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The development of autoimmune disease type 1 diabetes (T1D) is determined by both genetic 

background and environmental factors. Environmental triggers include RNA viruses, particularly 

coxsackie-virus (CV), but how they induceT1D is not understood. Here, we demonstrate that 

deletion of the transcription factor hypoxia-inducible factor-1α (HIF-1α) from β cells increases 

the susceptibility of non-obese diabetic (NOD) mice to environmentally triggered T1D from 

coxsackieviruses and the β cell toxin streptozotocin. Similarly, knockdown of HIF-1α in human 

islets leads to a poorer response to coxsackievirus infection. Studies in coxsackievirus-infected 

islets demonstrate that lack of HIF-1α leads to impaired viral clearance, increased viral load, 

inflammation, pancreatitis, and loss of β cell mass. These findings show an important role for β 
cells and, specifically, lack of β cell HIF-1α in the development of T1D. These data suggest new 

strategies for the prevention of T1D.

Graphical Abstract

In Brief

Lalwani et al. describe a role for β cell hypoxia-inducible factor-1α (HIF1a) in determining 

whether β cell injury is followed by resolution and normal function or ongoing injury, 

autoimmunity, and type 1 diabetes.
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INTRODUCTION

Type 1 diabetes (T1D) is characterized by immune-mediated destruction of insulin-

producing pancreatic β cells, leading to an inability to maintain normal blood glucose levels 

(van Belle et al., 2011). The incidence of T1D has been increasing steadily across the world. 

Although there is a strong genetic component in T1D susceptibility, with identical twins 

having a 30%−50% concordance (Japan Diabetes Society, Committee on Diabetic Twins, 

1988; Metcalfe et al., 2001; Nisticò et al., 2012), genetics alone cannot explain the rapid 

increases in prevalence. Environmental factors are important for T1D development. It is 

generally accepted that environmental triggers can initiate pancreatic islet inflammation 

(insulitis) in susceptible individuals. However, the triggers for β cell autoimmunity and 

destruction are not clearly understood and almost certainly vary between people and 

geographic locations (Knip and Simell, 2012; Knip et al., 2005; Piłaciński and Zozulińska-

Ziółkiewicz, 2014).

Exposure to RNA viruses is a common environmental event and a proposed trigger of T1D 

(Rewers and Ludvigsson, 2016). For example, the incidence of T1D in babies with 

congenital rubella exposure is markedly increased, with 12% already having T1D by 17 

years of age (Ginsberg-Fellner et al., 1984). Enteroviruses, particularly coxsackievirus (CV), 

including strain B4 (CVB4), are strongly associated with T1D (Banatvala et al., 1985; 

Coppieters et al., 2012; Frisk et al., 1992; Yoon et al., 1978). Coxsackieviruses are positive-

sense single-stranded RNA viruses that are β cell tropic and enter β cells via the 

coxsackievirus and adenovirus receptor (CAR). Once inside the β cell, they replicate and 

may induce β cell death (Chehadeh et al., 2000; Nair et al., 2010; Foulis et al., 1987; 

Bottazzo et al., 1985). Coxsackieviruses may stimulate β cell autoimmunity by directly 

causing β cell death (releasing potential autoantigens), molecular mimicry (peptides that 

mimic autoantigens), bystander activation (activation and diversification of autoreactive T 

cells), and viral persistence (persistent viral infection with associated cell damage) 

(Coppieters et al., 2012; van Belle et al., 2011).

It is becoming increasingly clear that β cells play a role in the initiation and progression of 

T1D. When β cells die, some of their contents are released, including potential autoantigens 

that can initiate priming of the immune system in susceptible individuals. This has been 

elegantly shown in animals with the “wave” of postnatal β cell death and remodeling that 

occurs at ~2 weeks of age (Turley et al., 2003). Accordingly, greater frequency of β cell 

death would be associated with a greater opportunity for immune priming and ongoing 

inflammation. Once self-tolerance to β cell antigens is lost, there is the increased potential 

for antigen spreading and β cell loss, perpetuating this cycle (von Herrath et al., 2007). 

Hypoxia-inducible factor-1α (HIF-1α) is an oxygen-sensing transcription factor that 

coordinates cellular responses to hypoxia (Ratcliffe et al., 1998). We have previously shown 

that HIF-1α improves β cell function in C57BL/6 mice (Gunton et al., 2005). HIF-1α 
protein levels are increased not only by hypoxia but also by cytokines, inflammation, 

reactive oxygen species, and low iron levels (Bilton and Booker, 2003; Hwang and Lee, 

2011; Peyssonnaux et al., 2007), all of which would be potential stimuli in the setting of 

infection.
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The role of the β cell in T1D development is an area of increasing interest (Eizirik and Op 

de Beeck, 2018), and we hypothesized that β cell HIF-1α (βHIF-1α) would assist in halting 

the cycle of β cell death, release of autoantigens, immune priming, and further β cell death. 

This was tested using non-obese diabetic (NOD) mice with β cell-specific deletion of 

HIF-1α (referred to hereafter as bHIF-1α). We found that after exposure to either 

coxsackieviruses or a β cell toxin, βHIF-1α mice developed T1D much more frequently 

than controls. This β cell-specific mouse model shows susceptibility to T1D after a range of 

environmental insults, revealing a critical role for β cells themselves in T1D development. 

Our results not only demonstrate an important role for β cell HIF-1α in T1D susceptibility 

but also suggest that coxsackievirus vaccines may prevent T1D in susceptible individuals.

RESULTS

Mice Lacking βHIF-1α Develop T1D after Exposure to CVB4

To examine the role of β cell HIF-1α in virally induced T1D, we infected 8-week-old male 

control (NOD, FC, or RIP-Cre) and βHIF-1α mice intraperitoneally with CVB4 at a dose of 

105 plaque-forming units (pfus) and monitored them for diabetes onset until 105 days post-

infection (dpi). Baseline glucose tolerance testing pre-infection showed no differences 

between 8-week-old male control (NOD, FC, and RIP-Cre) and βHIF-1α mice (Figure 1A). 

Similarly, baseline islet architecture showed a normal distribution of insulin, glucagon, and 

somatostatin cells in βHIF-1α mice (Figure S1A). The experimental timeline is shown in 

Figure S2.

However, by 70 dpi, 13 of 22 (59%) βHIF-1α mice had developed florid diabetes (blood 

glucose level [BGL] ≥20 mmol/L or 360 mg/dL) compared to no NOD, FC, or RIP-Cre 

controls (p < 0.0001 overall; Figure 1B). No uninfected male βHIF-1α mice developed 

diabetes. In the diabetic βHIF-1α mice, the increased BGLs were accompanied by a 

significant reduction in body weight (p = 0.0002, ANOVA) (Figure 1C). Of the 22 infected 

βHIF-1α mice, 9 required pancreatic enzyme replacement (Creon Forte) because they 

displayed >10% body weight loss, compared to none of the controls (p < 0.01). Those 9 

mice regained normal body weight, and Creon was ceased by 50 days. Of the 9 βHIF-1α 
mice that received Creon, 8 later developed diabetes.

To confirm that the diabetes in βHIF-1α mice was T1D, we adoptively transferred 

splenocytes from either diabetic βHIF-1α or duration-matched (non-diabetic) FC mice into 

diabetes-resistant immunodeficient (NOD-severe combined immunodeficiency [SCID]) 

recipients (Christianson et al., 1993). As shown in Figure 1D, all of the recipients that were 

given splenocytes from diabetic βHIF-1α mice developed diabetes within 49 days (100%; 

20 of 20). None of the recipients that were given splenocytes from duration-matched FC 

mice developed diabetes (0 of 10, p = 0.0005 overall).

