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Objective: Reliable quantification of white matter hyperintensities (WHMs) resulting

from cerebral small vessel diseases (CSVD) is essential for understanding their clinical

impact. We aim to develop and clinically validate a deep learning system for automatic

segmentation of CSVD-WMH from fluid-attenuated inversion recovery (FLAIR) imaging

using large multicenter data.

Method: A FLAIR imaging dataset of 1,156 patients diagnosed with CSVD associated

WMH (median age, 54 years; 653 males) obtained between September 2018 and

September 2019 from Beijing Tiantan Hospital was retrospectively analyzed in this study.

Locations of CSVD-WMH on the FLAIR scans were manually marked by two experienced

neurologists. Using the manually labeled data of 996 patients (development set), a

U-shaped novel 2D convolutional neural network (CNN) architecture was trained for

automatic segmentation of CSVD-WMH. The segmentation performance of the network

was evaluated with per pixel and lesion level dice scores using an independent internal

test set (n = 160) and a multi-center external test set (n = 90, three medical centers).

The clinical suitability of the segmentation results, classified as acceptable, acceptable

with minor revision, acceptable with major revision, and not acceptable, was analyzed

by three independent neuroradiologists. The inter-neuroradiologists agreement rate was

assessed by the Kendall-W test.

Results: On the internal and external test sets, the proposed CNN architecture

achieved per pixel and lesion level dice scores of 0.72 (external test set), and they

were significantly better than the state-of-the-art deep learning architectures proposed

for WMH segmentation. In the clinical evaluation, neuroradiologists observed the

segmentation results for 95% of the patients were acceptable or acceptable with a

minor revision.

Conclusions: A deep learning system can be used for automated, objective, and

clinically meaningful segmentation of CSVD-WMH with high accuracy.

Keywords: masking white matter hyperintensities, deep learning, neural network, segmentation, clinical

evaluation
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INTRODUCTION

White matter accounts for approximately half of the adult
cerebral hemisphere volume, and it primarily contains
myelinated axons that connect various gray matter areas of
the cerebral cortex and subcortical regions with each other
(1). White matter lesions damage this connectivity, leading

to an interruption in communication between different
functional areas, which ultimately manifests in a form of various

neurobehavioral disorders (1, 2).
White matter hyperintensity (WMH), or leukoaraiosis are

characteristic lesions of the white matter that appear as
hyperintense regions on the fluid-attenuated inversion recovery
(FLAIR) magnetic resonance images (MRI) (3–6). Clinically,
WMHs can be caused by many conditions, such as plaque
accumulation in the white matter small vessels, small vessel
inflammation, toxicity after medication use, genetic white matter

diseases, infections, demyelinating diseases, metabolic diseases,
tumors, brain trauma, and persistent chronic damage in white
matter small vessels (4). Matsue and others considered that these
imaging findings correspond to a series of histological changes.
For example, histological analysis revealed that the ventricle’s
high signal corresponded to a pale myelin sheath, perivascular
proliferation, a discontinuous inner layer of ependyma, and
increased subependymal glia. The hyperintensity in the deep
and subcortical white matter has been primarily observed as a
result of the pale myelin sheath and perivascular hyperplasia.
Perivascular hyperplasia has been mainly found in the frontal
and/or apical subcortical white matter (4, 7–13). The diameter
of hyperplastic areas was usually <3mm and had an obvious
boundary. The diffused white matter lesions (WMLs) in
Binswanger’s disease are characterized by a pale myelin sheath
and tissue thinning due to the loss of myelin sheaths and axons.
All of the above WMLs show different degrees of arteriosclerosis
(12, 13).

Although WMLs are closely related to cerebrovascular
diseases and vascular risk factors, their pathogenesis remains
largely unclear and they can be caused by multiple factors (14).
WMHs have been observed to be the main manifestation of
cerebral small vessel disease (SVD) and they are important
factors in the indication of stroke, dementia, and aging (7–13).
Additionally, WMHs have been observed to be prevalent in aged
people (15).

At present, the Age-related White Matter Changes
(ARWMC), Fazekas, modified Scholten’s, and Ylikoski scales are
widely used in clinical practice (16–18). Existing quantitative
methods are time-consuming, laborious, and subjective.
Currently, deep convolutional neural networks (CNNs) have
been shown to be useful and effective in medical applications.
Thus, a highly accurate system for automatic segmentation of
WMH aid neuroradiologists in timely quantitative assessment of
WMH and significantly reduce the time required for diagnoses
(4, 19–22).

