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Enhanced Prediction of Hot Spots 
at Protein-Protein Interfaces Using 
Extreme Gradient Boosting
Hao Wang, Chuyao Liu & Lei Deng

Identification of hot spots, a small portion of protein-protein interface residues that contribute the 
majority of the binding free energy, can provide crucial information for understanding the function 
of proteins and studying their interactions. Based on our previous method (PredHS), we propose 
a new computational approach, PredHS2, that can further improve the accuracy of predicting hot 
spots at protein-protein interfaces. Firstly we build a new training dataset of 313 alanine-mutated 
interface residues extracted from 34 protein complexes. Then we generate a wide variety of 600 
sequence, structure, exposure and energy features, together with Euclidean and Voronoi neighborhood 
properties. To remove redundant and irrelevant information, we select a set of 26 optimal features 
utilizing a two-step feature selection method, which consist of a minimum Redundancy Maximum 
Relevance (mRMR) procedure and a sequential forward selection process. Based on the selected 26 
features, we use Extreme Gradient Boosting (XGBoost) to build our prediction model. Performance of 
our PredHS2 approach outperforms other machine learning algorithms and other state-of-the-art hot 
spot prediction methods on the training dataset and the independent test set (BID) respectively. Several 
novel features, such as solvent exposure characteristics, second structure features and disorder scores, 
are found to be more effective in discriminating hot spots. Moreover, the update of the training dataset 
and the new feature selection and classification algorithms play a vital role in improving the prediction 
quality.

Proteins and their interactions play a pivotal role in most complex biological processes, such as cell cycle control, 
protein folding and signal transduction. The study of Protein-Protein Interactions (PPIs) is significant for the 
understanding of the complex mechanisms in a cell1,2. More importantly, protein-protein interactions are usually 
integrated into biological interaction networks for their interdependence, so that any erroneous or disrupted PPIs 
can cause disease. Studies of principles governing PPIs have found that energies are not homogeneous in protein 
interfaces. Instead, only a small portion of interface residues called hot spots contribute the majority of the bind-
ing energy3. Identifying these hot spot residues within PPIs can help us better understand PPIs and may also help 
us to regulate protein-protein binding.

Experimentally, a valuable technique for identifying hot spots is through site-directed mutagenesis like ala-
nine scanning, where interface residues are systematically replaced with alanine. The change in binding free 
energy (ΔΔG) is calculated. Normally, if the ΔΔG >= 2.0 kcal/mol, the residues are defined as hot spots and 
others are non-hot spots. Two widely used databases are Alanine Scanning Energetics Database (ASEdb)4 and 
Binding Interface Database (BID)5, which collected experimental hot spots from Alanine scanning mutagenesis 
experiments. Recently, there are several new integrated datasets, such as Assi et al.’s Ab+ data6, SKEMPI database7 
and Petukh et al.’s Alexov_sDB8.

Discriminative features for identifying hot spots have been extensively investigated. Analysis of hot spots has 
discovered that some residues are more favorable in amino acid composition. The most frequent ones, tryptophan 
(21%), arginine (13.1%) and tyrosine (12.3%), are vital due to their size and conformation in hot spots9. Bogan 
and Thorn find that hot spots are surrounded by energetically less important residues that shape like an O-ring 
to occlude bulk solvent from the hot spots. A “double water exclusion” hypothesis was proposed to refine the 
O-ring theory and provide a roadmap for understanding the binding affinity of protein interactions10. Besides, 
some studies show that the hot spots are more conserved than non-hot spots by using sequential and structural 
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analysis11,12. Other features are also found that can be used for identifying hot spots, such as pairing potential13 or 
Side chain energy score14,15.

Hot spot information from wet-experiments studies is limited because the methods like alanine scanning 
mutagenesis are costly and time-consuming. Therefore, there is a need for computational approaches to identify 
hot spots16. In general, these methods can be groupded into three main types: molecular dynamics simulations, 
knowledge-based approaches and machine-learning approaches. Molecular dynamics simulations can offer a 
detailed analysis of protein interfaces at the atomic level and estimate the changes in binding free energy (ΔΔG). 
Although some molecular simulation methods provide good predictive results17–19, they are not applicable, in 
practice, for large-scale hot spot predictions due to their huge computational cost. Knowledge-based approaches, 
such as Robetta20 and FOLDEF21, which make predictions based on an estimate of the energetic contribution to 
binding for every interface residue, provide an alternative approach to predict hot spots with much less compu-
tational cost.