Consistent with the development of T1D, diabetic βHIF-1α mice had an 86% reduction in β 
cell mass compared to infected FC mice (Figures 1E and 1F), and random-fed serum insulin 

concentrations were reduced by 56% in diabetic βHIF-1α mice compared to infected FC 

mice (Figure 1G).
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Previous reports have suggested that the chronic stage of CVB4-induced diabetes is 

characterized by manifestations such as insulitis, sustained presence of inflammatory 

infiltrates, fat replacement, and fibrosis (Ramsingh, 1997; Coppieters et al., 2012). 

Histological examination showed that diabetic βHIF-1α mice had increased fat area per total 

pancreas area (Figures 1H and 1I). To examine the severity of fibrosis, pancreatic sections 

were stained with Sirius Red to visualize collagen in red (Figure 1H). Diabetic βHIF-1α 
mice had an increased collagen area per total pancreas area (Figure 1J). Islets in FC and 

βHIF-1α mice did not show differences in glucagon-positive or somatostatin-positive cells 

21 dpi (Figure S3), indicating no obvious effect of β cell HIF-1α deletion on other islet 

cells.

T1D in humans has a similar incidence in males and females. As previously mentioned, our 

studies were performed in male NOD mice unless stated otherwise, as female NOD mice 

display increased insulitis from an early age (Figure S1B) and a spontaneous T1D incidence 

of ~70% by 40 weeks. Increased insulitis increases the risk of diabetes (Horwitz et al., 1998, 

1999). For completeness, we tested females for diabetes susceptibility after CVB4. Female 

mice infected at 8 weeks of age with 105 particle-forming unit CVB4 intraperitoneally 

revealed an increased rate of diabetes in βHIF-1α mice (Figures S4A and S4B). By 41 dpi, 

50% of βHIF-1α mice (5 of 10) had developed diabetes compared to 20% of NOD (1 of 5) 

and 0% of FC (0 of 5) mice (p = 0.049). As in the males, mice that developed diabetes lost 

weight (Figure S4B). These data confirm that in both males and females, β cell HIF-1α is 

needed to avoid diabetes after CVB4 infection.

Heterozygous βHIF-1α Mice Also Develop T1D after Coxsackievirus Infection

In some circumstances, genetic heterozygosity may provide host resistance to infectious 

diseases and viral clearance (Penn et al., 2002). To investigate whether β cell HIF-1α 
heterozygosity was sufficient to provide resistance against CVB4-induced diabetes, we 

infected male FC and βHIF-1α heterozygous mice (RIP-Cre+, HIF-1α fl/wild type [WT]) 

with CVB4 intraperitoneally. Within 4 weeks, 33% (4 of 12) βHIF-1α heterozygotes 

developed diabetes compared to 0 controls by 15 weeks (0 of 12; p = 0.032, Figure S4C, and 

weight curves in Figure S4D). This demonstrates that diabetes risk is also increased by 

heterozygous deletion. It was interesting to observe that diabetes incidence was numerically 

lower than in homozygous mice, suggesting the possibility of an HIF-1α gene-dose-

response effect in β cells.

Oral Exposure to CVB4 Induces T1D in βHIF-1α Mice

In humans, coxsackievirus transmission occurs primarily by the fecal-oral route. To mimic 

this situation, we tested the effect of oral CVB4 infection (105 particle-forming unit/mouse) 

in a new cohort of NOD, FC, and bHIF-1α mice. By 95 days, 6 of 13 (46%) of CVB4-

infected βHIF-1α mice had developed diabetes compared to 0 of 16 controls (8 NOD and 8 

FC; p = 0.0096, Figure S5A, and weight curve in Figure S5B). We note that diabetes onset 

was somewhat delayed after oral rather than intraperitoneal inoculation of coxsackievirus. 

Consistent with the previous results, diabetic βHIF-1α mice exhibited reduced β cell mass 

and serum insulin concentrations compared to infected FC mice and non-diabetic βHIF-1α 
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mice (Figures S5C–S5E). These findings demonstrate that Hif1a is important for β cell 

resistance to CVB4 infection itself or for β cells to survive the effects of CVB4 infection.

βHIF-1α Mice Also Develop T1D after Exposure to CVB1

To determine whether the effects of βHIF-1α deletion were CVB4 specific or more 

generalized, we investigated whether a different strain of coxsackievirus would also induce 

diabetes. A new cohort of control and βHIF-1α mice was infected with CVB1 and 

monitored for diabetes onset until 105 dpi. Of 9 βHIF-1α mice, 4 (44%) developed diabetes, 

compared to 0 of 6 NOD and 0 of 8 FC controls (p = 0.02; Figures 2A and 2B). Similar to 

CVB4 infection, 4 of 9 βHIF-1α mice required pancreatic enzyme replacement (Creon 

Forte) after CVB1 versus 0 controls (p = 0.014). All of the mice requiring Creon Forte in 

this experiment went on to develop diabetes.

These diabetic βHIF-1α mice also exhibited reduced β cell mass and serum insulin 

concentrations compared to both infected FC and non-diabetic βHIF-1α mice (Figures 2C–

2E). Absolute confirmation that the diabetes was autoimmune was provided by adoptive 

transfer studies. All of the recipients of splenocytes from diabetic βHIF-1α mice developed 

diabetes within 42 days of adoptive transfer (10 of 10) compared to 0 FC recipients (0 of 10, 

p < 0.0001 overall; Figure 2F).

Overall, these results demonstrate that β cell HIF-1α plays an important role in determining 

the fate of β cells after viral infection. Absence of β cell HIF-1α predisposes to development 

of T1D after coxsackievirus infection, irrespective of viral strain (B4 or B1), route of 

infection (intraperitoneal or oral), gender, or homo- or heterozygosity for a null HIF-1α 
allele in β cells.

Absence of β Cell HIF-1α Modulates Incidence and Course of Disease in MLDS-Induced 
Diabetes

Next, we hypothesized that β cells lacking HIF-1α would also exhibit susceptibility to other 

mechanisms of β cell death. The multiple low-dose stretozotocin (MLDS) model gives 5 

sub-diabetogenic doses of the β cell toxin streptozotocin and causes only minor β cell death, 

but MLDS can cause T1D in susceptible mice (Rossini et al., 1977). To examine the role of 

HIF-1α in this process, we performed MLDS treatment in control and βHIF-1α mice 

(timeline in Figure S2B). At day 10 post-MLDS, all of the groups of NOD, FC, and 

βHIF-1α mice had equally mildly impaired glucose tolerance, suggesting that MLDS had an 

equivalent effect on all of the strains. However, by the end of the study, all 11 βHIF-1α mice 

(100%) had developed diabetes, compared to 5 of 18 controls (1 of 6 NOD and 4 of 12 FC, p 

= 0.0010). Proof that MLDS diabetes was immune was provided by adoptive transfer of 

splenocytes from diabetic FC and βHIF-1α mice into NOD-SCID recipients. By day 21 

after adoptive transfer, 100% of the recipients (10 of 10) that were given sple-nocytes from 

diabetic βHIF-1α mice had developed autoimmune diabetes. At day 35 after adoptive 

transfer, 100% of the recipients (10 of 10) that received splenocytes from diabetic FC mice 

also developed autoimmune diabetes. These results demonstrate that increased susceptibility 

to T1D in βHIF-1α mice was not limited to only viruses.
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CVB4-Induced T1D Is Accompanied by Increased Pancreatic Viral Load and Classic 
Manifestations of Pancreatitis

To investigate how β cell HIF-1α deficiency is involved in the initial steps of viral 

persistence and clearance, we infected a new cohort of FC and βHIF-1α mice with CVB4 

and sacrificed them at 4, 7, and 21 dpi (timeline in Figure S2C). As shown in Figure 3A, 

immunohistochemistry for the CVB4 capsid protein VP1 showed no differences at 4 or 7 

dpi. However, at 21 dpi and at the end of the long-term study, there was more VP1 staining 

in βHIF-1α mice than in controls. This suggests that β cells in the βHIF-1α mice may have 

an impaired ability to clear CVB4 or the VP1 protein.

