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Abstract
Endothelial cells (ECs) have been found to be capable of acquiring a mesenchymal phenotype through a process known as 
endothelial-to-mesenchymal transition (EndMT). First seen in the developing embryo, EndMT can be triggered postnatally 
under certain pathological conditions. During this process, ECs dedifferentiate into mesenchymal stem-like cells (MSCs) and 
subsequently give rise to cell types belonging to the mesoderm lineage. As EndMT contributes to a multitude of diseases, 
pharmacological modulation of the signaling pathways underlying EndMT may prove to be effective as a therapeutic treat-
ment. Additionally, EndMT in ECs could also be exploited to acquire multipotent MSCs, which can be readily re-differen-
tiated into various distinct cell types. In this review, we will consider current models of EndMT, how manipulation of this 
process might improve treatment of clinically important pathologies and how it could be harnessed to advance regenerative 
medicine and tissue engineering.
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Introduction

A substantial body of experimental evidence has shown that 
epithelial cells possess the intrinsic capability to become 
mesenchymal cells in a process called epithelial-to-mesen-
chymal transition (EMT) [1, 2]. EMT is a reversible cell 
differentiation event associated with extensive alterations 
at the transcriptional, translational, and morphological 
level. It is an essential physiological mechanism which is 
indispensable for several stages of embryogenesis [3] as 
well as wound healing [4], but it can also promote patho-
logical phenomena such as cancer metastasis and fibrosis 
[1]. In the past few years, endothelial cells (ECs) have also 
been found to undergo a similar dedifferentiation process 
known as endothelial-to-mesenchymal transition (EndMT) 
[5]. Throughout this highly dynamic process, ECs progres-
sively dedifferentiate into mesenchymal stem-like cells 
(MSCs) and acquire the characteristics of multipotent cells. 

During EndMT, ECs spawn a wide spectrum of intermediate 
phenotypes [6]. These changes in differentiation status  and 
cell behavior are illustrative of their inherent plasticity since 
their ability to transition is reversible (i.e., mesenchymal-to-
endothelial transition) and the process can be either full or 
partial [7].

ECs that undergo EndMT are characterized by a pheno-
typic switch involving: (i) loss of cellular adhesion due to 
the downregulation of proteins involved in cell–cell junc-
tions; (ii) cytoskeletal reorganization, which converts tightly 
compacted cobblestone-like cells into spindle-shaped cells 
with no apical-basal polarity [5]; (iii) reduced expression of 
distinctive EC markers, such as vascular endothelial (VE)-
cadherin, CD31/PECAM-1, TIE1, TIE2, and von Wille-
brand Factor (vWF); (iv) increased expression of mesen-
chymal cell markers, such as fibroblast-specific protein-1 
(FSP-1), alpha-smooth muscle actin (α-SMA), vimentin, 
and N-cadherin [8]. EndMT-derived cells thus exhibit an 
enhanced migratory potential and increased extracellular 
matrix (ECM) production, both of which are hallmarks of 
invasive cells [9, 10].

EndMT was first observed in the developing embryo, 
where it was shown to occur in subsets of ECs during car-
diogenesis and vasculogenesis. ECs in the endocardium 
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undergo EndMT, invade the cardiac jelly and eventually 
generate the cardiac cushions. Disruption of EndMT at this 
embryonic stage results in abnormal formation of the car-
diac valves and embryonic lethality [11–13]. Similarly to 
EMT, EndMT can be triggered postnatally under certain 
pathological conditions, such as tissue damage or inflam-
mation, thereby giving rise to fibroblasts and myofibroblasts 
[14]. Through the combination of genetic labeling of ECs 
and disease animal models [5], EndMT was demonstrated 
to contribute to wound healing [12], pulmonary arterial 
hypertension (PAH) [15], atherosclerosis [16], cardiac and 
renal fibrosis [12, 17, 18], fibrodysplasia ossificans progres-
siva (FOP) [19], and cancer progression [10]. Accordingly, 
most EndMT research has focused on its role in disease 
and approaches to block this process. By example, recently, 
researchers have used small molecules to modify the signal-
ing pathways governing EndMT in an attempt to inhibit or 
reverse its effects [5]. Interestingly, EndMT could also be 
used in a different manner, wherein ECs may be exploited 
to derive multipotent MSCs, which can be readily re-differ-
entiated into various distinct cell types [20].

