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Dopaminergic circuits
underlying associative aversive
learning
Daphne Zafiri and Sevil Duvarci*

Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany

Associative aversive learning enables animals to predict and avoid threats

and thus is critical for survival and adaptive behavior. Anxiety disorders are

characterized with deficits in normal aversive learning mechanisms and hence

understanding the neural circuits underlying aversive learning and memory

has high clinical relevance. Recent studies have revealed the dopamine system

as one of the key modulators of aversive learning. In this review, we highlight

recent advances that provide insights into how distinct dopaminergic circuits

contribute to aversive learning and memory.

KEYWORDS

aversion, fear conditioning, dopamine, amygdala, medial prefrontal cortex (mPFC),
striatum, nucleus accumbens (NAc)

Introduction

The ability to learn that certain stimuli and situations are associated with aversive
outcomes helps animals to predict and avoid danger and hence is crucial for survival.
In the laboratory, associative aversive learning is most commonly studied in rodents
as well as humans using Pavlovian fear conditioning (reviewed in Duvarci and Pare,
2014). In this form of learning, an initially neutral stimulus (conditioned stimulus, CS)
typically a tone is paired in time with an aversive unconditioned stimulus (US), such
as a mild electrical foot shock. As the CS-US association is formed, the CS acquires
the ability to elicit fear responses that are associated with the US (such as behavioral
freezing) so that it can elicit conditioned fear responses when later presented alone.
Much evidence indicates that anxiety disorders, such as post-traumatic stress disorder
(PTSD), panic disorder and phobias, result from dysregulation of normal fear learning
mechanisms (Lüthi and Lüscher, 2014; Duits et al., 2015; Craske et al., 2017), and
thus understanding neural mechanisms underlying aversive learning has high clinical
relevance. A considerable body of research has revealed that aversive learning and
memory are mediated by a distributed network of brain structures including mainly the
amygdala, medial prefrontal cortex (mPFC) and hippocampus (Duvarci and Pare, 2014;
Herry and Johansen, 2014; Tovote et al., 2015; Ressler and Maren, 2019).

Recent lines of research further revealed the dopamine (DA) system as a critical
regulator of aversive learning and memory. DA is a neuromodulator vitally involved
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in a wide range of functions including motor behavior,
motivation, reward learning, cognition and aversion. DA
neurons are mainly located in the ventral tegmental area
(VTA) and substantia nigra (SN), but are also found in the
hypothalamus, periaqueductal gray/dorsal raphe (PAG/DR) as
well as the retrorubral field. DAergic transmission is mediated
by metabotropic DA receptors that can be classified into
two main types with the DA D1-type receptors (Gs-coupled)
comprised of D1 and D5 and the DA D2-type receptors (Gi-
coupled) comprised of D2, D3, and D4 subtypes (Missale
et al., 1998). Although the crucial role DA neurons play in
reward learning is well-established (Schultz, 2016), the role
DA plays in aversive learning has more recently begun to be
elucidated. Importantly, DA deficient mice exhibit impaired fear
conditioning indicating the critical role DA plays in aversive
learning, and enhancing DAergic transmission in these mice
by systemic application of the DA precursor L-DOPA or viral-
mediated restoration of DA synthesis restores fear learning
(Fadok et al., 2009). Pharmacological antagonism and receptor
knockout (KO) studies further demonstrate that both D1- and
D2-type receptors are necessary for aversive learning (Nader
and LeDoux, 1999; Greba and Kokkinidis, 2000; Inoue et al.,
2000; Fadok et al., 2009). Moreover, disruption of phasic firing
in DA neurons by inactivating NMDA receptors selectively in
DA neurons resulted in impaired aversive learning (Zweifel
et al., 2009, 2011). In line with these results, some midbrain DA
neurons exhibit phasic activation in response to aversive stimuli
as well as to cues predicting such stimuli (Guarraci and Kapp,
1999; Brischoux et al., 2009; Matsumoto and Hikosaka, 2009;
Mileykovskiy and Morales, 2011; Zweifel et al., 2011; Jo et al.,
2018; Salinas-Hernández et al., 2018). Together, these findings
highlight the role of DA as a crucial neuromodulator for aversive
learning.