To investigate this, we performed plaque assays, which measure replicating virus. Plaque 

assays showed that βHIF-1α mice had a significantly higher viral load than FC mice at 7 dpi 

(0.96 ± 0.12 versus 0.34 ± 0.06 plaque-forming units/μL; p = 0.0001). By 21 dpi, infectious 

virus was cleared from the pancreas in both groups (Figures 3B and S1B). Plaque assays 

showed very low levels of virus in the spleen by 21 days, with no difference between 

genotypes (Figure 3C).

Although it is possible to preserve islet mass during pancreatic infection, this was not the 

case in βHIF-1α mice; at 21 dpi βHIF-1α mice already had a 77% reduction in β cell mass 

compared to baseline (p < 0.0001; Figure 3D). CVB4-infected βHIF-1α mice also had 

extensive loss of exocrine pancreatic tissue compared to FC mice. Total pancreas weight 

normalized to body weight was reduced by 48% in βHIF-1α versus FC mice (Figure 3E). 

Elevated serum amylase is a classic marker of pancreatitis. Serum amylase activity was 

significantly elevated 7 days after CVB4 infection in βHIF-1α mice (50% higher than FC 

mice, p < 0.026; Figure 3F).

In contrast to the effects on β cell mass, glucagon and somatostatin expression was not 

differentially affected. Glucagon and somatostatin stains did not reveal significant glucagon 

or somatostatin depletion in the pancreatic sections scanned from CVB4-infected βHIF-1α 
mice (Figure S3).

These results indicated that CVB4-induced T1D in βHIF-1α mice included classic 

manifestations of pancreatitis, with reduced pancreas weight, hyperamylasemia, higher 

pancreatic viral load, extensive destruction of acinar cells, and replacement by fat. The 

observation of replacement of tissue by fat is consistent with previous reports in NOD, and 

studies in other mice have indicated that following coxsackievirus infection, there is a loss of 

acinar cells and replacement with cells of the fat lineage (e.g., Horwitz et al., 1998).

CVB4 Infection Leads to Increased Insulitis and Pancreatic Fibrosis in βHIF-1α Mice

Previous reports in NOD mice have suggested that autoimmune diabetes is accelerated in the 

presence of critical threshold of insulitis (Serreze et al., 2005; Horwitz et al., 1998, 1999). 

Examination of pancreatic sections from uninfected and CVB4-infected FC and βHIF-1α 
mice revealed an increase in insulitis at the islet periphery of βHIF-1α mice from as early as 

4 dpi (Figure 4A; insulitis indicated by yellow arrows). Similarly, more immune cells were 

present in the insulitis area and in the infiltrate around the is-lets of βHIF-1α mice at 4,7, 

and 21 dpi, compared to FC mice (Figures 4B and 4C). There were no differences in the 
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number of islets isolated from βHIF-1α and FC mice until 7 dpi, when βHIF-1α mice had 

significantly fewer islets isolated per pancreas (data not shown). Furthermore, due to 

significantly reduced pancreatic size and weight, β cell mass, and presence of pancreatic 

tissue fibrosis in βHIF-1α mice at 21 dpi, islet isolation was challenging for comparison 

purposes with FC mice (data not shown).

At 21 dpi, pancreata from βHIF-1α mice had more pancreatic fat (72% of histological area 

versus 48% in controls, p = 0.0025) and were also more fibrotic compared to FC mice, with 

increased collagen area per pancreas area (9% versus 4% in controls, p = 0.0006; Figures 

4D–4F). The immune infiltrates from the islets of FC and βHIF-1α mice were further 

characterized by flow cytometry. Total hematopoietic cells (CD45+) from FC and βHIF-1α 
mice at 7 dpi were sorted to yield T cells (CD3+ and CD4+ or CD8+ and CD25+ for 

activation), B cells (CD19+), and macrophages (F4/80+, CD11c+, and CD11b−). Intracellular 

staining for granzyme B, an enzyme secreted by CD8+ T cells involved in β cell death (van 

Belle et al., 2011), was also performed.

CVB4 infection led to a significant increase in total lymphocytes in both βHIF-1α and FC 

mice at 7 days (Figure 4G), but without significant differences between the 2 groups. 

However, total T cells (CD3+) were significantly elevated in the infected βHIF-1α mice. 

CD4+ T cells did not differ between infected βHIF-1α mice compared to FC mice, but 

infiltrates from infected βHIF-1α mice did contain increased numbers of CD8+ T cells. 

CD8+ cells play a critical role in immune-mediated cell death (Tsai et al., 2008; van Belle et 

al., 2011). βHIF-1α mice also had elevated granzyme B staining within their CD8+ T cells 

(p = 0.0001 versus infected FC mice). This indicates that CD8+ effector T cells from 

βHIF-1α mice are likely to be more damaging as well as more numerous. B cells (CD19+) 

were significantly elevated in infiltrates from βHIF-1α mice after infection (p < 0.0001), 

while this did not occur in infected FC mice. Lastly, CVB4 infection led to increased 

numbers of macrophages in both βHIF-1α and FC mice; however, this induction was 

significantly more pronounced in infected βHIF-1α mice.

These results indicate that β cell HIF-1α has a role in the induction of the immune response 

in response to β cell and islet CVB4 infection. It follows that the elevated inflammatory 

milieu in βHIF-1α mice would contribute to greater fibrosis and autoimmune diabetes in 

βHIF-1α mice.

Altered Gene Expression in Islets from CVB4-Infected βHIF-1α Mice In Vivo and In Vitro

As HIF-1α is part of the HIF1 transcription factor, we subsequently investigated changes in 

gene expression in isolated islets from CVB4-infected bHIF-1α and FC mice, at 4, 7, and 14 

dpi. Enterovirus (EV) RNA expression was measured, as well as that of its receptor (Cxadr) 
and genes involved in endoplasmic reticulum (ER) stress and RNA sensing.

Seven days after CVB4 infection, islets from βHIF-1α mice had increased enterovirus RNA 

expression compared to islets from FC mice (15-fold higher, p < 0.0001). Consistent with 

plaque assays, no significant differences were observed on other days (Figure 5A). The 

expression of Cxadr, which permits viral entry β cells, was markedly increased in islets from 
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βHIF-1α mice at 7 dpi (13.9-fold higher, p < 0.0001) and 14 dpi (31-fold higher, p < 0.0001; 

Figure 5B).

Next, we assessed the role of βHIF-1α in ER and oxidative stress after CVB4 infection. 

Following infection, a panel of ER and oxidative stress genes was significantly altered in 

islets (Figure 5C, top and center panels). These genes included ER stress chaperones binding 

immunoglobulin protein (Bip) and glucose-regulated protein 94 (Grp94), pro-apoptotic ER 

stress genes, cyclic AMP-dependent transcription factor (Atf3), and the oxidative stress 

genes glutathione peroxidase 1 (Gpx), superoxide dismutase 1 (Sod1), and catalase (Cat).