In this work, we propose a deep learning system (DLS) for
efficient, objective, and automatic prediction of WMH from the
FLAIR images. We compare the proposed DLS with the state-of-
the-art deep learning architectures and validate its performance

using two independent multi-center test datasets. Finally, to
analyze the clinical utility of the proposed DLS and check
its acceptance by clinicians, we perform a qualitative analysis
whereby three clinical neuroradiologists assess the accuracy and
quality of the WMH segmentation on four levels, viz: acceptable,
acceptable with minor revision, acceptable with major revision,
and not acceptable.

MATERIALS AND METHODS

The study was approved by the Ethics Committee of the Beijing
Tiantan Hospital in accordance with the Helsinki Declaration.
Written informed consent from the participants was not required
for participation in this study.

Study Design and Participants
This study retrospectively analyzed the data from 1,156 patients
diagnosed with the CSVD associated WMH admitted to
the Beijing Tiantan Hospital between September 2018 and
September 2019. The patients with a mention of WMH in their
electronic health records (EHRs) were reviewed by clinicians
for the presence of WMH and the patients with confirmed
WMH were included in this analysis. Patients with poor FLAIR
image quality were excluded from the analysis. The included
patients were randomly divided into a development dataset (n
= 996, ∼85% of the data) and an independent internal test
dataset (n = 160). Furthermore, for external validation of the
segmentation performance, 90 randomly selected patients with
clinically diagnosedWMH from the Third China National Stroke
Registry (CNSR-III) study were included in the analysis as an
external test dataset.

Data Distribution
MRI Acquisition
All the patients were reviewed for the availability of good quality
FLAIR images. The scans were acquired from multiple different
scanners with a field strength of either 1.5T or 3T according to the
clinically used FLAIR collection protocol. The analyzed images
had an axial thickness between 0.55 and 1.2mm and the sagittal
and coronal view spacings were between 0.43 and 0.9 (equal along
both the planes).

Manual Annotation of the WMH
In total, we included 34,228 T2-FLAIR images from
1,156 patients from Beijing Tiantan Hospital with labeled
segmented WMHs. In this data set, we labeled 12,087 small
leukoencephalopathies (<20 plex∗spacing), 14,759 medium
leukoencephalopathies (between 20 and 150 plex∗spacing) and
4,003 large leukoencephalopathies (over 150 plex∗spacing).

For clinical evaluation data set included 90 patients’ T2-FLAIR
images from three other hospitals across China, which were
included in The Third China National Stroke Registry (CNSR-
III). Additional detailed information about the lesion sizes can
be found in Table 1. Each volumetric MRI had a vertical spacing
between 0.55 and 1.2mm. For each image, the spacing along
the x- and y-directions varied from 0.43∗0.43 to 0.9∗0.9 mm2
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TABLE 1 | Data distribution in the manuscript.

Positive number

DLS development Traning set 870 patients

Validation set 126 patients

Inner test set# 160 patients

Summary 1,156 patients

Clinical evaluation Test data set 90 patients

Summary 1,246 patients

# inner test set used for the code optimizzatio program only.

Test data set used for the clinical evaluation only.

TABLE 2 | Validation Test 1.

Data set Lesion size Percentage

correctly

labeled (n,%)

Dice

Data set 1

Small <20 (plex*spacing) 462 (64.71%)

Medium 20 ∼ 150 (plex*spacing) (80.09%)

Large >150 (plex*spacing) 39 (96.12%) 0.722

Data set 2

Small <20 (plex*spacing) 601 (68.37%)

Medium 20 ∼ 150 (plex*spacing) 909 (82.86%)

Large >150 (plex*spacing) 325 (96.73%) 0.776

Date set 3

Small <20 (plex*spacing) 361 (50.14%)

Medium 20 ∼ 150 (plex*spacing) 425 (68.77%)

Large >150 (plex*spacing) 234 (92.49%) 0.722

between consecutive pixels. The distribution of pixel spacings for
each data set is shown in Table 2.