It is important to note here that the midbrain DA system is
composed of functionally distinct and mostly non-overlapping
subpopulations of DA neurons each of which projects mainly
to a single brain region (Lammel et al., 2008; Roeper, 2013;
Beier et al., 2015; Lerner et al., 2015; Menegas et al., 2015).
In particular, DA neurons projecting to brain structures that
constitute the brain’s fear circuitry, such as the amygdala and
the mPFC, have been implicated in aversion and aversive
learning. In this short review, we highlight recent findings
that have revealed the DAergic circuits underlying associative
aversive learning. We mainly focus our discussion on cued
fear conditioning in rodents where considerable progress has
been made. Recent studies have also revealed DA as a critical
regulator of fear extinction. However, in this review, we will
not discuss fear extinction but rather refer the reader to prior
reviews (Abraham et al., 2014; Salinas-Hernández and Duvarci,
2021). We begin by discussing how DA exerts its effects on
the different components of the amygdala circuitry to regulate
aversive learning and memory. We next focus on the role of
DA input to the mPFC in mediating aversion and aversive

learning. Finally, we discuss recent studies demonstrating how
DA projections to different subregions of the striatum control
aversive processes as well as the potential role DA plays in striatal
circuits in mediating aversive learning.

Dopaminergic control of
amygdala circuitry underlying
aversive learning and memory

The amygdala is a key structure underlying aversive learning
and memory formation. Particularly, within the amygdala
circuitry, the basolateral amygdala (BLA), consisting of the
lateral and basal nuclei, the central nucleus of the amygdala
(CEA) and the intercalated cells of the amygdala (ITCs) are
the critical nuclei required for acquisition, consolidation and
expression of aversive memories (Figure 1; Johansen et al., 2011;
Duvarci and Pare, 2014; Herry and Johansen, 2014; Tovote et al.,
2015; Ressler and Maren, 2019). Both D1- and D2-type DA
receptors are expressed abundantly in the amygdala (Meador-
Woodruff et al., 1991) and early pharmacological studies have
established that both DA receptor types in the amygdala are
critically involved in aversive learning (Pezze and Feldon, 2004).

Basolateral amygdala

Studies administering D1 and D2 receptor agonists and
antagonists in the BLA indicated the essential role these
receptors play in BLA for aversive learning and memory
(Lamont and Kokkinidis, 1998; Guarraci et al., 1999; Nader
and LeDoux, 1999; Greba and Kokkinidis, 2000; Greba et al.,
2001). Plasticity in the synapses carrying sensory information
about the CS and the US underlies acquisition and consolidation
of conditioned fear memories in BLA (Sigurdsson et al., 2007;
Ressler and Maren, 2019). As a result, BLA neurons exhibit
increased CS-evoked responses following fear conditioning
(Quirk et al., 1995; Rogan et al., 1997; Collins and Pare, 2000;
Repa et al., 2001; Goosens et al., 2003; Herry et al., 2008; Amano
et al., 2011). Importantly, activation of DA receptors is critical
for development of CS-evoked responses in BLA neurons
(Rosenkranz and Grace, 2002). Consistent with this, DA has
been shown to increase excitability of principal BLA neurons
(Kröner et al., 2005; Yamamoto et al., 2007; Li et al., 2011).
Other potential targets of DA in the BLA microcircuitry are
GABAergic interneurons. Inhibitory circuits have been shown to
play an essential role in gating aversive learning in BLA (Krabbe
et al., 2018). In line with this, DA suppresses feedforward
inhibition onto principal BLA neurons through D2-receptor
mediated inhibition of fast-spiking interneurons, and as a
result facilitates synaptic plasticity in the BLA (Bissière et al.,
2003). Yet, there are several distinct subtypes of interneurons
in the BLA that are critically involved in aversive learning
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FIGURE 1

