three target extents for all
these measures. Target extent had a significant effect also on
reaction time (Supplementary Table 1), with shorter reaction
time for more distant targets. However, post-hoc analyses
showed significant differences only between short targets and the
other two targets.

We then performed linear mixed-effect regression modeling
to characterize the contribution of peak velocity amplitude and
movement time to movement extent.

Thus, we first assessed: adjusted R2, Bayesian Information
Criterion (BIC, an index used in Bayesian statistics to select
among two or more models), and the Theoretical Likelihood
Ratio Test (TLRT, commonly used to compare the goodness of fit
of two statistical models) (see section “Materials and Methods”).
Following the indication provided by these indices, the model
with random intercept and slope showed the best fitting of the
data (Supplementary Table 2). The results showed that both peak
velocity and movement time were strong predictors of movement
extent variability: the model with random intercept and slope for
each participant explained approximately 95% of the movement
extent variance (R2 adjusted = 0.95, Supplementary Table 2).
The major contributor to movement extent variability was the
amplitude of peak velocity [standardized fixed slope: 1.06; CI:
1.01–1.10; t(1, 4,743) = 46.83; p < 0.0001], while the effect of
movement time was less prominent [standardized fixed slope:
0.70; CI: 0.65–0.75; t(1,4,743) = 30.08; p < 0.0001].

Altogether, these findings show that movement extent resulted
mainly from the scaling of the force to the appropriate target
distance with a lesser contribution of movement duration.

Movement-Related Gamma Oscillatory
Dynamics
We next investigated the progression and the topographical
distribution of gamma oscillatory activity (25.5–80 Hz) during
movement planning and execution. We thus compared gamma
oscillatory activity of each 24 ms-time bins to the average spectral
power of the entire epoch (from 500 ms before the movement
onset to 2,400 ms after) with non-parametric Monte Carlo
permutation testing. This analysis revealed significant electrode
clusters in two time-windows: one from 152 to 52 ms before
movement onset, that is, during the reaction time period (Cluster
t = 907.27, p = 0.0003, CI: 0.0004) and the other from 52 to 500 ms
after moment onset, that is, during the movement execution
time (Cluster t = 13.120, CI:19.598, p = 0.0001). As shown in
Figure 2, before movement onset, gamma oscillatory activity
increased in a cluster of electrodes over the centro-parietal region;
during movement execution, the increase in gamma activity at
first, involved electrodes over the occipital region, then spread
to most of the scalp electrodes and ultimately returned to a
centro-parietal cluster.

We then averaged the topography of gamma activity in the
time bins of the reaction time period (from 152 to 52 ms
before movement) and that in the time bins from 52 to 500 ms
after moment onset, during the movement execution time.
Cluster-based permutation analyses on four gamma bands (broad

gamma: 25.5–80 Hz, low gamma: 25.5–40 Hz, medium gamma:
40.5–55 Hz, high gamma: 55.5–80 Hz) revealed for both time
windows significant cluster of electrodes in the broad, medium
and high gamma bands (Figure 3). In all these gamma bands,
the planning window displayed greater synchronization over a
centro-parietal region, whereas movement execution showed a
widespread gamma synchronicity over all scalp channels, with
maximum amplitude increase over the occipital region. No
significant clusters were found in the low gamma range.

These results prompt some considerations about the role
of gamma activity in both movement planning and execution.
In line with a few reports (Gaetz et al., 2013; Gunduz et al.,
2016), the occurrence of gamma synchronization over a centro-
parietal region during movement planning suggests that gamma
oscillations may reflect the generation of a motor output. In
addition to the creation of a motor plan, gamma ERS might
also be involved in the control of the actual movement, as
suggested by the presence of gamma ERS increase during the
motor act, thus indicating the possible engagement of online
feedback control processes.

