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Visualizing quantitative microscopy data: History and challenges

Heba Z. Sailem1, Sam Cooper2,3, and Chris Bakal3

1Department of Engineering Science, University of Oxford, Oxford, UK, 2Department of Computational Systems Medicine, Imperial College,

South Kensington Campus, London, UK, and 3Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, UK

Abstract

Data visualization is a fundamental aspect of science. In the context of microscopy-based
studies, visualization typically involves presentation of the images themselves. However, data
visualization is challenging when microscopy experiments entail imaging of millions of cells,
and complex cellular phenotypes are quantified in a high-content manner. Most well-
established visualization tools are inappropriate for displaying high-content data, which has
driven the development of new visualization methodology. In this review, we discuss how data
has been visualized in both classical and high-content microscopy studies; as well as the
advantages, and disadvantages, of different visualization methods.
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The importance of data visualization in science

Science occurs through the collection of data (observation),

analysis of these data (interpretation), and communication of

this analysis to audiences that may consist of one to millions.

Ideally data visualizations should be concise, intuitive and

unambiguous in their representation of the data. Although it is

not an explicit aim of data visualization, many of the best

representations of data are also visually appealing, command

attention, and draw an audience. Notably, the process of

turning observations to communicable results can often

involve considerable abstraction, and may require pre-existing

knowledge. For example, visualizing protein structures based

on nuclear magnetic resonance spectroscopy, or X-ray

crystallography, data involves making numerous assumptions

that may not always be correct. Thus, scientists are still often

the prisoners looking at shadows on the wall in Plato’s cave.

Classical microscopy

Of course, scientific observation is not always indirect. The

fields of cell biology and pathology are founded on the prin-

ciple that ‘‘seeing is believing’’, and make extensive use of

microscopy. The microscope is a powerful means by which to

gain insight into living systems in a way that requires few

conceptual leaps to perform data interpretation or

communication.

Due to its direct nature, visualization of microscopy-based

data has historically involved presentation of the images

themselves. The first example of visualizing data generated by

a microscope is largely credited to Francesco Stelluti, who in

1624, as part of a pamphlet celebrating the election of Pope

Barberini, and then later in 1630 as part of a book dedicated

to the Pope, presented hand drawn images of a magnified bee

observed through a microscope (Crane, 1999). Hand-drawn

representations of human observations continued to be the

main form of data visualization for microscopy data until the

late nineteenth century. Although drawings cannot be free of

human bias, and have little quantitative information, their role

in science was of tremendous impact. Even today, the

drawings of Robert Hooke and Ramón Cajal are visually

stunning, provoke a visceral response, and provide tremen-

dous scientific insight. Like any good scientific visualization,

experts, and non-experts, alike can understand them.

Using photography as a means to capture, and display,

microscopy images happened very quickly after the invention

of the camera (Overney & Overney, 2011), and continues in

cell biology even today. Obviously an image itself is a

powerful data visualization method in microscopy-based

studies as it directly presents the data – i.e. the phenotype

of cell. While cell microscopy now involves much more

advanced technologies, such as confocal microscopy, or

super resolution microscopy, the principle of presenting an

image itself as data visualization is still the same. Bias can

still easily be introduced when communicating data in this

fashion. Specifically, a portion of the data, such as the image

of a single cell, is typically selected by the human

experimentalist from a complex population, and portrayed

as ‘‘representative’’.
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Presenting the representative cell from a population is

often driven by practical concerns, as it would be unfeasible

to show images of all the cells in a dataset. However, an

obvious issue is that it is unlikely that any single cell can

accurately represent a population. Moreover, presenting

kinetic or 3D data as raw images is difficult in conventional

formats. Another critical issue with using raw images for

visualization is that the interpretation of the content is

dependent on the prior knowledge of the observer. An expert

in cell shape will see cell images in a different way to a

mathematician.

High-content analysis

Advances in microscope technology and workflows now allow

researchers to gather millions of images in very rapid fashion at

sub-cellular, cellular and population levels (Boutros et al.,

2015). As the sheer volume of images that can be generated in a

single experiment continues to increase, the ability of human

beings to directly examine cellular phenotypes decreases. To

facilitate the analysis of cellular phenotypes in large image-

based datasets, methods pioneered decades ago (Olson et al.,

1980) are now used routinely in high-throughput studies to

‘‘segment cells’’ (identify cellular boundaries), and quantify

basic aspects of cell morphology (e.g. size, width-length ratio,

protrusiveness) (Bakal et al., 2007; Graml et al., 2014).