Dopaminergic circuits underlying aversive learning and memory. Schematic of the seven major DAergic projections involved in aversive learning
are shown. BLA, basolateral amygdala; CEA, central nucleus of the amygdala; D1R, DA D1 receptors; D2R, DA D2 receptors; ITCs, intercalated
cells; LC, locus coeruleus; mPFC, medial prefrontal cortex; PAG/DR, periaqueductal gray/dorsal raphe; SNL, substantia nigra lateralis; TS, tail of
the striatum; v-NAc, ventral nucleus accumbens; VTA, ventral tegmental area. VTA DA projection to BLA encodes salience of stimuli during
associative learning. Asterisk (*) indicate a possible DAergic projection to lateral ITCs in mediating disinhibition of BLA and dorsomedial ITCs
during aversive learning. The role of this projection in aversive learning remains to be tested. CEA receives DA input from both VTA and PAG/DR.
Whereas, PAG/DR DA projections encode an aversive prediction error signal to drive aversive learning, VTA DA projections mediate fear
discrimination. Asterisk (*) indicate a possible scenario in which PAG/DR and VTA DA neurons selectively innervate D1R- and D2R- expressing
CEA neurons, respectively. Whether different subtypes of CEA neurons indeed receive separate inputs from these two different DA projections is
an open question that remains to be investigated. DA input to mPFC originates from both VTA and LC. VTA DA projections are critical for
expression of conditioned fear responses. In addition, this DA input to mPFC biases behavior toward aversion. On the other hand, the role of DA
input from LC neurons in aversive learning needs to be investigated (?). VTA DA projections to v-NAc are implicated in aversion and likely encode
motivational salience. Whether this DA projection is crucial for associative aversive learning remains to be tested. SNL DA neurons projecting to
TS mediate threat avoidance. It will be important to investigate whether this DA projection is critically involved in associative aversive learning.

(Krabbe et al., 2018). How DA regulates the activity of each of
these interneuron subtypes is largely unknown and will be an
important question for future research.

Recent findings indicate that the source of DA mediating
aversive learning in BLA originates from DA neurons located
in the VTA (Figure 1; Lutas et al., 2019; Tang et al., 2020).
These studies demonstrated that VTA DA neurons projecting
to BLA are activated by aversive USs as well as CSs associated
with them (Lutas et al., 2019; Tang et al., 2020); furthermore,
optogenetic inhibition of VTA DA projections to BLA impairs

aversive learning (Tang et al., 2020). This raises the question of
whether these BLA projecting VTA DA neurons are activated
exclusively by aversive events and thus mediate only aversive
learning. The BLA is also important for reward learning which
is mediated by a subpopulation of neurons that is distinct from
those mediating aversive learning, based on gene expression
pattern and projection targets (Namburi et al., 2015; Kim J. et al.,
2016). Intriguingly, individual VTA DA axons in the BLA are
activated by both reward and aversive events as well as CSs
predicting them (Lutas et al., 2019), suggesting that activation
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of the same DA neuron mediates both aversive and reward
learning. These results suggest that BLA-projecting VTA DA
neurons respond to the salience of stimuli, rather than their
positive or negative value; and mediate associative learning in
general for both negative and positive outcomes.

Central nucleus of the amygdala

As mentioned earlier, the second crucial component of the
amygdala circuitry underlying aversive learning and memory
is the CEA. Much evidence indicates that plastic changes in
the activity of CEA neurons mediate acquisition, consolidation,
and expression of conditioned fear responses (Wilensky et al.,
2006; Zimmerman et al., 2007; Ciocchi et al., 2010; Haubensak
et al., 2010; Duvarci et al., 2011; Li et al., 2011; Fadok
et al., 2018). In this review, we will not discuss the CEA
microcircuitry and the different subtypes of CEA neurons but
rather refer the reader to prior reviews (Duvarci and Pare,
2014; Fadok et al., 2018; Kong and Zweifel, 2021). Like BLA,
CEA receives DA inputs originating from the VTA but also
from the PAG/DR (Figure 1; Hasue and Shammah-Lagnado,
2002). Interestingly, recent studies investigating the function
of these DA projections to CEA have revealed that these two
distinct DA inputs play different roles in aversive learning and
memory. Notably, PAG/DR DA neurons projecting to CEA
encode a positive prediction error (PE) signal for aversive
stimuli that drives associative aversive learning in CEA (Groessl
et al., 2018). On the other hand, optogenetic inhibition of VTA
DA projections to CEA does not have an effect on acquisition
of conditioned fear suggesting that this DA projection is not
necessary for associative aversive learning (Jo et al., 2018; Tang
et al., 2020). VTA DA projections to CEA are instead critical
for fear discrimination—that is discriminating cues associated
with danger from cues associated with safety (Jo et al., 2018).
Together, these findings indicate that these two distinct DA
projections to CEA have different roles in aversive learning.