On the other hand, the machine-learning approaches try to learn the complicated relationship between hot 
spots and various of residue features and then distinguish hot spots from the interface residues. Ofran and Rost22 
used neural networks to identify hot spots with features extracted from sequence environment and evolutionary 
profile of interface residues. Darnell et al.23,24 introduced two hot spot models by using decision trees to identify 
hot spots with features such as specificity, FADE points, generic atomic contacts and hydrogen bonds. When the 
two models were combined, the combined model achieved better predictive accuracy than alanine scanning. 
Tuncbag et al.13,25 introduced an effective empirical method by combining solvent accessible surface areas and 
pair potentials. Cho et al.26 used a support vector machines (SVM) to identify hot spots with several new features 
such as the weighted atom packing density, relative accessible surface area and weighted hydrophobicity. Assi 
et al.6 presented a probabilistic method that combines features extracted from three main information sources, 
namely energetic, structural and evolutionary information by using Bayesian Networks (BNs). Lise et al.27 applied 
SVMs to predict hot spot residues with features extracted from the basic energetic terms that contribute to hot 
spot interactions. Xia et al.28 used SVM classifiers with features such as protrusion index, solvent accessibility. Zhu 
and Mitchell29 proposed two hot spot prediction methods by using SVMs with features like interface solvation, 
atomic density and plasticity. Wang et al.30 employed a random forest (RF) to predict hot spots with features from 
target residues, intra-contact residues and mirror-contact residues. Xia et al.31 used SVMs to predict hot spots 
in protein interfaces with features extracted from the sequence, structural and neighborhood features. Moreira 
et al.32 presented a web server (SpotOn) to accurately identify hot spots using an ensemble machine learning 
approach with up-sampling of the minor class. Recently, Qiao et al.33 proposed a hot spot prediction model by 
using a hybrid feature selection strategy and SVM classifiers. Our previous method PredHS15,34 used SVMs and 
combined three main information sources, namely site, Euclidean neighborhood and Voronoi neighborhood 
features, to boost the hot spot prediction performance.

In this article, we describe an efficient approach for identifying hot spots at protein-protein interfaces, 
PredHS2, which is based on our previous PredHS method. First, we generate a new training dataset by integrat-
ing several new mutagenesis datasets. Then, we extract a large number of features, especially some novel features, 
such as solvent exposure features, second structure features and disorder scores. Similar to PredHS’s work, we also 
use two categories of structural neighborhood properties to better describe the environment around the target 
site. In all, a wide variety of 600 features are extracted. Next, we apply a new two-step feature selection method 
to remove redundancy and irrelevant features and then we select a set of 26 optimal features. Finally, we build 
the PredHS2 model using Extreme Gradient Boosting (XGBoost) and the selected 26 features. We evaluate the 
performance of our model both on the training dataset and independent test set (BID) and find that PredHS2 
significantly outperforms other machine learning algorithms and the existing hot spot prediction methods. The 
flowchart of PredHS2 is shown in Fig. 1.

Results
Performance evaluation.  To assess the performance of our prediction model, we adopt 10-fold cross-val-
idation as well as some commonly used measures, such as specificity (SPE), precision (PRE), sensitivity (SEN/
Recall), accuracy (ACC), F1-score (F1) and Matthews correlation coefficient(MCC). These measures are calcu-
lated as,
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where TP, TN, FP and FN represent the numbers of true positive, true negative, false positive and false negative 
residues in the prediction, respectively. Moreover, Receiver Operating Characteristic (ROC) curve is applied to 
evaluate the prediction performance, which plots true-positive rate (TPR, sensitivity) versus false-positive rate 
(FPR, 1-specificity). We also calculate the area under the ROC curve (AUC).

Feature selection.  Features are critical in constructing a classifier using machine learning approaches. In 
our study, we extract sequence features, structure features, energy features and exposure features, together with 
Euclidean neighborhood and Voronoi neighborhood properties, for hot spots identification. In total, we generate 
600 features, including 200 site properties, 200 Euclidian neighborhood properties and 200 Voronoi neighbor-
hood properties.

To evaluate the feature importance of the 600 candidate properties, we apply a new two-step feature selection 
method on the training dataset. In the first step, we use minimum Redundancy Maximum Relevance (mRMR)35,36 
to sort the features. Then we use a wrapper method, where the features are evaluated by 10-fold cross-validation 
with the XGBoost37 algorithm. We select three features from the top-50 features as the initial feature combination, 
which is similar to the process in HEP31. Then we add correlation features by using sequential forward selection 
(SFS)38 method. In the SFS method, features are sequentially added to the initial feature combinations till an 

Energy featuresSequence features Structure features

Calculate structural neighborhood features

mRMR feature selectiond

Sequential forward feature selectiond

Extreme Gradient Boosting

Prediction results

Exposure features

SKEMPIASEdb Ab+ Alexov_sDB BID

Training dataset Test dataset

200 Site features 200 Euclidean features 200 Voronoi features

Figure 1.  Flowchart of PredHS2. Firstly, the training dataset is generated by integrating four datasets including 
ASEdb, SKEMPI, Ab+ and Alexov_sDB. And the independent dataset is extracted from the BID database. The 
residues in the datasets are encoded using a large number of sequence, structure, energy and exposure features 
and two categories of structural neighborhood properties (Euclidean and Voronoi). As a result, a total of 200 
site features, 200 Euclidean features and 200 Voronoi features are obtained. Then a two-step feature selection 
approach is applied to select the optimal feature set. Finally, the prediction classifier is built using Extreme 
Gradient Boosting based on the optimal feature set.
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optimal feature subset is acquired. Each added feature is the one whose add maximizes the performance of the 
classifier. The ranking criterion Rc indicates the prediction performance of the classifier, which is used in our pre-
vious PredHS15 and defined in the Methods section. This step-by-step feature selection method continues until 
the Rc score no longer increased. Figure 2 shows the Rc, F1 and MCC scores of the top-K features. Consequently, 
we select a set of 26 optimal features.