In contrast to control islets, which increased the expression of RNA virus-sensing genes, 

islets from βHIF-1α mice showed a decreased expression of key intracellular sensors for 

viral RNA, including retinoic acid-inducible gene-I (Rig-i), Laboratory of Genetics and 

Physiology 2 (Lgp2), melanoma differentiation-associated protein 5 (Mda5), and nucleotide-

binding oligomerization domain-containing protein 2 (Nod2) (Figure 5C, bottom panel) 

following CVB4 infection.

These results suggest that the absence of β cell HIF-1α diminishes the appropriate response 

of βcells to RNA virus infection. This would be predicted to impair viral clearance, as we 

observed with the plaque assay and with the enterovirus 5′ UTR PCR.

To investigate viral clearance in the setting of CVB4-induced islet death, we compared the 

expression of enterovirus RNA and apoptotic genes in isolated FC and βHIF-1α islets that 

were infected with CVB4 in vitro. Actinomycin D was used to inhibit transcription. To test 

its efficacy, expression of the house-keeping genes TATA-Box binding protein (Tbp) and 18 
was measured. Tbp and 18 s showed a progressive increase in the cross-threshold (CT) 

values, meaning a decrease in expression, with increasing actinomycin D duration (Figure 

5D). At 24 h, enterovirus RNA expression was significantly increased in βHIF-1α islets 

(>10-fold higher, p = 0.0021; Figure 5E), again, consistent with impaired viral clearance.

Although islets from βHIF-1α started with higher expression of the protective gene A20 pre-

infection, expression became significantly decreased in these islets after CVB4 infection and 

actinomycin D (Figure 5F). Consistent with the previous in vivo islet gene expression 

(Figures 5C), βHIF-1α islets also had a significantly decreased expression of viral RNA 

sensors Rig-I, Lgp2, and Mda5, in contrast to FC mice, in which Rig-I, Lgp2, and NOD2 
increased (Figure 5F, bottom panel). This shows that in β cells, expression of the HIF-1α 
component of the HIF1 transcription factor is necessary for the normal expression of viral 

RNA sensors.

Knockdown of HIF-1α in Human Islets Increases Their Susceptibility to β cell Death after 
CVB4 Infection

Infection of human islets with CVBs is known to lead to β cell dysfunction (Chehadeh et al., 

2000; Kim et al., 2016; Gallagher et al., 2015). We investigated whether human islets with 

knockdown of HIF-1α would have a poorer response to CVB4 infection. Human islets were 

obtained from 4 donors who did not have diabetes. Their islets were subjected to CVB4 with 
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or without preceding HIF-1α knock down by lentiviral small hairpin RNA (shRNA), as 

shown in Figure S2G.

There were no obvious differences in the number and morphology of human islets after 

short-term (24 h) treatment, as shown in Figure 6A. The efficacy of HIF-1α knock down by 

shRNA was measured by real-time PCR and was >80% (Figure 6B, top panel). Islets from 

the 4 different human donors showed similar patterns of gene expression. All 4 donors had a 

significant increase in CXADR expression with CVB4 infection, which was further 

increased by HIF-1α knockdown. Similarly, expression of pro-apoptotic BAX was also 

increased by concurrent CVB4 and HIF-1α knockdown. In addition, shRNA against HIF-1α 
in human islets markedly increased viral load (Figure 6C). These findings are consistent 

with our observations in mouse tissue, demonstrating that HIF-1α is important for the 

intrinsic antiviral response of β cells following CVB4 infection.

DISCUSSION

T1D is an immune-mediated disease, with incidence increasing steadily in recent decades 

around the world (Maahs et al., 2010). Recently, attention has turned to identifying β cell 

factors that confer resistance against stress and insults (Colli et al., 2010; Eizirik et al., 2012; 

Moore et al., 2009).

Here, we demonstrate that deletion of the transcription factor HIF-1α from the pancreatic β 
cells of NOD mice increases their susceptibility to T1D, after coxsackieviral insult (CVB1 

or CVB4). While male NOD mice typically have an ~10% incidence of T1D by 40 weeks of 

age (Gale and Gillespie, 2001; Atkinson and Leiter, 1999), the male βHIF-1α NOD mice 

exposed to coxsackievirus had an ~50% rate of T1D by only 23 weeks of age. Notably, the 

protective effects of having normal β cell HIF-1α on CVB4-induced T1D were observed 

independently of mouse gender or route of administration (intraperitoneal versus oral) and 

with 2 different viral types (CVB4 and CVB1). Heterozygosity for a null HIF-1α allele also 

led to an increased risk of T1D in mice, with a suggestion of a gene-dose-response effect.

Our data indicate that viral clearance was impaired by deleting HIF-1α from β cells. 

Relative to FC mice, β cell HIF-1α mice had increased enteroviral RNA expression in their 

islets at 7 dpi. This was supported by plaque assays and by pancreatic VP1 capsid protein 

staining. In addition, increased expression of the CVB4 receptor Cxadr was detected in β 
cell HIF-1α mice compared to FC mice at 7 and 14 dpi. These findings are consistent with 

increased viral attachment (Figure 3A), infection, and/or re-infection (Figure 3B) in 

βHIF-1α mice. Furthermore, the mice also showed a reduced expression of important viral 

sensors Rig-I, Lgp2, Mda5, and Nod2. These sensors detect viral products and activate 

distinct signaling pathways that in turn lead to an antiviral response by the induction of 

Dicer (McCartney and Colonna, 2009).

Impaired viral clearance in β cell HIF-1α mice is accompanied by increased pancreatitis. 

This finding suggests that the β cell-specific defect led to greater exocrine pancreatitis. This 

is likely to be mediated by the greater viral load in βHIF-1α mice. It is a seldom-recognized 

fact that people with T1D have substantial reductions in pancreatic mass and/or volume. The 
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magnitude of this loss is far greater than would be expected with the loss of β cells alone. 

This is consistent with prior pancreatitis, presumably at a subclinical level (Williams et al., 

2012; Campbell-Thompson et al., 2016).

Increased viral load and pancreatitis both have obvious potential to increase islet and β cell 

death, thereby further priming autoimmunity. HIF-1α is induced in pancreatitis (Gomez et 

al., 2004). During acute pancreatitis, HIF-1α facilitates the restoration of oxygen 

homeostasis and regulates the expression of cell-cycle and anti-apoptotic genes (Gomez et 

al., 2004; Carmeliet et al., 1998; Semenza, 2001; Ladoux and Frelin, 1993). In βHIF-1α 
mice, this protective response is lost in the β cells, and our data show that this causes 

increased β cell death, with the eventual development of T1D.

HIF-1α activity is increased by cytokines and inflammation, as well as by pancreatitis. In 

other tissues such as kidney (Higgins et al., 2007; Haase, 2012), liver (Moon et al., 2009; 

Roth and Copple, 2015), and white adipose tissue (Halberg et al., 2009; Sun et al., 2013), 

HIF-1α decreases fibrotic response. βHIF-1α mice showed a marked increase in fibrosis. 