Here, we will review the evidence that EndMT is inte-
gral to the development and evolution of certain pathologies 
and that targeting EndMT represents a potential therapeutic 
avenue to treat disease. First, we will describe the signaling 
pathways that stimulate ECs to undergo EndMT, including 
the inhibitory mechanisms that prevent this mesenchymal 
transition. Next, we will discuss how EndMT has been tar-
geted in different disease contexts. Finally, the potential for 
exploiting EndMT in regenerative medicine and tissue engi-
neering will be assessed.

EndMT‑promoting mechanisms

The extent to which ECs lose their distinctive characteristics 
and gain mesenchymal properties is dependent on the tis-
sue and signaling contexts. It is established that numerous 
different stimuli can promote EndMT. Below, some of the 
principal pro-EndMT cues are considered.

Signaling pathways

As ECs share a number of characteristics with epithelial 
cells (e.g. apical-basal polarity, tight cell junctions, absence 
of migratory features), it   is reasonable to assume  that 
EndMT is related to the process of EMT, and is thus modu-
lated by many of the same pathways and effectors [7]. Ulti-
mately, activation of these pathways results in the expres-
sion of common transcription factors, such as Snail, Slug, 
Twist, ZEB1, ZEB2, and Sox2 [5, 17, 20, 21]. These well-
characterized transcription factors initiate EndMT, likely by 
repressing the expression of endothelial genes (e.g. CDH5 

and PECAM1) and subsequently activating the expression of 
mesenchymal genes (e.g. VIM and COL5A1) [22], thereby 
transforming ECs into a mesenchymal state.

The best-studied mediators of EndMT are the transform-
ing growth factor (TGF)-β and bone morphogenetic pro-
tein (BMP) family of growth factors, which signal through 
both Smad-dependent and Smad-independent pathways 
[23, 24]. This diverse superfamily of proteins (i.e. TGF-βs, 
BMPs, activins, and growth differentiation factors (GDFs)) 
exert pleiotropic effects in most, if not all, tissues and are 
indispensable for many physiological processes, includ-
ing inflammation and wound repair [25]. Members of the 
TGF-β family signal via specific receptor complexes at 
the cell membrane. An archetypal response is illustrated 
by TGF-β1, which binds with high affinity to the type II 
TGF-β receptor (TGF-βRII) resulting in the recruitment and 
phosphorylation-dependent activation of the type I TGF-β 
receptor (activin receptor-like kinase (ALK) 5) [5]. The 
active ALK5 binds and phosphorylates Smad2/3, which 
interacts with Smad4 to form a transcription complex that 
translocates to the nucleus and triggers the expression of 
specific genes [6, 23]. This subset of genes includes those 
upregulated in EndMT, such as NOTCH1, TWIST1, and 
SNAI1/2 [22]. In addition, certain TGF-β family members 
(TGF-β2, BMP2, and BMP4) were found to induce EndMT 
by signaling through ALK2 [23, 26]. In vivo relevance of 
this mechanism is illustrated by the EC-derived heterotopic 
ossification observed in patients with FOP, which is due to 
an overactive mutant ALK2 [6, 26]. The pivotal role that the 
TGF-β superfamily plays in the initiation of EndMT has not 
only been observed in vitro [5, 6, 27, 28], but has also been 
validated in multiple in vivo mice studies, which showed that 
the knockdown and knockout of several TGF-β signaling-
related genes, such as SMAD2, SMAD3, and TGFBR2, pre-
vented EndMT [29, 30].