Movement-Related Gamma
Event-Related Synchronization Shifts
Toward Higher Frequencies During
Movement Execution
We then determined whether the observed gamma ERS during
planning and execution differed in their peak frequency ranges
(see section “Materials and Methods”). We used non-parametric
related-samples Friedman’s ANOVA to test possible differences
of gamma ERS frequency between the planning, execution
and post-movement time windows. As displayed in Figure 4,
we found that gamma ERS peaked at different frequency
ranges [χ2(2) = 93.23, p < 0.0001]. During the planning
window, gamma ERS was maximally expressed in the medium
gamma range (53.73 Hz ± 10.04, mean ± SD) whereas during
movement execution the peak shifted toward higher frequencies
(65.8 Hz ± 10.72). Importantly, after movement completion,
cortical activity synchronized back to the beta/low gamma
frequency range (28.06 Hz ± 11.47; Dunn-Bonferroni post-
hoc tests, Planning vs. Movement: z = –0.594, p = 0.002;
Post-movement vs. Planning: z = 1.68 p < 0.0001; Post-
movement vs. Movement: z = 1.086 p < 0.0001). These findings
demonstrate that gamma ERS occurring during movement
planning and execution is maximally expressed in two distinctive
frequency ranges, thus suggesting possible different functional
properties of gamma ERS.

Movement Execution and
Post-movement Windows Are
Characterized by Greater Long-Range
Connectivity Than Planning
To further explore gamma activity differences between planning,
execution and post-movement windows, we compared their
degree of gamma phase coupling across scalp channels. Phase-
synchronization in the broad gamma and high gamma frequency
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FIGURE 2 | Monte Carlo cluster-based permutation t-statistic of the difference between gamma oscillatory activity and the average spectral power during movement
planning and execution. Dots indicate significant clusters of electrodes (p ≤ 0.0005). The color bar represents the magnitude of the t values.

FIGURE 3 | Maps of the cluster-corrected permutation-based t-values comparing gamma oscillatory activity with the average spectral power during the planning
(–152 to –52 ms) and execution time-windows (52–500 ms). Significant electrodes are reported as white dots (p < 0.0005). The color bar represents the magnitude
of the t-values.
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FIGURE 4 | (A) EEG time-frequency plots of the gamma band range (25.5–80 Hz) during movement separately averaged for target displayed at short (4 cm),
medium (7 cm), and long (10 cm) distances. (B) Time course of gamma power (black and velocity profile averaged across electrodes and subjects for each target
distance. Shaded area in the power and velocity profiles represents the standard error. The color bar represents amplitude changes in the time-frequency signal
normalized by the average spectral power.

range was measured with the weighted phase lag index
(wPLI), a functional connectivity metric that minimizes the
impact of volume conduction effects (see section “Materials
and Methods”). The wPLI was computed across all channel-
pairs to provide a whole-brain mapping of functional EEG
networks and to ascertain possible differences of connectivity
between the planning, execution and post-movement windows.
In the broad gamma frequency, rmANOVA revealed significant
functional connectivity differences between planning, execution
and post-movement windows (p < 0.001, corrected for multiple
comparison) in almost the whole brain. Post-hoc network-based
statistics (NBS) analyses revealed a subnetwork of increased
functional connectivity during movement execution compared
to movement planning in the broad gamma frequency. The
subnetwork consisted of 244 edges connecting 92 different
electrodes (p < 0.001, corrected for multiple comparison).
Interestingly, apart from a few pathways linking frontal to
occipital regions, these patterns of increased connectivity mainly
involved a left fronto-temporal-parietal network (Figure 5A).
No significant subnetworks of increased connectivity during
movement planning were detected compared to the execution
window. Post-hoc analysis also revealed a subnetwork of
increased functional connectivity during the post-movement
window compared to movement planning in the broad
gamma frequency band. The network component consisted
of 232 edges connecting 88 different electrodes (p < 0.001,
corrected for multiple comparison). These patterns of increased
connectivity mainly involved bilateral fronto-temporal and
fronto-central electrodes (Figure 6A). No significant connectivity
differences were found between movement execution and post-
movement windows.

Since movement-related gamma ERS shifted toward a higher
frequency range during movement execution, we thus looked
for possible subnetwork differences in the high-gamma range
(55.5–80 Hz). In this frequency range, rm-ANOVA revealed

significant widespread functional connectivity differences
between planning, execution, and post-movement windows
(p < 0.001, corrected for multiple comparison). Post-hoc NBS
analysis highlighted a subnetwork of increased connectivity
during movement execution compared to planning (p < 0.001,
corrected for multiple comparison) that consisted of 571 edges
connecting 122 different electrodes. In addition to patterns
of connectivity mainly involving the fronto-temporal-parietal
areas bilaterally, this subnetwork also involved fronto-occipital
connections (Figure 5B), in line with our finding of greater
high-gamma power increase over the occipital region during
movement execution. No significant subnetworks of increased
connectivity during the planning window were detected
compared to movement execution. Post-hoc analysis highlighted
a subnetwork of increased functional connectivity during the
post-movement window compared to movement planning also
in the high-gamma range. The network component consisted
of 122 edges connecting 50 different electrodes (p < 0.001,
corrected for multiple comparison), that mainly involved the
right fronto-temporal network (Figure 6B). No significant
connectivity differences were found between the movement
execution and post-movement windows.