People with T1D also have increased pancreatic fibrosis, predominantly in the periductal 

regions (Meier et al., 2005). The fibrosis is also consistent with increased pancreatitis. One 

human autopsy study of 47 people with T1D reported pancreatic fibrosis in 66% of cases 

and fatty infiltration in 32% (Waguri et al., 1997). A much older paper did not report on fatty 

infiltration but found pancreatitis in 17 of 54 patients (32%) and fibrosis in 39 of the 54 

cases (72%) (Gepts, 1965). We believe it is likely that subclinical pancreatitis may be more 

prevalent in people with T1D than previously realized.

Both viruses and β cell toxins cause a range of deleterious changes in β cells that can 

promote increased cytokine and chemokine production and ER stress leading to increased β 
cell apoptosis (Akerfeldt et al., 2008; Fonseca et al., 2011; Gallagher et al., 2015). Lack of 

HIF-1α and, in human islets, knockdown of HIF-1α caused decreased expression of the 

RNA virus-sensing machinery, particularly Mda5 and Nod2. These changes are consistent 

with the increased viral load and impaired viral clearance seen in βHIF-1α mice.

We characterized the immune cell populations in the islet infiltrates of βHIF-1α and control 

mice at the peak of viral load. More detailed studies revealed that a lack of β cell HIF-1α led 

to a larger and more aggressive immune infiltrate, accompanying increased viral load, and 

exocrine pancreatitis. Lack of β cell HIF-1α led to increased proportions of cytotoxic T 

cells, B cells, and macrophages in the islet infiltrate. Increased viral load, impaired ER stress 

response, impaired viral processing genes, and pancreatitis together would contribute to a 

greater inflammatory response and the more aggressive infiltrate seen. The effects of 

HIF-1α knockdown in human islets exhibited robust and consistent reduced expression of 

RNA sensor and anti-apoptotic genes and increased expression of enterovirus RNA and 

CXADR in all of the donors tested. This confirms important effects of HIF-1α in human 

islets.

Genetic association studies performed in both Japanese (Yamada et al., 2005) and caucasian 

(Hungarian) populations (Nagy et al., 2009) have shown that polymorphisms in the human 

HIF- 1α gene is associated with diabetes. In addition, other studies have shown the impact 
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of HIF-1α polymorphisms in diabetes complications such as nephropathy (Gu et al., 2013), 

cardiomyopathy (Alidoosti et al., 2011), and microvascular and diabetic foot complications 

(Pichu et al., 2015). Our studies demonstrate an important role for β cells and, particularly, β 
cell HIF-1α in response to environmental triggers for T1D. To our knowledge, this is the 

first demonstration of a role for β cell-specific knockout in T1D development after 

environmental triggers and of a role for HIF-1α in viral clearance.

Our studies outline a potential pathway for the development of T1D in susceptible 

individuals. βHIF-1α has an important role in determining the fate of islet β cells in the 

context of stress and viral infection and provides insights into the unpredicted and 

unexplored connection between viral infections and the development of autoimmune 

diabetes. Since HIF-1α is primarily regulated at a protein level, these findings have 

translational potential and provide insights into potential therapeutic strategies for the 

prevention and treatment of human T1D. Based on these studies, it would be interesting to 

speculate that previous coxsackievirus immunization with or without increased HIF-1α 
protein could provide protection against diabetes in some individuals.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jenny E. Gunton (jenny.gunton@sydney.edu.au).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics approvals—All mouse studies and procedures complied with the Australian Code 
of Practice for the Care and Use of Animals for Scientific Purposes at Garvan Institute 

(approval #12.19) and Western Sydney Local Health District (WSLHD, approval #4224) 

Animal Ethics Committees. Studies involving human islets were approved by WSLHD 

Ethics Committee. Human pancreatic islets were purified using a modified Ricordi method 

(Ricordi et al., 1988) as previously reported (O’Connell et al., 2013).

Animals—β-cell-specific Hypoxia Inducible Factor-1α NOD (βHIF-1α) mice are a 

conditional knockout mouse on the non-obese diabetic (NOD) background that lacks 

HIF-1α in pancreatic β-cells. While female NOD mice have a 70% spontaneous T1D 

incidence by ~40 weeks of age, males have only 10% risk of spontaneous diabetes (Leiter et 

al., 1987; Atkinson and Leiter, 1999). All studies were performed in male mice unless stated 

otherwise. βHIF-1α mice were created by crossing βHIF-1α C57BL/6 mice (Cheng et al., 

2010) with NOD mice for > 12 generations. Baseline histology in male βHIF-1α mice was 

normal, including for islet glucagon and somatostatin (Figure S1A). Controls were NOD, 

floxed control (FC) littermates (HIF-1α fl/fl, RIP-Cre negative NOD mice) or RIP-Cre-alone 

NOD mice (HIF-1α WT/WT, RIP-Cre+ NOD mice) as specified in each experiment. The 

recipients for adoptive transfer studies were immunodeficient NOD-SCID mice, obtained 

from the Animal Resource Centre (ARC, Canning Vale, WA, Australia). Generation of 

NOD-SCID mice is described in (Christianson et al., 1993).
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All mice were housed in individually-ventilated cages with sterile bedding and ad libitum 
access to standard chow and water. Chow provided 60%, 27% and 13% calories from 

carbohydrate, protein and fat respectively (Agrifood Technology, Werribee, VIC, Australia). 

The facility was temperature-controlled (22–25°C) with a 12-hour light-dark cycle.

METHOD DETAILS

Viruses and infection of mice—Coxsackievirus B4 (CVB4, Edward’s strain 2 of human 

origin) was derived from stocks obtained from Professor Malin Flodström-Tullberg, 

(Karolinska Institute, Sweden). Coxsackievirus B1 (CVB1) was isolated from stool samples 

obtained from patients without T1D, as previously described (Craig et al., 200; Nair et al., 

2010). CVs were propagated in HeLa cell cultures, and culture supernatants containing the 

viruses were stored at −80°C. At eight weeks of age, male mice (either βHIF-1α, NOD, 

floxed control (FC) or RIP-Cre-alone) were infected intraperitoneally with 105 plaque-

forming units (pfu) of CVB4 or CVB1 in 200 μl saline. Male mice were used for all studies 

unless specified because female βHIF-1α mice already had significantly higher insulitis 

scores at baseline (Figure S1B). A separate cohort of mice was inoculated orally (via gavage 

route) with 105 pfu CVB4 in 200 ml saline. For long-term studies; the mice were followed 

until diabetes development or 105 days post infection (dpi) (Figure S2A) and for short-term 

studies; they were sacrificed at 4, 7, 14 or 21 dpi (Figure S2B).

Mouse monitoring—Mice were monitored for signs of distress, weighed and BGLs were 

checked twice a week after CV infection. If BGLs were > 15mmol/L, mice were 

commenced on daily insulin (0.5U/kg of Actrapid, administered after BGL testing which 

was also performed daily). BGLs were measured using the FreeStyle Lite glucometer 

(Abbott Diabetes Care, Macquarie Park, New South Wales, Australia). Mice that had 

random-fed BGLs of ≥ 20mmol/l (360mg/dl) on 2 separate occasions were considered 

diabetic. Intraperitoneal glucose tolerance tests (GTT, 2g/kg) were performed in mice fasted 

for 4 hours, as previously described (Lalwani et al., 2014; Stokes et al., 2013; Scott et al., 

2014).

Pancreatic enzyme replacement and insulin therapy—Creon Forte (Abbott 

Laboratories, Illinois USA) which is a combination of lipase, protease, and amylase was 

administered in mice that showed clinical signs of weight loss and food malabsorption after 

CVB1 or CVB4 infection. All mice that lost > 10% of their pre-virus body weight were 

treated until baseline weight was regained. Mice were orally administered granules daily in 

the afternoon (approx. 1 mg each) when required.