These observations raise the question of whether different
subtypes of CEA neurons receive separate inputs from these
different DA projections. Anatomical studies demonstrate that
although D2 receptors are more abundant, both D1 and D2
receptors are expressed in CEA (Weiner et al., 1991; Perez
de la Mora et al., 2012; McCullough et al., 2018). Moreover,
expression of D1 and D2 receptors for the most part does not
overlap in CEA neurons (McCullough et al., 2018). Interestingly,
a recent study demonstrated that activation of D2 receptors
in the CEA mediates fear discrimination (De Bundel et al.,
2016). It would therefore be interesting to investigate whether
VTA DA neurons innervate preferentially the D2 receptor-
expressing neurons in CEA. On the other hand, PAG/DR DA
neurons exhibit phasic activation to aversive USs as well as CSs
associated with an aversive US (Groessl et al., 2018) suggesting
that this DA input would activate preferentially the D1 receptor

expressing CEA neurons during aversive learning. Tracing of
monosynaptic inputs to genetically defined CEA neurons will be
necessary to determine whether they receive differential inputs
from VTA and PAG/DR DA neurons.

Intercalated cells of the amygdala

Another important target of DA in the amygdala circuitry
are the ITCs which are a network of interconnected GABAergic
cell groups located in the external and the intermediate capsules
surrounding the BLA (Figure 1). The source of DA input to
ITCs has largely remained elusive due to lack of molecular
tools that can selectively target these neurons. However, recent
studies suggest that DA input to ITCs originates from VTA/SN,
similar to BLA (Ferrazzo et al., 2019; Aksoy-Aksel et al.,
2021). D1, but not D2, receptors are abundantly expressed in
the ITCs (Jacobsen et al., 2006). D1 receptors are typically
Gs-coupled receptors and when activated they are expected
to function in an excitatory fashion (Missale et al., 1998).
Interestingly, D1 receptor signaling in ITCs is unusual in that
activation of D1 receptors hyperpolarizes ITCs and inhibits
these neurons (Marowsky et al., 2005; Mańko et al., 2011). ITCs
are ideally positioned to gate sensory inputs to BLA as they
exert feedforward and also feedback inhibition onto principal
BLA neurons (Figure 1; Marowsky et al., 2005; Asede et al.,
2015, 2021). DA inhibits these neurons and hence can facilitate
synaptic plasticity in BLA (Marowsky et al., 2005). Furthermore,
medial ITCs, located in the intermediate capsule, also gate the
information flow from BLA to CEA. They receive excitatory
input from BLA and send inhibitory projections to CEA, and
thus mediate feedforward inhibition of CEA (Royer et al., 1999;
Paré et al., 2003; Mańko et al., 2011; Gregoriou et al., 2019). In
particular, plasticity in the dorsally located medial ITCs (dm-
ITCs) has been implicated in aversive learning (Busti et al.,
2011; Asede et al., 2015; Kwon et al., 2015). dm-ITCs are
activated during acquisition and retrieval of conditioned fear
(Busti et al., 2011; Hagihara et al., 2021). Both aversive USs
and CSs predicting an aversive US excite dm-ITCs (Hagihara
et al., 2021). Bidirectional chemogenetic manipulations during
fear retrieval further demonstrated that activation of dm-ITCs is
critical for expression of conditioned fear (Hagihara et al., 2021).
Since DA inhibits ITCs, it is unlikely that dm-ITCs receive direct
DA input during fear acquisition and expression. However,
different ITC clusters are connected and exert feedforward
inhibition onto each other (Royer et al., 1999, 2000; Paré
et al., 2003; Asede et al., 2015, 2021). Notably, a recent study
demonstrated that lateral ITCs (l-ITCs) located in the external
capsule send feedforward inhibition onto dm-ITCs and DA
application reduces this inhibition onto dm-ITCs (Aksoy-Aksel
et al., 2021). These findings suggest that DA likely inhibits
l-ITCs, dampening the feedforward inhibition these neurons
exert on BLA and dm-ITCs, and thus indirectly activates BLA

Frontiers in Behavioral Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.1041929
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-1041929 November 4, 2022 Time: 16:23 # 5

Zafiri and Duvarci 10.3389/fnbeh.2022.1041929

and dm-ITC neurons during aversive learning (Figure 1). Based
on this scenario, DA neurons would be expected to differentially
innervate and modulate distinct clusters of ITCs. How DA
input regulates activity of each ITC cluster to mediate aversive
learning is therefore an important question for future studies.