Movement-Related Gamma
Event-Related Synchronization Is
Modulated by Target Distance
We then investigated possible relationships between gamma
activity indices and movement features. We first ascertained
whether target distance would affect the amplitude of gamma
ERS by comparing gamma oscillatory activity for short, medium
and long target distances with cluster-based permutation
analyses based on the significant two temporal windows, two
electrode clusters and gamma bands identified in the previous
analyses (Figure 3).
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FIGURE 5 | Movement-related significant subnetwork with increased connectivity in the movement execution compared to the planning phase (p < 0.001, corrected
for multiple comparison) in the (A) broad gamma (25.5–80 Hz) and (B) high gamma (55.5–80 Hz) frequency band. The nodes and the links are depicted in two
different projections (sagittal, on the left and right side; axial, in the center). Colormap indicates the difference of the mean of wPLI values between the movement
execution and planning.

FIGURE 6 | Significant subnetwork with increased connectivity in the post-movement window compared to the planning phase (p < 0.001, corrected for multiple
comparisons) in the (A) broad gamma (25.5–80 Hz) and (B) high gamma (55.5–80 Hz) frequency bands. The nodes and the links are depicted in two different
projections (sagittal, on the left and right side; axial, in the center). Colormap indicates the difference of the mean wPLI values between the post-movement and
planning phases.

Both the omnibus repeated measure ANOVA and the
subsequent post-hoc tests confirmed that, during both movement
planning and execution, broad gamma oscillatory activity
increased with target distance (Table 1A) with significant
differences between short and medium and short and long

target distance trials (Table 1B and Figure 4). Despite greater
gamma power for long than medium distances in both planning
(mean difference ± SD: 8.1 ± 18.4%) and movement execution
(7.9 ± 13.0%), post-hoc tests did not reveal any significant
differences between medium and long-distance targets. Similar
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results were obtained for medium gamma and high gamma
frequency bands, except for medium and short movement
trials during planning in the medium gamma frequency
band (Table 1B).

Nonetheless, these results show that gamma ERS amplitude
is modulated by target distance and further indicate that such
modulation might reflect some kinematic features planned
before movement onset.

Movement-Related Gamma
Event-Related Synchronization and
Phase Connectivity Predicts Peak
Velocity Amplitude and Timing
As both kinematic parameters and gamma ERS showed strong
dependence on target extent, we explored the relationship
between the amplitude and phase-synchronization of
gamma oscillations and kinematic features by fitting linear
regression models.

To model the relationship between gamma ERS amplitude
and kinematics, we first extracted the z-transformed power of all
the gamma bands from the two significant clusters of electrodes
and used it as a predictor of peak velocity amplitude and
movement time. We found that gamma amplitude during the
planning and movement windows were significant predictors of
movement time and peak velocity amplitude for all the tested
gamma frequency bands (Table 2 and Supplementary Figure 2).
Regression analyses on the gamma amplitude at the timing of
the peak velocity for both the out-going and return movements
confirmed that gamma power is a good predictor of peak velocity,
albeit the model with average gamma amplitude provided a
better fitting (see Table 2 and Supplementary Table 3 for a
comparison). Interestingly, the regression models on the timing
of peak velocity revealed that only the gamma ERS during the
out-going movement, but not during the return movement,
was a significant predictor of the peak velocity (Supplementary
Table 3). As the instructions provided to the participants were
focused on the out-going movement (i.e., reach the displayed
target as fast as accurately as possible), it might be that the
out-going movement was more accurately planned and executed
than the return one.

We also modeled the amplitude of gamma phase-
synchronization in the -subnetworks that were activated
during the movement and post-movement windows. In this
case, we extracted and z-transformed the wPLI values from the
network edges that showed greatest broad gamma and high
gamma functional connectivity during movement execution
and the post-movement window compared to planning. Linear
regression models showed that high gamma wPLI values in
the subnetwork activated during the movement significantly
predicted peak velocity amplitude (Table 3).