To illustrate the necessity for feature selection, Firstly, we get the predictive performance (F1 = 0.689) when 
we use all the features. Then, we compare the two-step feature selection method with three extensively used 
feature selection methods, including random forest (RF)39, recursive feature elimination (RFE)40 and maximum 
relevance minimum redundancy (mRMR)35. Table 1 displays the prediction performance of the four feature 
selection methods based on the training dataset with 10-fold cross-validation. Table 1 shows that feature selection 
can improve the performance of a classifier in our study. After feature selection, there is at least 6% increase in 
F1-score. Table 1 also shows that the two-step feature selection method gets the highest F1 score. The result illus-
trates that our two-step feature selection algorithm can efficiently boost the prediction performance with lower 
computational cost and less risk of overfitting.

Assessment of feature importance.  To better access the importance of the selected 26 features, we cal-
culate the F-scores based on the training dataset. F-score can measure the discriminative power of individual fea-
tures between hot spots and non-hot spots28. Figure 3 displays the feature importance of the selected 26 features 

Figure 2.  Performance of the two-step feature selection. (a) Shows the Rc scores of the top-K features and (b) 
shows the F1 and MCC scores of the top-K features.

Figure 3.  The feature importance of the selected 26 features.

Method ACC SPE PRE SEN F1 MCC

All features 0.753 0.806 0.721 0.677 0.689 0.487

RF 0.808 0.862 0.799 0.722 0.756 0.598

RFE 0.811 0.846 0.809 0.769 0.774 0.626

mRMR 0.794 0.826 0.769 0.763 0.757 0.588

Two-step 0.818 0.844 0.786 0.783 0.782 0.63

Table 1.  The performance of the two-step feature selection method in comparison with other feature selection 
methods.



www.nature.com/scientificreports/

5Scientific REPOrtS |  (2018) 8:14285  | DOI:10.1038/s41598-018-32511-1

and their contribution to the identification ability (in descending order). Table 2 lists the detailed information 
about the optimal 26 features, which are ranked by their F-scores.

As shown in Fig. 3 and Table 2, the weighted solvent exposure features (HSEAU) and weighted solvent expo-
sure features(HSEBU) in Euclidean neighborhood achieve the highest scores, which means that solvent exposure 
features have better discriminative power than traditional sequence and structural features in identifying hot 
spots. The weighted normalized residue contacts in the complex in Euclidean neighborhood shows good discrim-
inative power with the F-score of 0.689. The weighted Side-chain environment (pKa_1) and weighted Disorder_6 
score in Voronoi neighborhood are newly added features and they also achieve high scores. Through the data 
statistics of the 26 optimal features in Table 2, the newly added features account for 13 out of the total 26 optimal 
features, such as solvent exposure features, disorder score, blocks substitution matrix and hydrogen bonds. It 
means that the newly added features in PredHS2 compared with the original PredHS are highly effective. There 
are 12 site properties and 6 Euclidian neighborhood properties and 8 Voronoi neighborhood properties in the 
total 26 optimal features, which means that the structural neighborhood properties contribute to identifying hot 
spots, which is consistent with the findings in PredHS. As reported in the previous method, the ASA-based fea-
tures have good discriminative power. Although there are no ASA-based features in the selected 26 features, there 
are 14 features with weighted which are related to the Weighted fraction buried, this means that the Weighted 
fraction buried and the features related to ASA are also important.

To further state how features are shown to be more or less important, we use a heuristic for correcting biased 
measures of feature importance, called permutation importance (PIMP)41. The method normalizes the biased 

Method ACC SPE PRE SEN F1 MCC

RF 0.700 0.827 0.695 0.528 0.597 0.377

SVM 0.702 0.789 0.674 0.587 0.621 0.388

GTB 0.761 0.800 0.717 0.709 0.709 0.510

MLP 0.648 0.655 0.603 0.640 0.600 0.306

PredHS2 0.818 0.844 0.786 0.783 0.782 0.630

Table 3.  Comparison with other machine learning methods on the training dataset with 10-fold cross-
validation.