TGF-β signaling can induce EndMT either directly, as 
described above, or indirectly, as exemplified by the Wnt 
pathway, caveolin-1 (CAV1), and endothelin-1 (ET-1). The 
Wnt pathway comprises a multigene family of secreted 
glycoproteins that play important roles during embryogen-
esis and heart cushion development [31, 32]. Several stud-
ies have confirmed the involvement of Wnt proteins in the 
induction of EndMT via Smad-dependent TGF-β signaling, 
and canonical (i.e. involving β-catenin) and non-canonical 
Wnt signaling pathways [33–36]. Additionally, studies have 
found that canonical Notch signaling can act in concert with 
TGF-β to induce EndMT by activating expression of Snail 
[37–39]. It should be noted that Kaposi’s sarcoma-associated 
herpesvirus was found to cause EndMT via Notch signal-
ing independently of the TGF-β pathway [40]. Caveolin 1 
(CAV1) is the major component of caveolae that controls 
TGF-β signaling by internalizing, trafficking, and degrad-
ing TGF-β receptors [41]. Mice lacking CAV1 undergo 
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spontaneous EndMT, which can be augmented by treatment 
with TGF-β [42]. Finally, recent studies using human ECs 
have demonstrated that ET-1, an endogenous vasoconstrictor 
polypeptide, can stimulate EndMT and yield myofibroblasts, 
either alone or in combination with TGF-β [43–45].

Inflammation, metabolic status, and shear stress

Several lines of evidence support the view that inflam-
mation, metabolic status, and shear stress can all strongly 
influence EndMT. Firstly, proinflammatory molecules such 
as interleukin (IL)-1β, IL-6‚ interferon (IFN)-γ, and tumor 
necrosis factor (TNF)-α have been shown to stimulate 
EndMT by activating expression of Snail and Slug in syn-
ergy with TGF-β [46–48]. Secondly, matrix metalloprotein-
ases (MMPs) play a role in several physiological processes 
and contribute to tissue homeostasis and remodeling, and 
also function during inflammation by regulating various 
cytokines, chemokines, and ECM proteins [49]. They are 
known to initiate EMT through cleavage of cell–cell junc-
tion proteins, and, more recently, have been shown to be 
associated with EndMT [22, 50, 51]. Thirdly, recent studies 
demonstrated that EndMT was induced by hypoxia via acti-
vation of Snail, and hypoxia-inducible factor-1 α (HIF-1α) 
was observed to promote the process during the development 
of radiation-induced pulmonary fibrosis [52, 53]. Addition-
ally, HIF-1 has been shown to increase the levels of plate-
let-derived growth factor (PDGF)-β) and TGF-β1 signaling 
leading to EndMT via downregulation of neprilysin (NEP) 
[54]. Differential oxygen concentrations drive EndMT in 
a different manner. Reactive oxygen species (ROS) are a 
byproduct of oxygen metabolism whose levels fluctuate 
as a consequence of environmental stresses (e.g tempera-
ture changes and UV light). ROS stimulate EndMT, e.g. 
by inducing TGF-β expression, which in turn leads to the 
production of ROS via a positive feedback loop [55]. ROS 
also activate nuclear factor-κΒ (NF-κB) signaling, which 
drives EndMT in synergy with TGF-β [56]. Furthermore, 
NADPH oxidase 4 (NOX4), an enzyme responsible for the 
production of ROS, was found to mediate TGF-β-dependent 
production of myofibroblast by EndMT [57, 58]. Recently, 
the Akt/mammalian target of rapamycin (mTOR)/70 kDa 
ribosomal S6 kinase (p70S6K) signaling pathway was also 
shown to be involved in TGF-β1-induced EndMT in trans-
plant kidney interstitial fibrosis [59]. Finally, hemodynamic 
forces have been demonstrated to strongly modulate EndMT 
[60]. Shear stress, a fundamental force governing homeo-
stasis of ECs, suppresses EndMT via a number of TGF-β 
signaling-dependent mechanisms [61]. Correspondingly, 
whereas high shear stress appears to inhibit EndMT [61], 
disturbed flow is a potent EndMT inducer in vivo as well as 
in organ-on-a-chip devices. Under these conditions, genetic 
inhibition of extracellular-signal-regulated kinase (ERK) 

5 signaling enhances EndMT, whereas ERK5 overactiva-
tion prevents EndMT in cells exposed to disturbed flow or 
stimulated by TGF-β in static conditions [62]. A different 
mechanical stress, termed cyclic strain, and caused by a 
perpendicular stretching force on the vessel wall, has been 
shown to potentiate EndMT by augmenting both TGF-β and 
Wnt signaling [63, 64].