Role of dopamine in the medial
prefrontal cortex in mediating
aversive learning

Considerable research has indicated that mPFC is a brain
region critically involved in aversive learning. In particular,
the prelimbic subregion of mPFC mediates expression of
conditioned fear responses (Sotres-Bayon and Quirk, 2010;
Giustino and Maren, 2015; Tovote et al., 2015; Rozeske and
Herry, 2018). Early studies investigating the effect of aversive
events and stressors in mPFC revealed that such events enhance
prefrontal DA levels (Abercrombie et al., 1989; Sorg and Kalivas,
1993; Sullivan and Gratton, 1998). Importantly, an increase
in DA release has also been observed in mPFC during fear
conditioning (Wilkinson et al., 1998; Feenstra, 2000; Feenstra
et al., 2001). Consistent with this, pharmacological studies
demonstrated that activation of DA receptors in mPFC is
required for expression of conditioned fear (Pezze et al., 2003;
Jing Li et al., 2018). Together, these findings demonstrate the
crucial role DA plays in aversive learning and memory in mPFC.

Recent studies reveal that DA input to mPFC originates
from both VTA DA neurons and noradrenaline (NA) neurons
located in the locus coeruleus (LC; Figure 1; Lammel et al.,
2008; Beier et al., 2015; Devoto et al., 2020). Notably, mPFC-
projecting VTA DA neurons have been implicated in aversive
processing (Lammel et al., 2011, 2012; Gunaydin et al.,
2014). Fiber photometry recordings of VTA DA terminals
in mPFC demonstrate that these DA cells are selectively
activated by aversive events, but not rewards (Kim C. K.
et al., 2016). Consistent with this, a recent study revealed
that DA increases the signal-to-noise ratio of responses in
particular to aversive stimuli in mPFC. This study further
showed that optogenetic activation of VTA DA terminals in
mPFC biased behavioral responses to aversive stimuli in an
associative stimulus competition task where aversive and reward
CSs were presented simultaneously (Vander Weele et al., 2018).
Together, these findings suggest that DA released from VTA DA
neurons is a critical modulator of aversive processing and acts
as a pro-aversive signal in the mPFC. On the other hand, the
role that DA input from LC NA neurons plays during aversive
learning has remained elusive (Figure 1). Whereas VTA DA
neurons target the deep layers, LC NA neurons innervate the
superficial layers of mPFC (Vander Weele et al., 2018). This
differential innervation pattern suggests that DA released from
LC NA neurons might mediate functions different from DA
released from VTA. It will be important for future studies to

examine the different roles these two distinct DA inputs play in
mPFC during aversive learning.

Dopaminergic projections to the
striatum underlying aversive
processing

Recent studies using the latest cell type- and projection-
specific techniques have highlighted two regions of the striatum,
the nucleus accumbens (NAc) and the posterior tail of the
striatum (TS), as the striatal targets of aversion encoding DA
neurons. As mentioned earlier, it is well-established that DA
neurons encode reward PE signals to drive reward learning
and in particular DA projections to NAc constitute the brain’s
canonical reward circuitry (Wise, 2002; Schultz, 2016). More
recent studies, however, have revealed that DA projections to
NAc are not homogeneous, in that different subpopulations
of DA neurons indeed project to distinct subregions of NAc
and mediate different functions (Roeper, 2013). Earlier studies
examining DA release suggested an involvement of DA in NAc
during aversive processing (Young, 2004; Badrinarayan et al.,
2012; Budygin et al., 2012; Oleson et al., 2012; Carelli and
West, 2014). Two recent studies performing fiber photometry
recordings of calcium transients in DA neuron terminals across
different subregions of the NAc have revealed that in particular
the ventral NAc (vNAc) projecting DA neurons mediate aversive
processes (Figure 1; de Jong et al., 2019; Yuan et al., 2019).
These two studies demonstrated that DA projections to vNAc
are activated by aversive stimuli and CSs that predict them.
However, similar to BLA projecting DA neurons, these DA
terminals exhibit increased responses also to rewards (de Jong
et al., 2019; Yuan et al., 2019) suggesting that they likely
encode motivational salience rather than aversiveness per se.
However, since recordings of bulk calcium transients from
DA terminals in vNAc were performed in these studies, it is
unclear whether the same DA neurons are activated by both
rewards and aversive events. Studies recording the activity of
vNAc-projecting DA neurons at single cell resolution will be
necessary to address this question. Importantly, although vNAc-
projecting DA neurons exhibit increased CS-evoked responses
following pairing of the CS with an aversive US (de Jong
et al., 2019), whether this activity is indeed required for
acquisition and expression of associative aversive memories is
not known. Causal manipulations investigating the necessity of
DA projections to vNAc during aversive learning will be crucial
to address this question.