CV plaque assay—Pancreatic and spleen viral load were measured by plaque assay 

(plaque-forming units (pfu) per milliliter). On the day prior to the assay, 500,000 HeLa cells 

were seeded in 6-well plates containing 2 ml/well of complete medium (RPMI 1640 + 10% 

BCS + 2mM L-glutamine + 100U/ml Penicillin). Experimental mice were sacrificed and 

pancreases were collected and homogenized using a Dounce tissue grinder. Serial dilutions 

were made using serum-free RPM11640 medium. Afterward, 400 μl of diluted virus or 

tissue homogenate was added to each well of HeLa cells and incubated at 37°C for 1 hour 

with gentle rocking every 15 minutes. After incubation, the infectious media was removed 

Lalwani et al. Page 13

Cell Rep. Author manuscript; available in PMC 2020 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 3 mL of agar/2× MEM medium with BCS (1:1 ratio) was added per well. Plates were 

incubated at 37°C for 3 days and then 3mL Carnoy’s reagent was added per well and plates 

were incubated at room temperature for an hour. After incubation, the agar/media plug was 

removed and the cells were stained with 800 uL of 0.1% Crystal Violet for 60 s. Wells were 

gently rinsed with water and air-dried before counting plaques (examples of plates are 

shown in Figure S1C). The viral titer was determined as pfu/ml using the following 

calculation:

Plaque Assay count = number of plaques counted × dilution of the particular well × volume 

of the diluted virus added to the well

Biochemical measurements—Insulin was determined by ELISA (#90080, Crystal 

Chem, Illinois, USA). Serum amylase activity was measured using an amylase activity kit 

from Sigma-Aldrich (catalog# MAK009–1KT, Sydney, New South Wales, Australia),

Isolation of mouse islets and analysis of infiltrates—Mouse islets were isolated 

and purified from uninfected and CV infected 8-week-old male FC and βHIF-1α mice as 

described previously (Cheng et al., 2010; Gunton et al., 2005; Lalwani et al., 2014; Stokes et 

al., 2013). The pancreas was distended with 3mls of liberase containing solution, and 

incubated at 37°C for 16.5 minutes. After this the samples were physically disrupted, passed 

through a series of increasingly small sieves and then the islets were separated using a Ficoll 

density gradient.

Islets were dispersed into single cell suspensions using 5 mL of 0.2 mM EDTA solution for 

5 minutes at room temperature For all experiments, n = 5–6 mice per group and 100 islets 

per mouse were used. After dispersion, the cells were stained for surface molecules/markers 

with one or more of the fluorochrome-labeled antibodies (details in Table S1). For 

intracellular cytokine staining, BD Cytofix/Cytoperm Kit (#554714, BD Biosciences, North 

Ryde, New South Wales, Australia) was used according to manufacturer’s instructions. Total 

proportions of different immune cells within the islets (islet infiltrate) were quantified by 

flow cytometry using an LSRFortessa (BD Biosciences, North Ryde, New South Wales, 

Australia). Data analysis was performed using FACSdiva software (BD Biosciences, North 

Ryde, New South Wales, Australia).

Adoptive transfer studies—Donors were sacrificed; spleens were excised and dispersed 

into single cells. Splenocytes were transferred to NOD-SCID recipient mice via tail vein 

injection, at a dose of 2 × 107 cells/mouse. Recipients were monitored at least twice a week. 

As above, mice with BGLs ≥ 15mmol/L were commenced on daily insulin and were 

considered diabetic with BGLs ≥ 20mmol/L on two separate occasions.

Infection of human islets with lentivirus carrying HIF-1α shRNA—For 

knockdown of HIF-1α, human islets were infected with lentivirus carrying HIF-1α shRNA 

(#sc-35561-SH, Santa Cruz Biotechnology, Dallas, Texas, USA) at a dose of 20 MOI 

(multiplicity of infection) and cultured in human islet culture medium as used in (Stokes et 

al., 2013) and 6μg/ml of polybrene (#sc-134220, Santa Cruz Biotechnology, Dallas, Texas, 

USA) at 37°C for 48 hours.
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In vitro studies with mouse and human islets—Isolated islets from FC and βHIF-1α 
mice were handpickedand cultured in media (control) or media with CVB4at 104 pfu/islet at 

37°C for 24 hours. This was followed by Actinomycin D treatment (10nmol/l) for 2, 4, 8, 16 

and/or 24 hours (Figure S2D). In separate experiments, islets were stimulated with or 

without 200 U/ml (10pg/ml) IL-1β (#401-ML-025, R&D Systems, Minneapolis, Minnesota, 

USA) at 37°C for 1, 2, or 24 hours (Figure S2E).

Human islets were stimulated with or without 200 U/ml (10pg/ml) IL-1β at 37°C for 1, 2, or 

24 hours (Figure S2F). In separate experiments, human islets were treated with lentivirus 

HIF-1α shRNA (Santa Cruz Biotechnology, Dallas, Texas, USA) for 48 hours for HIF-1α 
knockdown followed by vehicle or CVB4 infection at a dose of 104 pfu/islet at 37°C in the 

second 24 hours of lentiviral exposure (Figure S2G). At the end of the study islets were 

collected, snap-frozen in liquid nitrogen and stored at −80°C for further analysis.

Gene expression by real-time PCR—Islet RNA was extracted either with the QIAGEN 

RNeasy Mini kit (#74106, QIAGEN, Valencia, California, USA) or TRI Reagent solution 

(#T9424, Sigma-Aldrich, Sydney, New South Wales, Australia), according to the 

manufacturer’s instructions. cDNA was generated from 500 ng of RNA and random 

hexamer primers using the Maxima First Strand cDNA Synthesis kit for RT-qPCR (#K1641, 

ThermoFisher Scientific, Scoresby, Victoria, Australia). Real-time PCR was performed in 

ABI Prism 7900HT Sequence Detection System (Life Technologies Australia Pty Ltd, 

Mulgrave, Victoria, Australia) using specific primers (mouse sequences in Table S2 and 

human sequences in Table S3) and Power SYBR Green mastermix (#4367659, Life 

Technologies Australia Pty Ltd, Mulgrave, Victoria, Australia) as previously described 

(Lalwani et al., 2014). Differences in gene expression were calculated using the ΔΔCT 

method. Primers for enterovirus (EV) mRNA targeted the highly conserved 5′ untranslated 

region (UTR) of the EV genome as previously described (Craig et al., 2003). Therefore, this 

measures viral load rather than individual translated viral RNAs. For many of the gene 

expression changes after viral infection, fold changes were very large (> 10-fold) and for 

those genes, data were log10 transformed for statistical analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Histological methods and insulitis scoring—The collected pancreases were fixed in 

neutral buffered formalin overnight, processed with standard progressive ethanol rehydration 

steps, and then embedded in paraffin. Insulin immunohistochemistry with hematoxylin and 

eosin (H&E) counterstain, and Sirius Red staining were performed as previously described 

(Scott et al., 2015; Lalwani et al., 2014). Immunostaining for the enterovirus (EV) capsid 

protein VP1 was performed as previously described with exception of secondary antibody 

detection with DAB chromogen (Craig et al., 2013; Nair et al., 2013; Yeung et al., 2011). 