Alternatively, when cells are labeled with antibodies, or dyes,

that detect specific proteins, and/or organelles, the levels and

localization of these proteins can be quantified at a single cell

level (Boland & Murphy, 2001; Collinet et al., 2010; Glory &

Murphy, 2007; Liberali et al., 2014; Perlman et al., 2004; Sero

et al., 2015). Cellular phenotypes can also be quantified over

time (Cooper et al., 2015). Often different transformations are

applied to the data, which can be used to project the data into

useful spaces, or generate additional features of interest

(Shariff et al., 2010). How raw features should be analyzed

appropriately is well beyond the subject of this review, and is

still a somewhat open question, but we and others have used

several statistical and computational methods to make use of

these features, especially in the context of high-throughput

screens (Bakal et al., 2007; Cooper et al., 2015; Graml et al.,

2014; Liberali et al., 2014, 2015; Pincus & Theriot, 2007;

Sailem et al., 2014; Yin et al., 2013). Newer ‘‘deep-learning’’

methods process images without segmentation to quantify

cellular phenotypes (Ciresan et al., 2013).

Imaging where many cellular features are quantified is

often termed ‘‘high-content’’ analysis (HCA) (Giuliano et al.,

1997).1 The advantages of performing HCA in cell biology

are many fold, but foremost among these is that cellular

phenotypes are described, in unbiased, systematic and quan-

titative fashions; thereby allowing rigorous analysis to be

performed. HCA has been typically been associated with

phenotypic genetic or chemical screens (Taylor, 2007), and is

also now being used in the context of pathology (Rizzardi

et al., 2012). However, if you can quantify hundreds of

different features for every cell, and your dataset can be

comprised of millions of cells, how does one best visualize

this data?

Bar charts and box plots

Bar charts, box plots and parallel coordinate graphs (or ‘‘line

graphs’’) are frequently used to display data generated by

high-throughput imaging (Figure 1A). In the case of bar

charts, they are generally used in microscopy-based studies to

compare a small number of features between populations of

cells (e.g. the average size of different cell types; Figure 1B).

Despite their common use, bar charts in particular are not

appropriate for microscopy-based data. Bar charts were

originally designed to display categorical, and not continuous

variables, and thus may hide the underlying distributions of

data (Weissgerber et al., 2015). Many cellular phenotypes not

only exhibit non-Gaussian distributions at the single-cell

level, but also are often heterogeneous (i.e. there exists

distinct sub-populations (Altschuler & Wu, 2010; Pelkmans,

2012; Yin et al., 2013), thus bar charts are effectively

‘‘hiding’’ data. Box plots are slightly more appropriate for

high-content data, as they provide a broad overview of the

spread, and skew, of the data (Figure 1C). However,

presenting multiple features generated during HCA as boxes

is not intuitive, does neither provide a good sense of how

multiple features may be related, nor is useful for conveying

the magnitude of differences between features. Finally, using

bar or box charts to display dozens-hundreds of cells,

let alone millions, is not feasible. Pie charts face similar

issues.

Parallel coordinate graphs (Gehlenborg & Wong, 2012c)

were developed over 150 years ago, and remain well used

today. Classic examples include those used by Gannett to

visualize census data (Hewes & Gannett, 1883), and Fisher’s

visualization of Iris phenotypes (Fisher, 1936). Parallel

coordinate graphs are highly amenable for visualizing high-

content data in 2D (Figure 1D), as it allows the observer to

quickly interpret relationships between individual dimensions

(Collinet et al., 2010; Graml et al., 2014). However, like bar

charts or box plots, the observer cannot immediately translate

the data presented as a parallel coordinate graph into a

meaningful representation of a cellular phenotype, or what the

cell actually looks like.

Heat maps

The use of heat maps, or color maps, to display high-

dimensional imaging data was inspired by the use of heat

maps to visualize transcriptomic data, which can involve

displaying the expression levels of hundreds-thousands of

mRNAs, for dozens-hundreds of samples, in a single graph.