Rank Feature name Symbol F-score Feature type

1 Weighted Solvent exposure features (HSEAU) W_HSEAU 0.9346 Site

2 Weighted Solvent exposure features (HSEBU) in Euclidean neighborhood W_HSEBU_EN 0.7007 Euclidian

3 Weighted normalized residue contacts in complex in Euclidean 
neighborhood W_Ncrc_EN 0.6894 Euclidian

4 Weighted Side-chain environment (pKa_1) W_Pka1 0.6737 Site

5 Weighted Disorder_6 score in Voronoi neighborhood W_Disorder6_VN 0.6546 Voronoi

6 Δ(delta) normalized residue contacts Delncr 0.6086 Site

7 Pair potentials in monomer Ppm 0.3576 Site

8 Weighted Blosum (A) in Voronoi neighborhood W_BlosumA_VN 0.2991 Voronoi

9 Weighted Blosum (T) W_BlosumT 0.2258 Site

10 Weighted Sidechain energy score W_SCE1 0.1991 Voronoi

11 Side chain energy score (SCE-score (conserv)) SCE4 0.1842 Site

12 Weighted Second Structure (SS) helix in Voronoi neighborhood W_SS1_VN 0.1716 Voronoi

13 Second Structure (SS) coil in Voronoi neighborhood SS3_VN 0.1675 Voronoi

14 Weighted Disorder_4 score W_Disorder4 0.1502 Site

15 SCE-score (conbine_1) in Euclidean neighborhood SCE5_EN 0.13108 Euclidian

16 PSSM (Q) PssmQ 0.1261 Site

17 Hydrogen bonds in Euclidean neighborhood Hb_EN 0.1163 Euclidian

18 Weighted PSSM (H) W_PssmH 0.1117 Site

19 Blosum (W) BlosumW 0.1078 Site

20 Weighted Disorder_5 score W_Disorder5 0.0502 Site

21 Weighted SCE-score (conbine_1) in Euclidean neighborhood W_SCE5_EN 0.02217 Euclidian

22 Disorder_6 score Disorder6 0.01865 Site

23 Weighted PSSM (C) in Voronoi neighborhood W_PssmC_VN 0.01427 Voronoi

24 Physicochemical properties (polarity) in Euclidean neighborhood polarity_EN 0.001 Euclidian

25 PSSM (V) in Voronoi neighborhood PssmV_VN 0.00069 Voronoi

26 Blosum (F) in Voronoi neighborhood BlosumF_VN 0.00018 Voronoi

Table 2.  The optimal 26 features for identifying hot spots based on the two-step feature selection method.
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measure based on a permutation test and returns significance P-values for each feature. The PIMP P-values are 
easier to interpret and provide a common measure that can be used to compare feature relevance among different 
models. As shown in the supplementary material (Table S1), we can find that the PIMP P-value of the majority 
features are less than 0.05, which means that the majority of 26 optimal features are significant.

Here, we choose the top-3 features of the optimal 26 features for detail analysis. To display the discriminative 
power of the top-3 features for distinguishing hot spots from non-hot spots, we employ the box plot and F-test 
which is available in scikit-learn42. As shown in Fig. 4, the discriminative power of the top-3 features between 
hot spots and non-hot spots are prominent. Figure 4A shows the box plot of W_HSEAU in the training data-
set. The median value of W_HSEAU of hot spots is 1.44, while the median value of non-hot spots is 0.47, with 
P-value = 4.91 × 10−15. Figure 4B is the box plot of W_HSEBU_EN, in which the median value of W_HSEBU_EN 
of hot spots (10.9) is higher than that of non-hot spots (4.98), with P-value = 6.91 × 10−12. These results suggest 
the hot spots have a higher solvent exposure values43 than non-hot spots. Figure 4C represents the box plot of 
weighted normalized residue contacts in the complex in Euclidean neighborhood (W_Ncrc_EN). The median 
W_Ncrc_EN of hot spots is 5.4 and that of non-hot spots is 2.39 (P-value = 9.9 × 10−12). Thus, W_Ncrc_EN is 
a significant feature for distinguishing hot spots from non-hot spots. In our previous work (PredHS), we also 
found the features related to residue contacts were important. Besides, Fig. 4D–F show the box plots of the three 
features between hot spots and non-hot spots in the independent test set. We also find that these features have 
high discriminative power.

Comparison with other machine learning methods.  PredHS2 uses XGBoost37 to build the final model 
with the 26 optimal features. In this section, we compare PredHS2 with Support Vector Machines (SVM)44,45, 
Random Forest (RF)46, gradient tree boosting (GTB)47 and Multi-layer Perceptron (MLP) classifier48,49 which are 
known to perform relatively well on variety tasks. All these algorithms are implemented using the scikit-learn42 
python libraries with the default parameter configuration. Table 3 shows the performance comparison of 
PredHS2 and other machine learning methods on the training dataset with 10-fold cross-validation. It can be 
seen that PredHS2, RF, SVM, GTB and MLP achieve F1 score of 0.782, 0.597, 0.621, 0.709 and 0.600, respectively. 
The F1 score is the harmonic mean of the precision and sensitivity, which is extensively used to deal with unbal-
anced data. PredHS2 also outperforms the other four machine learning methods in other performance metrics. 
The results indicate that our proposed XGBoost-based PredHS2 model can boost the prediction performance.

Comparison with existing state-of-the-art methods.  To further evaluate the performance of the pro-
posed PredHS2, ten existing state-of-the-art protein-protein hot spots prediction methods, including iPPHOT33, 
HEP31, PredHS15, APIS28, Robetta20, FOLDEF21, KFC23, MINERVA26, KFC2a and KFC2b29, are compared on the 
independent test dataset.