microRNAs

MicroRNAs (miRNAs) control EndMT by altering the activ-
ity of signaling intermediates leading to changes in signal-
ing amplitude and output. miRNA 125b has been shown to 
contribute to EndMT progression [65], and it has been dem-
onstrated that miRNA21 mediates TGF-β-induced EndMT 
by controlling actin remodeling and promoting the secre-
tion of inflammatory cytokines [66]. Several other miRNAs 
were also found to be positive modulators of EndMT, such 
as miR-31, which is required for the expression of EndMT 
markers following TGF-β-treatment [67], and miR-9, a 
miRNA regulated by TNF-α signaling [68]. Additionally, 
metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1), a long non-coding RNA, was found to mod-
ulate TGF-β1-induced EndMT of endothelial progenitor 
cells (EPCs) through regulation of TGF-βRII and Smad3 
via decreased miR-145 expression [69].

EndMT‑inhibiting signaling pathways 
and mechanisms

In addition to stimuli favoring EndMT, there are also a num-
ber of different factors involved in the negative regulation 
of this process.

Signaling pathways

Although TGF-β and BMP are known to induce EndMT 
under specific conditions, they can also bind ALK1 to acti-
vate Smad1/5/8, which induces proliferation at the expense 
of EndMT [70]. Endoglin, an accessory type III TGF-β 
receptor, partially regulates the equilibrium between ALK1/
ALK5 activation. By stimulating downstream Smad1/5/8 
responses it can indirectly inhibit ALK5 signaling, and thus 
inhibit EndMT [71]. Interestingly, BMP7 appears to be a 
negative regulator of EndMT [72], presumably through the 
activation of ALK2 alone (and the associated Smad1/5/8 
pathway), in contrast to BMP2 and BMP4 which bind to 
ALK2 in conjunction with ALK5 and thereby promote 
EndMT [6, 26].

Another known mechanism of EndMT inhibition is vas-
cular endothelial growth factor A (VEGF-A)-stimulated 
VEGF receptor (VEGFR)2 signaling [73]. This process, 
however, is counteracted by VEGF-A sequestration by 
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VEGFR1, thereby preventing its interaction with VEGFR2, 
and leading to EndMT [74]. Two other layers of regulation 
of this network are repression of VEGF-A by BMP signaling 
[75], and attenuation of VEGF-A signaling by mechanical 
cyclic strain [19].

Other signaling cascades and factors that abrogate 
EndMT include: (i) activation of the Src signaling pathway 
by hydrogen sulfide during endoplasmic reticulum (ER) 
stress [76]; (ii) glucagon-like peptide-1 (GLP-1) suppression 
of hyperglycemia-induced EndMT via reduced expression 
of ROS and inhibition of ROS-activated poly(ADP-ribose) 
polymerase 1 (PARP-1) [77]; (iii) high-density lipoprotein 
(HDL) inhibition of TGF-β1-induced EndMT [78]; (iv) 
endothelial heat shock protein beta-1 (HSPB-1)-mediated 
EndMT inhibition after stimulation with fibrotic cytokines 
[79]; (v) netrin-1-mediated attenuation of EndMT dur-
ing renal dysfunction, as demonstrated in a nephrectomy 
rat model [80]; (vi) expression of ECM protein fibulin-1 
via reduced expression of TGF-β2 [81]; (vii) secretion 
of cytokines and angiogenic factors by macrophages sus-
tains endothelial differentiation of EPCs and consequently 
restricts EndMT during muscle regeneration [82].

miRNAs

miRNAs have been shown to block EndMT in numerous 
different tissues. Several miRNAs, such as miR-15a, miR-
23b, and miR-199a, have been found to impair EndMT dur-
ing heart development [83]. TGF-β-induced EndMT was 
blocked by miR-126 in bone marrow-derived EPCs through 
direct targeting of the phosphoinositide 3-kinase (PI3K) sub-
unit p85 [84]. miR-155 was found to be a potent inhibitor of 
TGF-β-induced EndMT via inhibition of RhoA expression 
[85, 86]. Furthermore, miR-302c was observed to suppress 
EndMT in hepatocellular carcinoma by negatively regulat-
ing the expression of metadherin (MTDH) [87]. Fibroblast 

growth factor receptor 1 (FGFR1) signaling can also inhibit 
TGF-β-induced EndMT by promoting the expression of 
miRNA let-7, a negative regulator of TGF-β signaling [88]. 
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), a peptide 
substrate of angiotensin-converting enzyme (ACE), contrib-
utes to this by upregulating let-7 and restoring FGFR levels 
[89]. FGF-2, although found to induce EndMT in some types 
of ECs [90], has also been demonstrated to abrogate TGF-
β-induced EndMT through miR-20 [91]. Lastly, miR-630 
was shown to inhibit EndMT in heterotopic ossification by 
targeting Slug [92].