Coxsackievirus and adenovirus receptor (CAR) immunohistochemistry with hematoxylin 

counterstain was performed as previously described (Gunton et al., 2005; Lalwani et al., 

2014) with exception of primary antibody probing with anti-coxsackie and adenovirus 

receptor (Abcam, ab100811, 1:100). Similarly, glucagon immunohistochemistry with 

hematoxylin and eosin (H&E) counterstain were performed as previously described (Gunton 

et al., 2005; Lalwani et al., 2014) with exception of primary antibody probing for glucagon 
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with anti-glucagon (Invitrogen, 18–0064, 1:200). Detection was performed using anti-rabbit 

secondary conjugated to horseradish peroxidase (Dako, K4003). Somatostatin 

immunofluorescence used overnight incubation at 4°C with anti-somatostatin (Sigma, 

SAB4502861) and insulin antibodies (guinea-pig anti-insulin, DAKO, A0564) with 

appropriate secondary antibodies (Cy2 anti-rabbit and AlexaFluor 568 anti-Guinea-pig) and 

DAPI (Bio-Rad 1351303). Images were acquired using an Olympus VS120 slide scanner.

Insulitis was evaluated by bright field microscopy on a Leica DM 4000 microscope with a 

DFC450 camera (Leica Biosystems, Mount Waverly, Victoria, Australia). At least 6 widely-

separated pancreatic sections were immunostained for insulin and counter-stained with 

hematoxylin and eosin (H&E). Insulitis was measured by an observer blinded to 

experimental group, and a score of 0 to 4 was assigned based on islet infiltration. Scoring 

was 0; normal islets, 1; mild mononuclear infiltration (≤ 25%) at the islet periphery, 2; 25%

−50% of the islet infiltrated, 3; ≥ 50% of the islet infiltrated and lastly 4; ≥ 75% infiltration 

or islet with no insulin positive cells. At least 120 islets were evaluated per strain/group.

Quantitative histology methods—β-cell mass was calculated as previously described 

(Gunton et al., 2005). The total number of immune cells in insulitis areas were counted with 

Image-Based Tool for Counting Nuclei (ITCN), a cell counting Java plug in for ImageJ 

(NIH freeware) (https://bioimage.ucsb.edu/itcn.html). Total area of fat was quantified with 

MRI Adipocytes Tools, a fat cell counting Java plug in for ImageJ (NIH freeware) (http://

dev.mri.cnrs.fr/projects/imagej-macros/wiki/Adipocytes_Tool). Necrotic area was measured 

using ImageJ (NIH Freeware) by freehand drawing around the necrotic area within the islet.

Statistical analysis—Data were evaluated using either Microsoft Excel or GraphPad 

Prism 7.0 (San Diego, California, USA). Groups were compared using either Student’s 

unpaired t test or ANOVA, as appropriate. Unless otherwise specified, data are presented as 

mean ± SEM. Where multiple comparisons were made, post hoc testing used Bonferroni or 

Turkey’s correction. Logrank (Mantel-Cox) test was used to plot Kaplan-Meier survival 

curves to compare diabetes free-survival. A p value of ≤ 0.05 was considered significant.

DATA AND SOFTWARE AVAILABILITY

Contact the lead author Professor Gunton for data enquiries.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Type 1 diabetes is increasing worldwide, which must be due to environmental 

changes

• Lack of β cell HIF1a increases risk of T1D after viral infection

• β Cell HIF1a also decreases T1D after low doses of the β cell toxin 

streptozotocin

• β Cell HIF1a is a major factor in determining whether insult leads to T1D or 

resolution
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Figure 1. βHIF-1α Mice Develop Diabetes and Pancreatic Fibrosis after CVB4
(A) Baseline glucose tolerance in NOD controls, floxed controls, RIP-Cre controls, and 

βHIF-1α mice.

(B) Kaplan-Meier diabetes-free survival in CVB4-infected mice. ***p < 0.001 for βHIF-1α 
versus controls.

(C) Body weights after CVB4 infection. ***p < 0.001.

(D) Diabetes-free survival after splenocyte adoptive transfer. ***p < 0.001.

(E) Representative H&E photomicrographs of the pancreas from CVB4-infected FC and 

βHIF-1α mice, at the end of the study. Scale bar, 200 μm.
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(F) Random-fed serum insulin concentrations (n = 6 per group). *p < 0.05 versus CVB4-

infected FC; ###p < 0.001 versus βHIF-1α non-diabetic mice.

(G) β cell mass in uninfected FC mice and βHIF-1α mice, and in CVB4-infected FC and 

diabetic and non-diabetic βHIF-1α mice (n = 6 per group). ****p < 0.0001 versus CVB4-

infected FC; ##p < 0.01 versus non-diabetic βHIF-1α infected mice.

(H) Sirius Red staining of pancreatic sections from CVB4-infected FC and βHIF-1α mice, 

showing pancreatic fibrosis (black arrows). Scale bar, 500 μm.

(I) Pancreas fat area (% of total area) in uninfected FC and βHIF-1α mice, and in FC and 

βHIF-1α mice after CVB4 infection (n = 6 per group). ****p < 0.0001 versus FC infected, 

###p < 0.01 versus non-diabetic βHIF-1α infected mice.

(J) Quantification of collagen area (% of pancreas area). **p < 0.01 versus FC infected, 

###p < 0.001 versus non-diabetic βHIF-1α infected mice.

Data are means ± SEMs.
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Figure 2. βHIF-1α Mice Develop T1D When Exposed to CVB1
(A) Kaplan-Meier plot of diabetes-free survival in mice infected with CVB1. *p < 0.05 

overall.

(B) Weight of mice post-CVB1 infection. ****p < 0.0001, ANOVA.

(C) Insulin and H&E pancreatic sections at sacrifice after CVB1 infection. Scale bar, 200 

μm.

(D) β cell mass in FC (black bars) and in non-diabetic (gray bars) and diabetic (white bars) 

βHIF-1α mice (n = 8, 5, and 4 per group, respectively) at the end of the study post-CVB1 

infection. **p < 0.01 versus FC mice; ###p < 0.001 versus non-diabetic βHIF-1α mice.
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(E) Serum insulin in FC (black bars) and in non-diabetic (gray bars) and diabetic (white 

bars) βHIF-1α mice (n = 8, 5, and 4 per group, respectively) at the end of the study. *p < 

0.05 versus FC mice.

(F) Kaplan-Meier plots for diabetes-free survival in NOD-SCID recipients that were given 

splenocytes from CVB1-infected FC (black squares, dashed line) or βHIF-1α mice (white 

circles, solid line). n = 10–15 recipients per group. ****p < 0.0001.

Data are means ± SEMs.
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Figure 3. CVB4-Induced Diabetes Is Accompanied by Increased Viral Load and Classic 
Manifestations of Pancreatitis
(A) Representative photomicrographs of capsid protein VP1 (brown 3,3′-diaminobenzidine 

[DAB] chromogen) with H&E counterstain of pancreatic sections from uninfected and 

CVB4-infected FC and βHIF-1α mice at 4, 7, and 21 dpi and the end of the study. Scale bar, 

200 μm.

(B) Pancreatic viral load in CVB4-infected FC (black bars) and βHIF-1α (white bars) at 4, 

7, and 21 dpi. Virus was undetectable at 21 dpi. ***p < 0.001 versus FC mice.

(C) β cell mass in uninfected and 21 dpi FC (black bars) and βHIF-1α (white bars) mice (n 

= 6 per group). ****p < 0.0001 versus FC mice, ####p < 0.0001 versus 0 dpi FC mice.
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(D) Pancreas weight normalized to body weight in uninfected and 4,7, and 21 dpi FC (black 

bars) and βHIF-1α (white bars) mice (n = 6 per group) *p < 0.05 versus FC mice.