Interestingly, no significant correlations were observed for
the whole gamma band (Table 3), thus suggesting that peak
velocity might specifically depend on the amount of coherent
high gamma activity in the highlighted occipital and contralateral
parieto-frontal network. Both for gamma amplitude and wPLI,
greater values were associated with higher peak velocity

amplitude, in line with the evidence supporting the prokinetic
role of gamma oscillations. Interestingly, no significant linear
relationship was observed for movement time, thus indicating
that gamma synchronicity might be linked to the specification
of the scaling force necessary to reach the target at its location.
Moreover, the right fronto-temproal subnetwork activated after
movement termination was also not related to the kinematic
characteristics of the movement (Table 3).

DISCUSSION

This study used a parametric approach to demonstrate in a large
sample of healthy subjects that the amplitude of movement-
related gamma ERS scales with target distance. While confirming
that gamma synchronization occurs both during movement
planning and execution, the present findings provide the first
evidence that different gamma peak frequency and topography
characterize the planning and execution phases. This study also
reveals the presence of a gamma-coordinated long-range network
involving occipital, frontal and central regions during movement.
Both during the planning and execution phases, the amplitude of
the movement-related gamma ERS and its connectivity pattern
parametrically increased with target distance. This is the first
evidence in humans supporting the notion that both gamma
synchronization amplitude and gamma phase coherence pattern
are significant predictors of peak velocity amplitude and duration
of goal-directed reaching movements.

It has been proposed that neocortical gamma oscillatory
activity is central to sensorimotor and cognitive functions,
specifically for information processing through the integration of
neuronal assemblies’ activity, enabling a transfer of information
across connected regions. Movement-related changes in the
amplitude of gamma oscillations have been observed with ECoG
in a variety of motor tasks specifically linked to some kinematic
features such as movement trajectory (Talakoub et al., 2017),
velocity (Bundy et al., 2016; Wang et al., 2017a,b; Lofredi et al.,
2018), and force (Flint et al., 2014; Jiang et al., 2020).

A notable finding of the present study is that cortical gamma
synchronization occurs during both planning and execution of
the reaching movements and is parametrically modulated by
movement extent. Increased oscillatory gamma activity, mostly
in the medium (40.5–55 Hz) and high (55.5–80 Hz) frequency
ranges, was visible immediately before and after movement
onset, albeit with different topographies that may reflect different
functions carried out during movement planning and execution.
Interestingly, during movement planning, the first burst of
gamma ERS was maximally expressed over the centro-parietal
region, whereas the two gamma ERS bursts corresponding to the
out- and back-movements were mostly visible over the parieto-
occipital region.

The occurrence of gamma synchronization during the
planning phase has been reported in previous studies (Brücke
et al., 2008; Gaetz et al., 2013; Gunduz et al., 2016; Ryun
et al., 2017) and supports the idea that gamma ERS might be
associated with top-down mechanisms engaged for movement
preparation and, thus, with the creation of an efferent copy of
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TABLE 1 | Non-parametric Monte Carlo permutation analysis F statistics (A) and post-hoc tests (B) with cluster correction on the difference in gamma amplitude
between Short, Medium and Long target distance trials.

(A) All gamma

(25.5−80 Hz)

Medium gamma
(40.5−55 Hz)

High gamma

(55.5−80 Hz)

Planning
( from 152 to 52 ms before movement onset)

F 1147.8 1654.4 690.45

p <0.001 <0.001 <0.001

CI 0.0002 0.0002 0.0002

Execution

( from 52 to 500 ms)

F 5698.1 5101.1 3745.2

p <0.001 <0.001 <0.001

CI 0.0002 0.0002 0.0002

All gamma
(25.5−80 Hz)

Medium gamma
(40.5−55 Hz)

High gamma
(55.5−80 Hz)

(B) Long-short Med-short Long-short Med-short Long-short Med-short

Planning
( from 152 to 52 ms before movement onset)

µ (SD) 17.7 (21.8) 9.6 (14.3) 21.0 (25.3) 10.1 (16.7) 15.4 (22.4) 8.7 (16.4)

t 947.0 265.5 1205.6 n.s. 438.3 66.3

p <0.001 <0.001 <0.001 n.s. <0.001 <0.001

CI 0.0002 0.0002 0.0002 n.s. 0.0002 0.0002

Execution

( from 52 to 500 ms)

µ (SD) 16.7 (14.5) 8.8 (12.1) 18.6 (16.7) 9.6 (12.9) 18.2 (18.6) 9.9 (16.5)

t 7280.0 683.1 Clu1: 2436.3
Clu2: 328.5

Clu1: 41.8
Clu2: 31.2

Clu1: 1137.6
Clu2: 1101

77.6

P <0.001 <0.001 Clu1 <0.001
Clu2 <0.001

Clu1 = 0.0021
Clu2 = 0.0027

<0.001 <0.001

CI 0.0002 0.0002 0.0002 Clu1<0.001
Clu.2 = 0.001

0.0002 0.0003

µ, mean power difference in %; SD, Standard Deviation of the mean; CI, Confidence Interval; Clu, cluster; n.s., not significant. Significant results are reported in bold.