Table 4 describes the detailed results. The prediction results of iPPHOT are obtained from the iPPHOT web 
server33. The results of PredHS are obtained from the PredHS web server34. The results of other methods are 
extracted from the summarized data in HEP31. Our PredHS2 method shows the best predictive performance 
(accuracy = 0.87, sensitivity = 0.77. specificity = 0.92, precision = 0.81, F1 = 0.79 and MCC = 0.70). This indicate 

Figure 4.  Box plot of hot spots and non-hot spots concerning their W_HSEAU (A), W_HSEBU_EN (B) and 
W_Ncrc_EN (C) in training dataset and W_HSEAU (D), W_HSEBU_EN (E) and W_Ncrc_EN (F) in test 
dataset, respectively. In each box plot, the bottom and top are severally the lower and upper quartiles and the 
middle line of the box is the median.
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that 77% of the true hot spots are rightly predicted (sensitivity) and 92% of the non-hot spots are rightly predicted 
(specificity). iPPHOT and HEP have a better sensitivity of 0.79 and 0.84, respectively. PredHS have a better spec-
ificity of 0.93. We can see that our PredHS2 method substantially outperforms the existing methods in four per-
formance metrics (accuracy, precision, F1-score and MCC). PredHS2 achieves the highest F1-score of 0.79, which 
means PredHS2 has a better balance between sensitivity and specificity. PredHS2 obtains at least 9% increase in 
F1-score and 13% increase in MCC value.

Figure 5 shows the comparison of PredHS2, iPPHOT and PredHS-SVM methods on the independent test 
dataset. Figure 5A shows the ROC curves and AUC (ROC) scores, PredHS2, iPPHOT and PredHS-SVM achieve 
AUC (ROC) scores of 0.831, 0.712 and 0.806, respectively. Figure 5B shows the Precision-Recall curves. It can be 
seen that PredHS2, iPPHOT and PredHS-SVM achieve AUC (Precision-Recall curve) of 0.734, 0.453 and 0.69, 
respectively. According to these results, our PredHS2 achieves the best predictive performance.

Case study.  We describe a case study of applying PredHS2 to predict hot spots from the complex of erythro-
poietin (EPO) receptor (PDB ID:1EBP, chain A) and erythropoietin mimetic peptide (PDB ID: 1EBP, chain C). 
As shown in Fig. 6, four hot spots (PHE93:A, PHE205:A, MET150:A and TRP13:C) and five non-hot spots have 
been experimentally determined at the binding interface. We use the following color scheme to display the results: 
true positives are colored in red; true negatives are colored in yellow; false positives are colored in green; false 
negatives are colored in purple. For the nine alanine-mutated residues, iPPHOT correctly predicted the four hot 
spots but incorrectly predicted two non-hot spots (THR151:A, GLY9:C) as hot spots. In contrast, our PredHS2 
approach correctly predicted all the nine residues: four residues (PHE93:A, PHE205:A, MET150:A and TRP13:C) 
are identified as hot spots and the rest as non-hot spots.

Conclusion
We have shown that PredHS2, a powerful computational framework, can reliably predict hot spots at the 
protein-protein binding interface. PredHS2 combines a variety of sequence, structure, energy, exposure and 
other features and together with Euclidean and Voronoi neighborhood properties, to improve prediction of hot 
spots, which relies on a two-step feature selection algorithm to select the most useful and contributive features to 
build the prediction classifiers. We also investigated what information of residue micro-environments is relevant 
and essential to the prediction of hot spots. Benchmarking experiments showed that our PredHS2 approach has 

Figure 5.  Comparison of PredHS2, iPPHOT and PredHS-SVM methods on the independent test dataset. (A) is 
the ROC curves; (B) is the Precision-Recall curves.

Method TP TN FP FN ACC SPE PRE SEN F1 MCC

PredHS2 30 80 7 9 0.87 0.92 0.81 0.77 0.79 0.70

iPPHOT 31 51 36 8 0.65 0.59 0.46 0.79 0.58 0.35

HEP 32 68 21 6 0.79 0.76 0.60 0.84 0.70 0.56

PredHS-SVM 23 81 6 16 0.83 0.93 0.79 0.59 0.68 0.57

APIS 28 67 21 11 0.75 0.76 0.57 0.72 0.64 0.45

Robetta 12 80 11 24 0.72 0.88 0.52 0.33 0.41 0.25

FOLDEF 10 78 11 28 0.69 0.88 0.48 0.26 0.34 0.17

KFC 12 75 12 27 0.69 0.85 0.48 0.31 0.38 0.19

MINERVA 17 79 9 22 0.76 0.9 0.65 0.44 0.52 0.38

KFC2a 29 64 24 10 0.73 0.73 0.55 0.74 0.63 0.44

KFC2b 21 77 12 17 0.77 0.87 0.65 0.55 0.60 0.44

Table 4.  Performance comparison of PredHS2 and other existing methods on the independent test dataset.
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significantly outperformed the other existing state-of-the-art methods on both benchmark and independent test 
datasets. In summary, the performance improvement benefits from the following aspects: (1) construction of 
a high-quality non-redundant training dataset; (2) integration of a variety of features especially two categories 
of structural neighborhood properties that collectively make a useful contribution to the performance; (3) a 
two-step feature selection approach to retrieve the useful features; (4) the XGBoost algorithm to effectively build 
the prediction model.

We believe that PredHS2 can be an effective tool for accurately predicting protein-protein biding hot spots 
with the increasing availability of high-quality structure data. A web server implementation is freely available at 
http://predhs2.denglab.org.