The second striatal region that has lately been implicated in
aversive processing is the posterior tail of the dorsal striatum
(TS). Earlier studies investigating the role of dorsal striatum
(DS) and DA projections to DS have particularly implicated
dorsolateral striatum (DLS) in aversive learning. Notably, DLS-
projecting DA neurons have been shown to be activated by
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aversive stimuli (Lerner et al., 2015). However, the causal
contribution of DS-projecting DA neurons in aversive learning
has remained elusive. For more detailed information on the
role of DS in aversion, the reader is referred to prior reviews
(Stanley et al., 2021). In this review, we will concentrate on
DA projections to TS (Figure 1) where recent progress has
been made. Indeed, recent studies have identified a unique
subpopulation of DA neurons that project to the TS, located in
the most lateral part of SN (SNL) and which exhibit a distinct
input-output organization (Menegas et al., 2015). These DA
neurons respond particularly strongly to novel and aversive
stimuli, but only weakly to rewards. Consistent with this,
they encode an aversive PE rather than a reward PE signal
and exhibit CS-evoked responses following pairing of the CS
with an aversive US (Menegas et al., 2017, 2018). Selective
ablation or activation of these DA neurons further demonstrates
that they are involved in threat avoidance (Menegas et al.,
2018). However, whether this DA projection is crucial for
aversive learning is currently unknown. Considering these DA
neurons have been demonstrated to encode an aversive PE
signal (Menegas et al., 2017, 2018), it will be important to
investigate whether they are critically involved in associative
aversive learning.

Concluding remarks

Recent advances in cell type- and projection-specific
strategies in recording and manipulating neuronal activity have
led to considerable progress in understanding the role of defined
DAergic circuits in aversive learning. The studies reviewed
above provide insights into how DA neurons mediate different
aspects of aversive processing through their projections to the
amygdala, mPFC and the striatum. The main conclusions of
these studies and outstanding questions are summarized in
Figure 1. In the amygdala, DA projections to BLA encode
salience of stimuli to mediate associative learning. However,
how DA regulates the activity of BLA neurons, in particular
the activity of different subtypes of inhibitory interneurons
in mediating aversive learning is incompletely understood.
Likewise, how DA input controls the activity of different ITC
clusters during aversive learning has also remained elusive. An
important outstanding question for future research is whether
DA neurons differentially innervate distinct clusters of ITCs to
mediate aversive learning. CEA receives two distinct DA inputs
from VTA and PAG/DR which play different roles in aversive
learning. Whereas projections from PAG/DR encode an aversive
PE signal to drive associative aversive learning, projections from
VTA mediate fear discrimination. Whether different subtypes of
CEA neurons, based on their DA receptor expression, receive
separate inputs from these two distinct DA projections is an
open question remains to be investigated. In the mPFC, DA
input from VTA is critical for expression of conditioned fear

responses and furthermore biases behavior toward aversion.
mPFC receives DA input also from LC but the role of this input
during aversive learning is largely unknown. In the striatum,
two striatal subregions have recently emerged as the targets
of DA neurons mediating aversive processing. Whereas DA
projections to vNAc are involved in aversion and likely encode
motivational salience, DA projections to TS mediate threat
avoidance. Yet, whether these DA projections to the striatum
are crucial for associative aversive learning remains to be an
important outstanding question for future studies. Overall, the
findings summarized in this review highlight DA as a critical
modulator of aversive learning. Understanding the key role DA
plays in aversive learning has high clinical significance since
dysregulation of aversive learning mechanisms is a hallmark
of human anxiety disorders. In particular, elucidating how
DA mediates different aspects of aversive processing through
its actions in distinct brain circuits can help develop novel
therapeutic strategies in the treatment of anxiety disorders.
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