TABLE 2 | Linear regression models on the relationship between gamma amplitude and kinematic features.

Time window F Beta SE t p R2adj

A. Peak velocity

All gamma band Planning 22.8 0.52 0.11 4.78 0.00012 0.26

(25.5–80 Hz) Execution 17.9 0.48 0.11 4.23 0.0008 0.22

Medium gamma Planning 23.2 0.53 0.11 4.81 0.0001 0.27

(40.5–55 Hz) Execution 18.6 0.49 0.11 4.31 0.00062 0.22

High gamma Planning 17 0.47 0.114 4.13 0.00011 0.21

(55.5–80 Hz) Execution 13.6 0.43 0.12 3.68 0.0005 0.17

B. Movement time

All gamma band Planning 15.1 –21.26 5.47 –3.89 0.00025 0.19

(25.5–80 Hz) Execution 12 –0.41 0.12 –3.46 0.001 0.15

Medium gamma Planning 14.9 –21.13 5.48 –3.86 0.0003 0.18

(40.5–55 Hz) Execution 12.8 –19.88 5.55 –3.58 0.0007 0.16

High gamma Planning 13.7 –20.46 5.52 –3.71 0.0005 0.17

(55.5–80 Hz) Execution 10.8 –18.49 5.63 –3.28 0.0017 0.14

A. Linear regression modeling of the z-transformed gamma amplitude and peak velocity (PV) amplitude and B. movement time (MT) in the significant time-windows
corresponding to movement planning (–152 to –52 ms) and execution (52–500 ms). F, F-statistic vs. constant model; Beta, coefficient estimate for the term in the
model; SE, Standard Error of the coefficient; t, t statistic testing the null hypothesis that the corresponding coefficient is zero, p, p-value; R2adj, adjusted coefficient of
determination (df = 60). In bold are reported the significant p-values (alpha = 0.05).
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TABLE 3 | Linear regression models on the relationship between gamma phase-coherence and kinematic features.

F Beta SE T p R2adj

A. Movement vs. planning

WPLI debiased MT 3.59 –0.74 0.39 –1.89 0.063 0.04

(25.5–80 Hz) PV 2.98 0.39 0.22 1.72 0.089 0.03

WPLI debiased MT 3.77 –0.56 0.29 –1.94 0.057 0.04

(55.5–80 Hz) PV 5.8 0.39 0.16 2.41 0.019 0.07

B. Post-movement vs. planning

WPLI debiased(25.5–80 Hz) MT 0.47 –0.39 0.56 –0.68 0.50 –0.009

PV 0.20 0.14 0.32 0.44 0.65 –0.014

WPLI debiased(55.5–80 Hz) MT 0.11 –0.11 0.31 –0.34 0.74 –0.015

PV 0.15 0.069 0.18 0.38 0.701 –0.014

Phase-coherence values were extracted from the network showing greater connectivity during movement execution and during the post-movement window (1,500–2,000
ms) compared to planning and used to predict PV and MT. F, F-statistic vs. constant model; Beta, coefficient estimate for the term in the model; SE, Standard Error of
the coefficient; t, t statistic testing the null hypothesis that the corresponding coefficient is zero, p, p-value; R2adj, adjusted coefficient of determination (df = 60). In bold
are reported the significant p-values (alpha = 0.05).

the upcoming movement. Indeed, our task instructions (that
is, to perform fast, uncorrected, out- and back-movements to
targets appearing in an unpredictable order) mostly engaged
feed-forward specification of a force-scaling factor according
to movement extent (Ghez and Gordon, 1987; Gordon et al.,
1994a,b). Planning of movement distance between the starting
hand position and the target requires proper jerk, acceleration
and velocity scaling prior to movement onset (Gielen et al.,
1985), a process that engages several regions including the
primary sensorimotor cortices, supplementary motor area and
the basal ganglia (Bell et al., 1994; Turner et al., 1998; Ghilardi
et al., 2000; Tankus et al., 2009). Accordingly, the topographical
distribution of gamma ERS before movement onset and its
correlation with movement features suggest that the first burst
of gamma ERS might reflect the engagement of sensorimotor
neuronal assemblies appropriate to the characteristics of the
upcoming movement. Indeed, our regression analyses confirmed
that the amplitude of the pre-movement ERS positively predicts
the amplitude of the peak velocity and, conversely, negatively
predicts the movement duration.