Autophagy

Recently, autophagy has emerged as a potentially important 
player in controlling EndMT by decreasing TGF-β2-induced 
EndMT [93]. Activation of autophagy was also shown to 
reduce expression of Snail by decreasing the phosphoryla-
tion levels of Smad3, thus counteracting EndMT [94]. Fur-
thermore, pharmacological inhibition of mTOR resulted 
in the activation of autophagy and a decrease of EndMT 
[95], providing evidence of a causal link between mTOR-
dependent inhibition of autophagy and EndMT. These find-
ings suggest that targeting autophagy may be a productive 
way of limiting EndMT.

Therapeutic modulation of EndMT

Figure 1 highlights those signaling networks that could be 
plausible targets for therapeutically inhibiting EndMT as a 
treatment for several different pathologies. Neutralizing anti-
bodies or chemical inhibitors targeting molecules required 
for EndMT could be an effective means of impeding the 
process [5]. Proof-of-principle evidence of this comes 
from experiments showing that inhibition of ALK5, TGF-
βRII, β-glycan, and endoglin prevent embryonic EndMT 

Fig. 1   EndMT as a target for 
therapeutic intervention. ECs 
differentiate into MSCs via the 
process of EndMT, which is 
regulated by various signal-
ing mechanisms. Numerous 
compounds can be used to 
block this differentiation step, 
thereby disrupting the process 
and potentially ameliorating the 
effects of pathological EndMT
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in the endothelium of mice [96–98]. Consistently, reduc-
ing expression of EndMT regulators e.g. ALK2, ALK5, or 
Snail expression, resulted in a comparable block in EndMT 
in EC cultures [19, 24]. Another study has found that local 
and circulating ECs are capable of undergoing EndMT in 
response to musculoskeletal injury, suggesting that target-
ing early EC recruitment and trafficking could potentially 
impede pathological EndMT [99].

To date, several compounds have been tested, with mixed 
degrees of success, for their ability to inhibit EndMT. Many 
of these compounds interfere with TGF-β signaling. The 
dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, could 
block TGF-β2-induced EndMT by impairing its interaction 
with integrin β1 [100]. Arginylglycylaspartic acid (RGD) 
is an Arg-Gly-Asp tripeptide motif that is found in many 
matrix proteins and is responsible for integrin-dependent 
cell adhesion to the ECM. One recently developed RGD 
antagonist, RGD-2, was found to revert TGF-β1-induced 
EndMT and consequently has the potential to be employed 

as an anti-fibrotic therapeutic treatment [101]. A specific 
inhibitor of Smad3 (SIS3) was shown to block EndMT and 
reduce renal fibrosis [102]. EndMT was also inhibited by 
the ALK5 inhibitor SB-431542 in cultured ECs [9], and 
dorsomorphin blocked EndMT of endothelial cultures by 
inhibiting the kinase activity of a mutant ALK2 in FOP [19]. 
Celastrol was found to block TGF-β1-induced EndMT and 
has been promoted as a possible therapy for cardiac fibrosis 
[103]. TGF-β-induced EndMT was inhibited by kallistatin 
via upregulation of endothelial nitric oxide synthase (eNOS) 
and downregulation of EndMT-promoting miR-21 [104]. 
EndMT was also impaired by the angiotensin II type 1 recep-
tor inhibitor losartan, which blocked TGF-β signaling [105]. 
Other compounds can disrupt EndMT by inhibiting different 
signaling pathways and/or intermediates (Table 1).