Methods
Datasets.  In the previous study, a widely used training dataset is the work of Cho et al.26, which was obtained 
from ASEdb4 and the published data of Kortemme and Baker20. It consists of 265 experimentally mutated inter-
face residues extracted from 17 protein-protein complexes. Recently, there are several new integrated databases 
in the published literatures, such as Assi et al.‘s Ab+ data6, SKEMPI database7 and Petukh et al.‘s Alexov_sDB8.

In this work, we construct a new training dataset of 313 alanine-mutated interface residues extracted from 
34 protein complexes after redundancy removal. The dataset is extracted from four datasets including Alanine 
Scanning Energetics (ASEdb)4, SKEMPI database7, Assi et al.‘s Ab+ data6 and Petukh et al.‘s Alexov_sDB8. 
We merge the above datasets and exclude the protein complexes in the BID dataset5. A total of 71 unique 
protein-protein complexes are obtained. Then we use CD-HIT50 to remove the redundancy and obtain a bench-
mark of 34 protein complexes. The interface residues are defined as hot spots with the ΔΔG >= 2.0 kcal/mol and 
the others are defined as non-hot spots. As a result, the benchmark has 313 interface residues of which contains 
133 hot spots residues and 180 non-hot spots residues. The benchmark can be found in Supplemental File 1.

Similar to our previous PredHS, we use the BID database5 as the independent test set to further assess the per-
formance of our model. In the BID database, the alanine mutation data were labeled as “strong”, “intermediate”, 
“weak”, or “insignificant”. In this study, only “strong” mutations are considered as hot spots and others are non-hot 
spots. Furthermore, the proteins in this independent test set are non-homologous to those proteins in the above 
training dataset. The test dataset is a collection of 18 complexes contained 127 alanine-mutated residues, where 
39 interface residues are hot spots. The data are listed in Supplemental File 2.

Features representation.  Features for machine learning methods is an important factor in building a 
model. Based on previous studies, we investigate a large number of features for identifying hot spots. We first 
extract 100D site features including exposure, energy, sequences and structure features. And then we calculate 
Euclidean neighborhood and Voronoi neighborhood features for each amino acid, which is similar to our previ-
ous PredHS15. For site features, a wide variety of exposure, energy, sequence and structure properties are selected 
for predicting hot spots in protein-protein iteraction, including physicochemical properties (12 features)51, 
Side-chain environment (pKa) (2 features)52, Position specific score matrix (PSSM) (20 features)53, Evolutionary 
conservation score (C-score) (1 feature)54, Solvent accessible area (ASA) (6 features)55,56, Normalized atom con-
tacts and normalized residue contacts (6 features)15, Pair potentials (3 features)13,57, Topographical score (TOP) 
(1 features)6, Four-body pseudo-potential (1 features)14, Side chain energy score (6 features)14, Local structural 
entropy(LSE)(3 features)58, Nearby interface score (1 features), Voronoi contacts (2 features)59, Second Structure 
(SS) (3 features), Disorder score (6 features)60, Blocks substitution matrix(Blosum62)(20 features)61, Solvent 
exposure features (7 features), Conservation score (1 feature), Hydrogen bonds (Hbplus) (1 feature).

In total, a large number of 100 × 3 × 2 = 600 features are selected for identifying hot spots residues. Among 
these features, 324 features are used in our previous PredHS15 and the rest are newly added to PredHS2. The 
details about these novel features are described below.

Figure 6.  Hot spot prediction results by using PredHS2 (A) and iPPHOT (B) for the EPO receptor complex. 
True positives (red), true negatives (yellow), false positives (green) and false negatives (purple) are colored. 
Chain A is colored in cyan and chain C is colored in blue.

http://predhs2.denglab.org
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Physicochemical properties.  The eleven physicochemical properties of an amino acid are hydrophobicity, hydro-
philicity, polarity, polarizability, propensities, average accessible surface area, Number of atoms, number of elec-
trostatic charges (NEC), number of potential hydrogen bonds (NPHB), molecular mass, electron-ion interaction 
pseudopotential (EIIP). The original values of the eleven physicochemical attributes for each residue are obtained 
from the AAindex database51. Besides, we also used pseudo hydrophobicity (PSHP) defined in HEP31 method.

Side-chain environment (pKa).  The Side-chain environment (pKa) is an effective metric in determining envi-
ronmental characteristics of a protein. The value of pKa is obtained from Nelson and Cox52 representing protein 
side-chain environmental factor and is extensively used by previous studies62.

Second Structure (SS).  The secondary structure is a significant structure-based attribute for prediction of hot 
spots in protein interface, which is computed by DSSP55. It is divided into three different categories namely helix, 
sheet and coil. In our study, types G, H and I in DSSP secondary structure are regarded as the helix; types B and E 
are considered as the sheet; and types T, S and blank are recognized as the coil. Therefore, secondary structure of 
each residue is encoded as a three-dimensional vector: helix (1, 0, 0), sheet (0, 1, 0) or coil (0, 0, 1).