Development of Deep Learning System for WMH

Segmentation
For automatic segmentation of the WMH, we developed a deep
learning system using the data from the training dataset along
with manual annotations (Figure 1). The deep learning system
consisted of a four layered modified U-Net architecture which
is presented in Figures. The architecture was trained using 996
patients’ data from the development dataset. The model was
designed to predict a 2D lesion mask using 2D axial slices of
FLAIR images. The FLAIR images were first preprocessed by
scaling the global (3D) image intensities to follow a standard
normal distribution (mean of 0, and standard deviation of 1).
Next, images were zero-padded to obtain square-shaped images
in the axial plane. The images were next transformed to have
uniform axial dimensions of 384 × 384 pixels either using
bilinear interpolation (for images with dimensions smaller than
384 × 384 pixels) or using the center crop technique (for images
with dimensions larger than 384 × 384 pixels). The decision to
center crop the larger images was taken to preserve the spatial
resolution of the image which was observed to crucial in the
detection of small lesions.

FIGURE 1 | Flowchart of the distribution of patients in the training and clinical

evaluation steps. The distribution and classification of all samples in each step

was used for the model training and clinical evaluation steps.

The model was trained using the above preprocessed 2D
axial slices of T2 Flair scans (input shape: 384 × 384 × 1)
with an Adam optimizer for 200 epochs using a cross-entropy
loss and a batch size of 32. The initial learning rate was set
to 3 × 10−4. To increase the generalizability of the model,
data augmentation strategies including vertical flip, horizontal
flip, rotation, contrast enhancement, scaling, translation, and
addition of Gaussian noise were randomly applied to the images
during the training process. The learning rate was modulated
based on the dice score on the reserved validation set (n =

126 patients from the development dataset). The learning rate
was reduced by 10% if the validation set dice score did not
improve for 30 consecutive epochs. To avoid model overfitting,
the training was stopped if the validation set dice did not improve
for 60 consecutive epochs. After the completion of training, the
model with the highest dice score on the validation set was
selected as a final segmentation model. This model was then used
for automatic segmentation of WMH in the external and internal
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test datasets. The complete 3D WMH mask for each patient was
computed by concatenating the 2D WMH masks from all the
axial slices.

Performance Evaluation of the DLS
The segmentation performance of the proposedDLSwas assessed
using per-pixel precision, recall, dice score, and accuracy. The
precision was defined as the total number of correctly predicted
WMHpixels divided by the total number of pixels predicted to be
of WMH. The recall was defined as the total number of correctly
predicted WMH pixels divided by the total number of WMH
pixels in the ground truth segmentation. The dice score was
calculated as 2∗precision∗recall/(precision + recall). Also, based
on the precision and recall, the receiver operating characteristics
(ROC) curves were constructed and the area under the ROC
was calculated. All these metrics were calculated for each

patient and final results on the entire dataset were calculated
as the arithmetic mean of the per-patient value. Also, the dice
score was independently calculated for small, medium, and
large lesions.

Also, the dice score is biased toward the correct prediction
of large WMH and by correctly segmenting one large WMH
the model can have a high dice score despite it missing
multiple small WMH. Therefore, considering the importance
of correct segmentation of small WMH, we also employed
a lesion-wise precision, recall, dice score as a performance
measure. In the lesion-wise analysis, a lesion was said to
be correctly identified if at least 40% of the lesioned pixels
were correctly marked by the prediction model. In this
manner, by counting the correctly identified lesions, and
missed lesions, the lesion dice score, precision, and recall
were calculated.

FIGURE 2 | (A) Example cases of white matter hyperintensities (WMHs) labeled manually and by the DLS system. (B) WMH lesion distribution in the training and

validation step. (C) Data distribution in the model development for training and validation.
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Lastly, using the above evaluation metrics, we compared the
segmentation performance of the proposed DLS with the state-
of-the-art WMH segmentation architectures named U-Resnet
and 3D-unet. The architectures were constructed according to
the best settings proposed by the respective authors and were
trained using the same training data as that of the proposed DLS.