Table 1   Compounds modulating EndMT

a The mediator(s) and/or signaling pathway(s) involved in the application of the listed compound
b The experimental in vitro or in vivo disease model used in the study

Compound Description Mediator and/or signaling pathwaya Disease modelb

Spironolactone Aldosterone receptor inhibitor Notch pathway Fibrosis in human umbilical vein 
endothelial cells (HUVECs) [106]

Scutellarin Flavone; major active component 
of breviscapine (natural plant 
extract)

Notch pathway Isoprenaline (iso)-induced myocar-
dial fibrosis in Sprague Dawley 
(SD) rats [107]

Bosentan, macitentan ET-1 dual receptor antagonists ET-1; TGF-β pathway Murine lung microvascular endothe-
lial cells (MVECs) and TGF-β1-
induced tissue fibrosis in FVB/N 
mice [44]; systemic sclerosis (SSc)-
derived ECs [45]

SSc-derived fibroblast and MVEC 
co-cultures [108]

Rapamycin (sirolimus) Immunosuppressive macrolide mTOR pathway; possibly VEGF 
and MMPs

EA.hy926 cells [109]

Relaxin (RLX) Protein hormone; regarded as anti-
fibrotic

Notch pathway Iso-induced cardiac fibrosis in SD 
rats [110]

Sulindac metabolites (sulin-
dac sulfide and sulindac 
sulfone)

Non-steroidal anti-inflammatory 
drug (NSAID)

Wnt/β-catenin pathway; TGF-β 
pathway

Cerebral cavernous malformation 
(CCM) in endothelial CCM3-defi-
cient mice [111]

Marimastat MMP inhibitor Wnt/β-catenin pathway Ex vivo bovine corneal ECs [50]
Cinacalcet (CINA) Calcimimetic agent Serum parathyroid hormone (PTH) Aortic calcification in uremic rats 

[112]
TAT-Y127WT Mimic peptide Protein phosphatase 2A (PP2A) Nephropathy in mice; HUVECs 

[113]
Imatinib PDGF receptor antagonist PAH in rats [54]
Hydrocortisone Hormone cortisol Glucocorticoid receptor Conditionally immortalized human 

brain microvascular endothelial 
cells (HBMEC/ciβ) [114]

Geniposide Iridoid glycoside isolate from the 
gardenia plant

mTOR pathway Bleomycin-induced SSc in HUVECs 
[115]
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EndMT in regenerative medicine and in vitro 
modeling applications

An extensive literature focused on the pathological conse-
quences of EndMT should not overshadow several lines of 
evidence supporting the idea that EndMT could be harnessed 
for the purpose of tissue engineering, predicated on the fact 
that EndMT generates MSCs that can be programmed to dif-
ferentiate into a wide variety of different cell types. In FOP, 
heterotopic bone is formed by a gain-of-function mutation 
in ALK2 [116]. Studies with lineage tracing and biomarker 
experiments have shown that this mutation causes ECs to 
undergo EndMT, thereby acquiring properties of MSCs [19, 
117]. They have further demonstrated that these cells can be 
differentiated into osteoblasts, chondrocytes, or adipocytes 
[19]. The generation of osteoprogenitor cells via EndMT has 
also been seen in vascular [118], valvular [119], and tumor 
calcifications [120]. ECs were shown to be differentiated 
to chondrocytes via EndMT by high glucose levels [121], 
and ECs lining the vessels of white and brown adipose tis-
sue have been shown to give rise to preadipocytes [122]. A 
number of studies have demonstrated the ability of ECs from 
vascular tumors to undergo EndMT in culture and form adi-
pocytes, pericytes and smooth muscle cells (SMCs) [123], 

whilst related work has shown that EPCs can transform into 
smooth muscle cells [9]. The ability of ECs to form skeletal 
myocytes has also been observed during muscle repair [124]. 
ECs were also found to contribute to the cardiac renewal 
process [125].

EndMT could thus be manipulated to generate multipo-
tent MSCs from ECs, which can thereafter be transformed 
into different cell types. Via full or partial reprogramming, 
where intermediary cell types would suffice, EndMT could 
potentially be used in the treatment of a variety of diseases 
(Fig. 2). Bone disorders such as osteoporosis or osteoar-
thritis could be treated by EndMT-derived osteocytes or 
chondrocytes [20]. EndMT-mediated (cardio)myogenesis 
could be employed in the regeneration of cardiomyocytes 
after myocardial infarction [20]. Moreover, vascular tissue 
could be regenerated by EndMT via its ability to produce 
SMCs and pericytes [20]. Manipulating EndMT could 
offer a potential solution to controlling aberrant angiogen-
esis since expression of the EndMT-inducing transcription 
factor Slug was shown to regulate vessel sprouting [126]. 
Another study proposed that this angiogenic sprouting may 
represent a partial EndMT. Their results also clearly indicate 
the importance of the Snail family of transcription factors 