Disorder score.  We used DISOPRED63 and DisEMBL64 to predict dynamically disordered regions of amino acid 
in the protein sequence. Disorder score is proved to be an is effective feature by previous studies62,65.

Blocks substitution matrix.  Blosum6261 is a substitution matrix which can be used for proteins sequence align-
ment. We use Blosum62 to count the relative frequencies of amino acid and their substitution probabilities.

Solvent exposure features.  Half-sphere exposure (HSE) is an excellent measure of solvent exposure, HSE has a 
superior performance concerning protein stability, conservation among fold homologs, computational speed and 
accuracy43. HSE conceptually separates an amino acid’ sphere into two half-spheres: HSE-up corresponds to the 
upper sphere in the direction of the chain side of the residue, while HSE-down points to the lower sphere in the 
direction of the opposite side66. In other words, a residue’s HSE-up measure is defined as the number of Cα atoms 
in its upper half-sphere, which contains the Cα − Cβ vector. Similarly, HSE-down is defined as the number of Cα 
atoms in the other lower half-sphere66. HSEpred66 is used to facilitate the HSE and CN (coordination number) 
prediction. Based on protein structure, We employ hsexpo43 to compute the exposure features, such as HSEAU 
(number of Cα atoms in the upper sphere), HEAD(number of Cα atoms in the lower sphere), HSEBU (the number 
of Cβ atoms in the upper sphere), HSEBD(the number of Cβ atoms in the lower half sphere), CN (coordination 
number), RD (residue depth) and RDa (Cα atom depth).

Conservation score.  The Conservation score is a sequence-based feature, it expresses the variability of residues at 
each position in the protein sequence. it is calculated based on PSSM53 and is defined as follows:

∑= −
=

Score p log p
(7)

i
j

i j i j
1

20

, 2 ,

where pi, j represents the frequency of residue j at position i. If a residue has a lower conservation score, this means 
the residue has a lower entropy (more conserved).

Hydrogen bonds.  We calculate the number of Hydrogen bonds by using HBPLUS67.

Weighted fraction buried.  As same as the procedure in PredHS, conventional structure-related features such 
as solvent accessible area and surface area burial (ΔASA) are highly effective to predict hot spots26. To improve 
discrimination performance, the Weighted fraction buried (WFB) for residue i is calculated by weighting the ratio 
of surface area burial (ΔASA) to the solvent accessibility in the monomer as below:

= ∗
Δ

−
W i W i ASA

ASA of the i th residue in the monomer
( ) ( )

(8)FB
i

The W(i) weights the contribution of each residue according to its relative contribution to the total interface 
area, it is defined as follows:

=
Δ

∑ Δ=
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j stands for an interface residue( )
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,
(9)

i
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Structural Neighborhood properties.  Similar to our previous work in PredHS, we use Euclidean distance and 
Voronoi diagram to calculate two types of structural neighborhood properties. The Euclidean neighborhood is 
a set of residues which located within a sphere of 5 Å defined by the minimum Euclidean distances between any 
heavy atoms of the surrounding residues and any heavy atoms from the central residue. Besides, We use Voronoi 
diagram/Delaunay triangulation to define neighbor residues in 3D protein structures. Voronoi tessellation parti-
tions the 3D space of protein structures into Voronoi polyhedra around individual atoms. In the circumstances of 
Voronoi diagram/Delaunay triangulation, a pair of residues is considered to be neighbors when at least one pair 
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of heavy atoms of each residue has a Voronoi facet in common (in the same Delaunay tetrahedra). We used the 
Qhull package68 to calculate Voronoi/Delaunay polyhedra.

Two-step feature selection.  Feature selection is performed to remove redundancy and irrelevant features, 
which contribute to further improving the performance of a classifier. Based on the 600 candidate properties, we 
apply a new two-step feature selection approach to select the most important features for identifying hot spots.

In the first step, we evaluate the feature elements using minimum Redundancy Maximum Relevance 
(mRMR)35. Max-Relevance means that selecting the features with the highest relevance to the target variable, 
while Min-Redundancy means that selecting the candidate features with minimal redundancy to the features 
already selected. The relevance and redundancy in mRMR are measured by the mutual information(MI), which 
is defined as:

= ∬I x y p x y p x y
p x p y

dxdy( , ) ( , )log ( , )
( ) ( ) (10)

where x and y are two random variables, p(x), p(y) and p(x, y) are their probabilistic density functions. By using 
the mRMR method, we get the Top-50 features and Top-500 features.

In the second step, we use a wrapper-based feature selection. The features are evaluated by 10-fold 
cross-validation with the XGBoost37 algorithm. We first select three features from the Top-50 features as the 
initial feature combinations, which is similar to the process in HEP31. Then we add correlation features by using 
sequential forward selection (SFS) method38. In the SFS method, features from the Top-500 features are sequen-
tially added to the initial feature combinations until the ranking criterion Rc no longer increased. The ranking 
criterion Rc is used in PredHS15 and represent the prediction preformance of the predictor. In each step, we choose 
the new feature with the highest Rc score. The Rc is defined as follows:

∑= + + +
=

R
n

ACC SEN SPE AUC1 { }
(11)c

i

n

i i i i
1

where n is the repeat times of 10-fold cross-validation: ACCi, SENi, SPEi and AUCi represent the values of the 
accuracy, sensitivity, specificity and AUC score of the i-th 10-fold cross-validation, respectively.