Clinical Evaluation of the Proposed DLS
To analyze the clinical utility of the proposed DLS and assess
its acceptance by clinicians, we performed a qualitative clinical

FIGURE 3 | Network architecture of the proposed two-dimensional (2D)

convolutional neural network (CNN). The network has 19 layers integrating

nine Convolution blocks. Bilinear interpolating arrows indicate up sampling

operations to make predictions for the segmentation task. The pool arrow

indicates the down sampling operation to gradually increasing the receptive

field for the segmentation task. Concatenate connections are used to fuse

Multi-scale features in the network. Batch normalization is a linear

transformation of the features performed to reduce the covariance shift, thus

speeding up the training procedure. Convolution bars indicate the convolution

operation, which computes the features. The number 16, 32, 64, 128, 256

indicates the number of channels in that layer, and 3·3·3·3·3·3 denotes the

size of the 2D CNN kernels.

analysis. In this analysis, three expert neuroradiologists with
more than 7 years of experience independently assessed the
WMH segmentation results of the proposed DLS for the
90 patients from the external test set. Each neurologist was
instructed to rate the segmentation quality of the proposed DLS
into four grades, with each of them being defined as:

Grade I (perfectly acceptable, score 4): no missed lesions
and <5% mismatch between the predicted and the ground-
truth lesions.
Grade II (acceptable with minor revision, score 3): small
lesions: 1-4 missed lesions and <10% mismatch for predicted
lesions; medium lesions: <2 missed lesions and <5%
mismatch; large lesions: no missed lesions.
Grade III (acceptable with major revision, score 2): small
lesions: more than four missed lesions and <50% mismatch;
medium lesions: more than two missed lesions. Large lesions:
more than 30% mismatch.

FIGURE 4 | Model performance in terms of the training loss, validation score,

training accuracy and validation accuracy.
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TABLE 3 | Models head-to head analysis (Data set 2)/Correct labled ratio.

Models Small lesions

(879)

Medium lesions

(1,097)

Large lesions

(336)

U-Resnet 551, 62.68% 863, 78.66% 321, 95.54%

3D-unet 365, 41.52% 778, 70.92% 328, 97.62%

Our model 601, 68.37% 909, 82.86% 325, 96.73%

TABLE 4 | Models head-to head analysis.

Our model Our model

no preprocess

U-Resnet 3D-unet

ACC. 0.97 0.906 0.97 0.93

Sensitivity 0.7244 0.5706 0.6024 0.6499

Specificity 0.9989 0.9998 0.9998 0.9997

AUC 0.9959 0.9944 0.9958 0.9896

Grade III (not acceptable, score 1): small lesions: more than
eight missed and more than 50% mismatch; medium lesions:
more than two missed; Large lesions: more than 30% missed
and more than 30% mismatch.

Statistical Analysis
The inter-radiologist agreement rate and the Kendall W
statistic were calculated for each validation using SPSS software
(version 20.0). One-way ANOVA with post hoc Tukey’s test was
applied to assess the differences between each group. Statistical
significance was considered at p < 0.05. ROC curve and AUC
score are performed for the segmentation analysis (https://www.
kaggle.com/kmader/use-roc-curves-to-evaluate-segmentation-
methods).

RESULTS

Baseline Imaging Characteristics
The FLAIR images from the 1,156 patients contained a
total of 34,228 2D axial slices. In these slices, following
manual annotations, a total of 12,087 small, 14,759 medium,
and 4,003 large WMH lesions were identified (Figure 1).
The distribution of the lesion size was observed to be
consistent across the development, internal test, and external
test datasets.

Segmentation Performance of the DSL
To set up the DLS, the images were first labeled manually. In
summary, we manually labeled ∼12,087 small lesions, 14,759
medium lesions, and 4,003 large lesions for training and
validation (Figures 2A-C; Table 2). The network architecture
of the proposed 2D convolutional neural network is shown
in Figure 3. The model quality control parameters could be
fond in Figure 4. More detailed information on the network
can be found in the Network Architecture portion of the
Methods section. After training and validation, the DLS was

FIGURE 5 | (A) Overall framework for the testing stage. (B) Clinical evaluation

of the testing data set and Segmentation model ROC-curve and AUC score

analysis. Number of neuroradiologists are 3. ***P < 0.001.

tested with the testing data set. The accuracy of the DLS-
generated masking is represented in Figures 2A,B, with a Dice
score of 0.87.