Fig. 2   EndMT in tissue engineering and in vitro modeling. EndMT-
derived MSCs can be differentiated into various mesenchymal cell 
types. Once the desired cell type is obtained, they can be used for tis-
sue engineering and subsequent transplantation into the patient. The 

acquired cells can also be employed in experimental in  vitro appli-
cations, such as in the construction of a vascularized 3D-organoid 
model
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during angiogenesis [7], and suggest the involvement of 
EndMT, at least partially, in vasculature formation.

The appeal of employing EndMT in tissue engineering 
lies in the fact that the process can take place both in vivo 
and ex vivo. As pointed out by others, suitable drugs could 
be applied locally to degenerate tissues to reprogram ECs, 
which are present in abundance in any vascularized tissue, 
into the desired mesenchymal cell type [20]. To engineer 
tissues ex vivo, ECs can be isolated and, under the right 
3D-culturing conditions, induced to undergo EndMT to 
become MSCs, using protocols more simple and cost-effec-
tive than those for induced pluripotent stem cells (iPSCs). 
After differentiating these stem cells into the cell type of 
interest, they can then be transplanted into the patient [20]. 
Perhaps not entirely unexpectedly, EndMT could also be 
beneficial in pathologies where fibrotic cells are actually 
desired, thus not requiring the additional step of differenti-
ating MSCs to specialized cell types. One such study found 
that EndMT contributed to the therapeutic effects of bleomy-
cin, a sclerosant used for the treatment of venous malforma-
tions (VMs), pointing to a possible role for this process in 
sclerotherapy [127]. Moreover, as ECM contributes to the 
mechanical functioning of cardiovascular tissue-engineered 
grafts, EndMT could aid the formation of cells, from ECs, 
that are capable of producing and remodeling ECM [128].

EndMT could also be employed for in vitro experimen-
tal purposes, such as the culturing and modeling of in vitro 
organs, which can be used as a substitute for experimen-
tal animal models (Fig. 2). One study established such an 
in vitro model with human embryonic stem cell (hESC)-
derived ECs to study the regulation of Notch signaling in the 
induction of EndMT in cardiogenesis [129]. Another study 
generated an organoid-based EMT model from intestinal 
epithelial cells. These cells exhibited an in vivo physiol-
ogy and, therefore, could be used to study EMT-associated 
intestinal fibrosis [130]. Such an approach could also be fea-
sible for harvested ECs to study EndMT-related diseases. 
Although it is possible to grow organoids in vitro, a main 
restriction of 3D-culture systems is the lack of a vascular 
network [131].  In light of the fact that EndMT demonstra-
bly plays a role in angiogenesis [126], cultured ECs could 
potentially be used to create vascular networks through 
EndMT, contributing to the development of a fully vascu-
larized organoid.

Concluding remarks

EndMT has an established role in many different patholo-
gies. Targeting the signaling pathways responsible for 
EndMT could, therefore, be an effective means of facilitat-
ing wound healing as well as treating EndMT-associated 
diseases. This is, of course, not an easy undertaking, not 
least because EndMT is controlled by complex signaling 

networks and not simple, linear, and discrete signaling mod-
ules. This makes the selection of suitable therapeutic targets 
a far from trivial proposition. For instance, TGF-β could 
be an obvious candidate, however, it exerts pleiotropical 
effects in the regulation of a multitude of processes in vari-
ous tissues and targeting this pathway could lead to major, 
unwanted side-effects [5]. Deciphering in greater depth, the 
activating and inhibitory EndMT signaling map could iden-
tify unique targets that offer realistic hopes of developing 
viable therapeutic strategies to modulate EndMT. Alongside 
a potential role in inhibiting pathological processes, EndMT 
could be exploited to play a more ‘creative’ role in tissue 
engineering. EndMT gives rise to multipotent MSCs that 
can be reprogrammed into various distinct cell types, offer-
ing the possibility that this capacity could be harnessed to 
advance regenerative medicine.
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