However, heatmaps have a long history that far predates

expression profiling, and were first used to display economic

data (Gehlenborg & Wong, 2012a; Loua, 1873) In heat maps,

each value is represented as a colored box, and the value is

directly represented by color type (i.e. green or red for

positive and negative values), and color intensity (high

intensity for high values; Figure 1E). Heat maps are excellent

for datasets comprised of large numbers of high-dimensional

vectors, though as mean values are often displayed; heat

maps, like bar charts, can misrepresent the underlying

1High-content data does not necessarily mean ‘‘high-throughput’’, as
even a single image may be quantified in a very high-dimensional
manner. Conversely, high-throughput is not by definition high-content,
as a genome-wide RNAi screen can be performed by measuring a single
feature (e.g. viability) following gene depletion.
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population distribution. Positive correlations between pheno-

types are well captured by heatmaps. For example, when the

phenotypes following systematic gene depletion (Bakal et al.,

2007; Graml et al., 2014), or treatment with small molecules

(Perlman et al., 2004), are clustered in heat maps based on the

similarity of their phenotypic signatures, the eye is immedi-

ately drawn to highly similar phenotypes that cluster together.

However, heat maps poorly represent correlations that are

weak, or even negative, as two very distinct phenotypes can

appear very close to one another on the heat map (i.e.

following clustering), but in fact can be quite different. A

related issue is that it is difficult to visualize the relationship

between more than two phenotypes or features using heat

maps, because there is only a single degree of freedom

Figure 1. Data visualization in eight ways.
(A) Typical images of three different breast
cancer cell lines, hs578T, HCC1143 and
ZR75.1 lines, generated during the course of
a high-throughput image-based screen. Single
cells were segmented, features were quanti-
fied using Acapella image analysis, and the
data was visualized using several methods.
(B) Average feature values plotted using a bar
graph. (C) Average feature values and stand-
ard deviations plotted using a box and
whisker plot. (D) Normalized average feature
values of three cell lines plotted using a line
graph. (E) Feature values plotted as a heat
map. (F) Network-based graphs of pheno-
types. Each node is a feature, and each edge
represents the correlation between features.
(G) Scatter plot of single cells in three
Principal Component (PC) space. (H)
Frequency of single cell phenotypes,
described in two PC space, plotted as a
landscape. (I) PhenoPlots of average cell
shapes. (see colour version of this figure at
www.informahealthcare.com/bmg)
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regarding the placement of one feature with regard to another

– meaning one row can either be above or below, or one

column can only be to the left or right of another. For

example, phenotypes A and B may be more similar to each

other than to phenotype C; which is well observed on a heat

map. However, visualizing the differences between A and B

themselves can be challenging if the magnitude of these

differences is less than that of the differences to C. This

problem can sometimes be resolved by adequate transform-

ation of the data, for example coloring based on log-

transformed data.

An additional weakness of heat maps is that different

people see color differently, which can lead to inconsistent

interpretations of heat maps (Gehlenborg & Wong, 2012b;

Wong, 2010). Finally, it is very difficult to grasp what a cell,

or population of cells, actually looks like based on colored

boxes.

Network graphs

As the outcome of many high-throughput phenotypic studies

is the inference of functional interactions between genes,

based on phenotypic similarity of genetic depletion, visualiz-

ing these interactions on a genome-wide scale is often best

done through images displaying networks of interactions.

There are numerous striking examples of using networks to

display functional interactions (Costanzo et al., 2010; Snijder

et al., 2013). Despite the frequent use of this type of graph in

high-content studies, it is important to differentiate visual-

ization of interactions between genes, and visualizing inter-

actions between cellular features – which is the subject of this

review.

Network graphs can be used to describe images, where

each node is a feature, and each edge is a correlation

(Figure 1F) (Snijder et al., 2009). Edges can also be scaled

(either in length or thickness) to represent the extent of that

correlation. In feature networks edges can also be colored to

describe whether a correlation is positive or negative (Keren

et al., 2008). Furthermore, when methods such as Bayesian-

based methods are used to analyze datasets, causal relation-

ships between features (Sero et al., 2015), or phenotypes

(Sailem et al., 2014), can inferred, and such relationships can

be visualized by assigning directed arrows between features.