Although the observed scaling of the pre-movement gamma
ERS supports our interpretation of its role in movement
planning, we cannot completely exclude that gamma ERS
prior to movement onset might arise from subtle muscle
contractions occurring before the motor act that can be captured
only by comprehensive electromyography (EMG) recordings
(Ryun et al., 2017).

Therefore, future analyses should combine EEG, EMG
and kinematic recordings in order to clarify the relationship
between pre-movement cortical gamma oscillations and
muscle activation.

After the initial gamma ERS, gamma oscillatory activity
visibly increased after movement onset and strikingly tracked
the temporal profile of movements’ velocity. Compared to
the initial burst that peaked around 54 Hz, this movement-
related synchronous activity was most prominent in the
high-gamma range, in agreement with different studies

(Pfurtscheller et al., 2003; Muthukumaraswamy, 2010; Joundi
et al., 2012; Cheyne and Ferrari, 2013). Although gamma ERS
was visible on the majority of the scalp sensors, our finding
of greater synchronization over the posterior regions might
reflect the engagement of the associative posterior parietal area,
which is thought to integrate efferent motor signals with visual
and proprioceptive information (Hyävrien and Poranen, 1974;
Mountcastle et al., 1975; Andersen et al., 1997; Wolpert et al.,
1998; Galletti et al., 2003; Bernier and Grafton, 2010; Shadmehr
et al., 2010; Elliott et al., 2017), as well as to encode and integrate
visual and proprioceptive information during movement
execution (Buneo and Andersen, 2012). This hypothesis is
in line with the results of our phase synchronization-based
connectivity analyses: compared to the planning window, during
movement execution, we observed greater wPLI connectivity
in the high gamma band between the electrodes located over
the right parieto-occipital region and those over the bilateral
fronto-central region. The same connectivity analysis on the
broad gamma band displayed a more lateralized connectivity
pattern between the left centro-parietal and fronto-central
regions with a minor contribution of the parieto-occipital
areas. Importantly, our regression analyses further showed that
the network phase-synchronization index was a significant
predictor of peak velocity in high gamma, but not in the
broad gamma range.

Altogether, we may speculate that movement-related ERS
in the high gamma range during movement execution could
reflect the specific activity of the dorso-medial stream, integrating
online afferent sensorimotor and visual input and sending real-
time feedback to premotor and motor regions to control the
ongoing movement. Moreover, the observed positive linear
relation between the functional connectivity and ERS amplitude
during the movement and peak velocity might reflect either the
amount of neural assemblies recruited to produce more force
to increase speed (Muthukumaraswamy, 2010) or the amount
of coordinative control needed to sustain the incoming afferent
information about the ongoing movement.
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Interestingly, we also found increased connectivity (mostly in
the high gamma range) in a subnetwork that mainly involved
the right fronto-temporal areas after movement termination.
Differently from gamma connectivity during the movement, this
subnetwork was not linked to movement kinematics, thus it
might reflect a different function. A possible interpretation of
this result is that it might reflect working-memory processes
occurring after movement termination and the update of
the activated motor representations. Alternatively, this finding
may represent re-orienting attentional processes to unattended
locations that precede the appearance of the next target. Indeed,
re-orienting attentional processes engage the ventral attentional
network that is lateralized to the right hemisphere and includes
the temporo-parietal junction as well as the frontal cortex at
different levels (Corbetta et al., 2008). Although plausible, these
conclusions remain for the moment only hypotheses to be tested
in future experiments.

CONCLUSION

In conclusion, this study provides an extensive characterization
of scalp recorded movement-related gamma synchronization
during planar reaching movements in a large sample of
healthy participants. Gamma ERS amplitude during movement
planning and execution, as well as increased parieto-occipital and
fronto-central connectivity pattern reliably predict the specific
movement features.
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