In the segmentation of WMH lesions, the proposed DLS
achieved average pixel-wise dice score, precision, and recall of
0.711, 0.789, and 0.647 on the external test set. The lesion wise
dice score, precision, recall, and accuracy achieved by the model
were 0.735, 0.725, and 0.653 on the external test set. Also, the
dice score of the model in segmentation of small, medium, and
large WMH was 0.53, 0.82, and 0.96, respectively. Furthermore,
in the lesion level analysis on the external test set, the model
could correctly identify 61.07, 77.24, and 95.11% of the small,
medium, and large lesions, respectively, and the detailed results
of this analysis are presented in Table 2. A few examples of
WMH segmentation using the proposed system are presented in
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TABLE 5 | Clinical evaluation 1.

Physician 1 Physician 2 Physician 3

Perfect (score 3) 34 33 45

Minor revision (score 2) 54 53 35

Major revision (score 1) 1 3 8

Not acceptable (score 0) 1 1 2

Figure 2. Also, in the segmentation of the WMH, the proposed
DLS achieved a mean AUC of 0.9959 on the external test
dataset (Table 3).

Lastly, the average pixel-wise dice score achieved by the
UresUnet and 3D-unet networks on the external datasets were
0.584, and 0.623, respectively, and these were worse than the
performance of the proposed DLS. Beside the preprocess is also
import in the DLS development. For more detail information
about the models head-to-head analysis in Table 4.

All the testing data are summarized in Tables 2, 3,
representing the relabeling results between the DLS tool and the
experts (percentage correctly labled rato). From the table, we
can see that the manual image labeling is precise and perfectly
matches the contouring with the true signaling. This is because
the labeling tool and pixels could not be well-controlled when
manually drawing the labeling. Thus, the Dice score does not
perfectly reflect the DLS segmentation result. These data can only
support DLS training and validation. Visually, we checked all
the data and found a strong concordance between our DLS and
human experts for lesion contouring but, as mentioned above,
with low Dice scores.

Clinical Assessment of the DLS
Segmentation
The workflow of clinical evaluation (Figure 5) and results of the
clinical acceptability analysis of the DLS are presented in Table 5.
In this analysis, the majority [85 of 90 (94.0%)] of the DLS-
generated segmentations were deemed satisfactory by the experts
(no revision required, n = 37; minor revision, n = 47) (Table 3).
Only four patients were assessed to require major revision, with
two patients having clinically unacceptable segmentation results.
In the assessment of the interrater agreement between the three
neuroradiologists for the 90 test patients, the Kendall W test
produced a score of 0.006 (p = 0.605) indicating a good inter-
rater agreement.

DISCUSSION

In this paper, based on a large dataset of FLAIR images from
more than 1,000 patients and with more than 50,000 lesions,
we trained a DLS for automatic, and objective segmentation of
WMHs. The proposed system was evaluated using pixel-wise and
lesion-wise dice scores on internal and external test datasets. The
results indicated that the proposed DLS achieved a consistent
performance across both the test datasets, indicating good

generalizability in the segmentation of WMH from different data
sources. Furthermore, in the clinical acceptance analysis, with the
95% acceptance rate by the neuroradiologists, the segmentation
results produced by the proposed DLS were observed to have a
high clinical acceptance rate. These results collectively indicate
that the proposed system can be deployed in clinical practice to
quantitatively assess the WMH load in an end-to-end manner
with high accuracy and in significantly reduced analysis time.
Such a system can aid clinicians in fast and accurate assessment
of WMH of the CSVD origin.

Limitation
This retrospective study analyzed the data from multiple
different scanners which could result in a more robust and
better generalizable model. However, our analysis did not
exhaustively include the data from all the scanners and associated
FLAIR image collection protocols, and hence, more extensive
testing of the model, in prospective studies is necessary before
its adaptation for clinical use. Second, our DLS system for
segmentation of WMHs is solely based on MRI-FLAIR imaging
features and it does not include complementary information
that can be provided by other MRI sequences. Therefore, the
possibility of better WMH segmentation using multiple imaging
modalities should be explored in future studies.

CONCLUSION AND CONTRIBUTIONS

This study presented a DLS for the segmentation of WMH. Our
findings indicate that the DLS can segment theWMHs with good
accuracy and significantly smaller analysis time, minimizing the
need for the physicians to perform repetitive tasks associated with
segmentation. Additionally, the DLSmodel can reduce intra- and
inter neuroradiologists’ variation.
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