Compared to heat maps, network graphs lead to a much more

intuitive visualization of relationships between individual

values in a dataset.

Scatter plots

Scatter plots have been used since the earliest days of HCA,

and are the basis for displaying data analyzed by

Fluorescence-Activated Cell Sorting (FACS). Because each

point in a scatter plot can represent a single cell, they are

excellent for displaying inter- and intra- population pheno-

typic heterogeneity, and identifying small sub-populations

(Loo et al., 2009; Singh et al., 2010; Slack et al., 2008).

Scatter plots are often used to display three dimensions, and

data reduction methods such as Principal Component

Analysis (PCA) can be used to identify useful three dimen-

sional projections from datasets that may contain hundreds of

dimensions (Figure 1G). Additional dimensions can be

presented by coloring and/or sizing different points plotted

in 3D. There is an intuitive nature to scatter plots, and the

structure of even complex datasets can be easily conveyed to

both experts and non-experts alike. Scatterplots are also very

effective for assessing distances between data points, however

care must be taken to ensure distances remain true to the

original datasets.

However, what the phenotypic space of the scatter plot

itself may represent or translate to in terms of real images

is not always clear, especially when the phenotypic space

being displayed represents a transformed subspace of a

much larger original space (Figure 1G). Moreover, data

visualization by scatter plots is unsuitable when populations

exhibit high degrees of overlap in phenotypic space. Thus,

in the context of genetic or chemical screens when experi-

ments number into the thousands or millions, scatter plots of

the data often appear as a large poorly interpretable ‘‘cloud’’.

Conversely, scatter plots are often not appropriate for

visualizing very sparse datasets. Given these advantages

and disadvantages, we suggest scatter plots are best used

to display both intra- and inter-population phenotypic

heterogeneity when the data is well distributed in phenotypic

space, and there are 1000–10 000 datapoints. With these

constraints in mind, scatter plots are excellent for initial

data exploration as well as for the presentation of processed

data.

From frequencies to landscapes

A commonly used method in data visualization is the use of

histograms, as estimates of underlying probability distribu-

tions (Pearson, 1895). Such methods have been used to

visualize single cell high-content data; such as the frequency

of a 1D phenotype (Keren et al., 2008; Perlman et al., 2004).

Histograms can be generated that describe 2D phenotypes,

where the x- and y-axes now describe two different features,

and contour lines and/or shading is used to describe

frequency; such graphs resemble topographic maps (Leha

et al., 2015).

The intuition behind a 1D or 2D histogram can be

extended to create 3D surfaces, or landscapes. By borrowing

concepts from dynamical systems theory, such landscapes –

whether they are generated using estimates or actual distri-

butions – can be interpreted as either landscapes of fitness

peaks or attractors. Landscapes derived from real data have no

doubt been inspired by landscapes that have been used to

describe theoretical concepts such as Waddington’s visual-

ization of phenotypic canalization during fate determination

(Waddington, 1957). In a Waddington-type landscape, regions

of phenotypic space where cells are more likely to explore are

visualized as ‘‘basins’’ in the landscape, or attractor regions.

A region between two attractors is one that cells can explore,

but are unlikely to exist in for the long-term. Peaks in the

landscape are regions where phenotypes are particularly

unstable, and ‘‘fall from’’ towards attractors. In contrast, in

fitness landscapes peaks are regions of phenotypic space that

biological systems are attempting to ‘‘climb’’ (Kauffman,

1993). At the peak, the system has achieved the maximal

possible fitness in a given environment. Once the peak is

found a system (cell) can exist stably near, or at, the peak. A
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classic example is the Fujiyama landscape, where one peak

dominates the landscape (Kauffman, 1993)

The advantage of using landscapes for high-content data is

that landscapes are compact and intuitive representations of

often very complex phenotypic spaces. Moreover, landscapes

can provide insight into how cells in the population are

dynamically exploring this space – even when the data is static

in nature. Depending on how landscapes are generated using

real datasets, stable phenotypes present in the dataset may

appear as basins, peaks or even both. Snijder et al. (2012) have

used landscapes to describe the relationships between cell size,

cell density and viral infection following RNAi screening. Here

peaks represent phenotypes that are most susceptible to viral

infection, and thus are most analogous to fitness peaks. We

have used such plots to show the frequency of particular shapes

in a dataset, where the most predominant shapes can be

considered fitness peaks (an example is shown in Figure 1H),

and how systematic gene depletion affects the topology of

fitness landscapes (Cooper et al., 2015; Yin et al., 2013).