Extreme Gradient Boosting algorithm.  Gradient Boosting algorithm69 is a meta-algorithm to con-
struct an ensemble strong learner from weak learners, typically decision trees. The Extreme Gradient Boosting 
(XGBoost) proposed by Chen and Guestrin37 is an efficient and scalable variant of the Gradient Boosting algo-
rithm. In recent years, XGBoost37 is used extensively by data scientists and achieves satisfactory results on many 
machine learning competitions. XGBoost have advantages for its features such as ease of use, ease of paralleliza-
tion and high predictive accuracy.

In this study, the prediction of hot spots in protein interfaces can be considered as a binary classification prob-
lem. For the given input feature vectors χi (χi = {x1, x2, …, xn}, i = 1, 2, …, N), we use XGBoost to predict the class 
label yi (yi = {−1, +1}, i = 1, 2, …, N), where ‘−1’ represents non-hot spots residue and ‘+1’ indicate hot spots. 
And XGBoost is implemented using the scikit-learn42 python libraries. In the algorithm, XGBoost is an ensemble 
of K Classification and Regression Trees (CART)37,70. Basically, the training procedure is done by using an “addi-
tive strategy”: Given a residue i with a vector of descriptors χi, a tree ensemble model uses K additive functions 
to predict the output.

∑ χ= ∈
=

ŷ f f F( ),
(12)i

k

K

k i k
1

Here fk represents an independent tree structure with leaf scores and F is the space of functions containing all 
Regression trees. To learn the space of functions used in the model, XGBoost tries to minimize the following 
regularized objective.

∑ ∑ γ λ ω= + Ω Ω = +ˆObj l y y f where f T( , ) ( ) , ( ) 1
2 (13)i i k

2

In the equation above, the first term is a differentiable convex loss function, l, which measures the difference 
between the prediction ŷi and the target yi. The second term Ω penalizes the complexity of the model where T and 
ω are the number of leaves in the Tree and the score on each leaf respectively. γ and λ are constants to control the 
degree of regularization. The regularization term Ω helps to smooth the final learned weights to avoid overfitting. 
More directly, the regularized objective will tend to select a model adopting simple and predictive functions.

In XGBoost, the loss function is expanded into the second order Taylor expansion to quickly optimize the 
objective in the general setting, while the L1 and L2 regularizations are introduced. Besides the regularized objec-
tive, shrinkage and column (feature) subsampling are two additional techniques used to further reduce overfit-
ting37,71. After each step of boosting, shrinkage scales newly added weights by a factor η. This reduces the influence 
of each tree and makes the model learn slowly and (hopefully) better. Column subsampling is commonly used in 
RandomForest39. It considers only a random subset of descriptors in building a given tree. The usage of column 
subsampling also speeds up the training process by reducing the number of descriptors to consider. XGBoost 
uses the sparsity-aware split finding approach to improve gradient boosting algorithm for handling sparse data, 
introduces a weighted quantile sketch algorithm for approximate optimization and proposes a column block 
structure for parallelization.
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We use a grid search strategy to select the optimal parameters of XGBoost with 10-fold cross-validation on the 
benchmark dataset. The optimized number of boosted trees of the XGBoost is 2000 and the maximum tree depth 
for base learners (max_depth) is 5 and gamma is 0.005. The rest use the default parameters.

The PredHS2 method.  Figure 1 shows the overview of the PredHS2 architecture. Firstly, we construct a 
new training dataset of 313 alanine-mutated interface residues extracted from 34 protein complexes. The data-
set is generated from four datasets, including four datasets including ASEdb, SKEMPI, Ab+ and Alexov_sDB. 
Then, we extract various features from exposure, energy, sequence and structure features, together with Euclidean 
neighborhood and Voronoi neighborhood properties. In total, we generate 600 features for hot spots identifica-
tion. Among these features, there are 324 features which are used in our previous PredHS. Meanwhile, we add 
some novel effective features to PredHS2, such as solvent exposure features, side-chain environment, the second 
structure, disorder score and block substitution matrix. Next, we apply a new two-step feature selection method 
to remove redundancy and irrelevant features. In the first step, we evaluated the feature elements using minimum 
Redundancy Maximum Relevance (mRMR) and we get the Top-50 features and Top-500 features. In the second 
step, we use a wrapper-based feature selection, where the features are evaluated by 10-fold cross-validation with 
the XGBoost algorithm. We first select three features from the Top-50 features as the initial feature combinations. 
Then we add correlation features by using sequential forward selection (SFS) method. In the SFS method, we 
choose the new feature from Top-500 features with the highest Rc score in each step. Consequently, we select a set 
of 26 optimal features. Finally, an Extreme Gradient Boosting (XGBoost) classifier is built to predict hot spots in 
protein interfaces. We evaluate the performance of our PredHS2 by the 10-fold cross validation on the new train-
ing dataset and then we compare our PredHS2 with the previous studies on the independent test set.

The PredHS2 webserver is available at http://predhs2.denglab.org.
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