We have also generated landscapes based on a dataset

describing phenotypes following depletion of hundreds of

genes. Such landscapes describe the potential space that can

be explored by cells over a wide range of genetic back-

grounds. In these cases, we have combined ideas from both

attractor and fitness landscapes. Wild-type cells exist at a

peak in the landscape, that cells are striving to ‘‘climb

towards’’ whereas alternate stable forms exists as attractors

that cells can ‘‘fall into’’, and become ‘‘trapped in’’

depending on their genetic background – for example, in

cases of very deleterious mutations (Yin et al., 2014).

Glyph-based methods

In all the cases, we have described thus far to present high-

content data, no visualization method provides a sense of

what the specimen under investigation, the cells themselves,

actually look like under a microscope. Thus, while HCA

provides a means by which to quantify microscopy data, it

comes at the price of weakening one of the great strengths of

microscopy – the power to present the data in as direct a

manner as possible.

Quantitative morphological data can be presented as scaled

contours of cells, which provides a simple, but very powerful

and intuitive means by which to convey complex phenotypes

(Keren et al., 2008; Pincus & Theriot, 2007). Furthermore, we

have recently developed a method termed PhenoPlot that

presents phenotypic data as graphical, and accurately scaled,

representations in graphs which resemble actual cells

(Figure 1I) (Sailem et al., 2015). Each PhenoPlot can be

used to display multiple features of single cells, or the average

cell of a population, simultaneously as an intuitive glyph.

PhenoPlots are based on facial glyphs devised by Herman

Chernoff where k-dimensional data is represented as cartoon

faces (Chernoff, 1973), and are also similar to striking graphs

made by W. Duane Brown to convey the average and standard

deviation of 11 dimensions by scaling different box-shaped

body parts of a cartoon body (Williams, 1967). PhenoPlots

have two key aspects that make them appropriate for

high-content data. First, multiple features can be shown in

one single glyph, which provides a compact representation

that is not offered by bar charts, heat maps or scatter plots.

Second, PhenoPlots are intuitive representations of cellular

phenotypes that are interpretable by non-experts. However,

PhenoPlots are not ideal for displaying datasets describing the

phenotypes of single cells in large populations, and are poor

to describe more than �12 features at a time.

Cell simulations

One means by which to display complex numerical data

derived from image-based analysis is to generate simulated

cells based on actual data (Johnson et al., 2015a,b; Murphy,

2012). Simulations are particularly powerful because they are

perhaps the best visual representation of complex quantitative

phenotypes, even when such populations might not actually

be present in the data (i.e. the average cell). Unlike almost any

other type of data visualization method, the number of

features they can display scales well with the number of

features that can be measured. Moreover, such simulations are

ideal for predictive studies and hypothesis generation, as the

effects of perturbing one or more features on all other features

can be determined. Although cell simulations can be used to

display the phenotypes of single cells in complex populations

(Johnson et al., 2015b; Rajaram et al., 2012), they are unlikely

to be useful in displaying large datasets, as the level of visual

complexity would exceed that which makes visualization

useful.

The future

The complexity of all imaging data, but especially that which

can be acquired in high-throughput, is already increasing at a

rapid rate. Recent advances in technologies mean that single

cell phenotypes can be quantified across millions of single

cells in 3D, and over time. However, already data visualiza-

tion tools lag considerably behind imaging tools, thus there is

an immediate challenge to develop new ways to present

microscopy-based data. Given the remarkable interactive

multi-media environments we are able to explore on com-

puters, televisions and phones, the future of scientific

visualization must surely be headed in this direction.

However for such visualization tools to become widespread,

scientists, publishers and their audiences alike, must accept

and embrace data presentations that break the mold of the 2D

static figures we have become so accustomed to.
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