(E) Serum amylase in CVB4-infected FC and βHIF-1α mice at 4, 7, and 21 dpi (n = 6 per 

group). *p < 0.05 versus FC mice (n = 6 per group).

(F) Spleen viral load after CVB4 infection at 4, 7, and 21 dpi.

Data are means ± SEMs.
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Figure 4. CVB4 Infection Leads to Increased Insulitis and Pancreatic Fibrosis in βHIF-1α Mice
(A) Insulin and H&E staining of pancreatic sections of uninfected and CVB4-infected FC 

and βHIF-1α mice at 4, 7, and 21 dpi, showing insulitis (yellow arrows) and fat 

accumulation. Scale bar, 200 μm.

(B) Number of immune cells in insulitic area in FC (black bars) and βHIF-1α (white bars) 

mice at 4, 7, and 21 dpi (n = 6 per group). *p < 0.05 and **p < 0.01 versus FC mice.

(C) Immune cells in islet infiltrates in FC (black bars) and βHIF-1α (white bars) mice at 4, 

7, and 21 dpi. n = 6 per group. *p < 0.05, **p < 0.01 versus FC mice.
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(D) Pancreatic fat area (% of total area) in FC (black bars) and βHIF-1α (white bars) mice 

at 21 dpi (n = 6 per group). **p < 0.01 versus FC mice.

(E) Collagen area per pancreas (%) in FC (black bars) and βHIF-1α (white bars) mice at 21 

dpi (n = 6 per group). ***p < 0.001 versus FC mice.

(F) Representative photomicrographs of Sirius Red staining from FC and βHIF-1α mice at 

21 dpi, showing the degree of pancreatic fibrosis. Scale bar, 500 μm.

(G) FACS analysis: proportions of total lymphocytes, CD3+ T cells, CD4+ T helper6 cells, 

CD8+ cytotoxic T cells, granzyme B, CD19+ B cells, and macrophages at 7 dpi. Data are 

representative of 3 independent experiments, with n = 6 mice per group in each experiment. 

#Comparisons with uninfected and infected FC and βHIF-1α mice; *comparisons between 

infected FC and βHIF-1α mice.

Data are means ± SEMs.
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Figure 5. Gene Expression Changes in FC and βHIF-1α Mouse Islets following CVB4 Infection
(A) Expression of enterovirus (EV) RNA in uninfected and CVB4-infected FC (black bars) 

and βHIF-1α (white bars) mice at 4,7, and 14 dpi (n = 5 per group per time). Data are 

medians and 95% confidence intervals. ***p < 0.0001 versus matching time.

(B) Expression of coxsackievirus and adenovirus receptor (Cxadr) in uninfected and CVB4-

infected FC (black bars) and βHIF-1α (white bars) mice at 4, 7, and 14 dpi (n = 5 mice per 

group per time). Data are medians and 95% confidence intervals. ***p < 0.0001 versus 

matching time.
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(C) Heatmap of real-time PCR of ER stress, oxidative stress, and RNA sensor gene 

expression in islets from uninfected and CVB4-infected mice at 4,7, and 14 dpi (n = 5 per 

group). **p < 0.01 compared to control uninfected (day 0). †† p < 0.01 for decreased 

expression versus time-matched controls.

(D) Average CT (cross-threshold) values for TATA-Box binding protein (Tbp) and 18 s 
housekeeping genes in islets from FC (black bars) and βHIF-1α (white bars) after 24-h 

CVB4 infection followed by actinomycin D treatment for the times indicated.

(E) Expression of enterovirus RNA in islets from FC (black bars) and βHIF-1α (white bars) 

mice after 24-h CVB4 infection and actinomycin D treatment.

(F) Heatmap plot of real-time PCR data of inflammatory and/or apoptotic and RNA sensor 

gene expression changes in islets from FC and βHIF-1α mice collected after 24-h CVB4 

infection followed by treatment with actinomycin D for the time shown. **p < 0.01 

compared to control 0 h. ††p < 0.01 for decreased expression versus time-matched FC. 

ΔΔDecreased expression versus βHIF-1α baseline.

Data are means ± SEMs.
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Figure 6. Gene Expression Changes in Human Islets after HIF-1α Knockdown and CVB4 
Infection
(A) Bright-field microscopic images ofisolated human control islets in culture ± HIF-1α 
knockdown and ± CVB4 infection at 24 h. Magnification x20.

(B) Heatmap of gene expression changes (n = 4 individual human donors, triplicate samples 

from each donor per time point). *p < 0.05 and **p < 0.01 for increase versus media. ††p < 

0.01 for decrease versus media control.

(C) Expression of enterovirus RNA in human control islets from 4 distinct donors, after 

HIF-1α knockdown and CVB4 infection collected at 24 h (n = 4 individual human donors, 

triplicate samples from each donor per time point). Enterovirus RNA was not detected in 
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uninfected islets. ****p < 0.0001 versus islets infected with CVB4 alone by 2-way ANOVA 

with Dunnett’s correction.

Data are means ± SEMs.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD111b-AF488 (clone: M1/70) BD Biosciences 557672; RRID:AB_396784

CD11c-APC (clone: HC3) BD Biosciences 550261; RRID:AB_398460

CD19-PE-CY7 (clone: 1D3) BD Biosciences 552854; RRID:AB_394495

CD25-APC (clone: PC61) BD Biosciences 557192; RRID:AB_398623

CD27-BV421 (clone: LG.3A10) BD Biosciences 740028; RRID:AB_2739800

CD3-BUV737 (clone: 17A2) BD Biosciences 564380; RRID:AB_2738781

CD4-FITC (clone:GK1.5) BD Biosciences 553729; RRID:AB_395013

CD4-PE (clone: LT3T4) eBioscience RRID:AB_12-0041-82

CD45-BUV395 (clone: 30-F11) BD Biosciences 564279; RRID:AB_2651134

CD8-V650 (clone: 53–6.7) BD Biosciences 563234; RRID:AB_2738084

F4–80-BV421 (clone: T45–2342) BD Biosciences 565411; RRID:AB_2734779

Granzyme B-PE (clone: NGZB) eBioscience RRID:AB_12-8898-80

anti-mouse enterovirus (clone: 5-D8/1) Dako M7064; RRID:AB_2118128

rabbit insulin antibody Cell Signaling Technology Inc. 4590; RRID:AB_659820

rabbit anti-cleaved caspase 3 R&D Systems RRID:AB_AF835

Bacterial and Virus Strains

Coxsackie Virus B1 (CVB1)
Professor Maria Craig (Westmead Children’s 
Hospital, University of Sydney, NSW, 
Australia)

Obtained from clinical stool samples 
from patients

Coxsackie Virus B1–E2 strain (CVB4) Associate Professor Malin Flodström-
Tullberg, Karolinska Institute, Sweden N/A

Biological Samples

Human pancreatic primary islets
Wayne Hawthorne of the Westmead National 
Pancreas and Transplant Unit (NPTU, 
Australia)

N/A

Chemicals, Peptides, and Recombinant Proteins

2-2-2-Tribromoethanol Sigma-Aldrich T48402

2-mercaptoethanol Life Technologies 21985–023

2-methyl-2-butanol Lomb Scientific Australia Pty Ltd 15114

Actinomycin D (Act D) Sigma-Aldrich A1410

Accu-Chek Advantage II glucose test strips Roche Diagnostics, North Ryde, NSW, 
Australia N/A

Ammonium chloride Thermo Fisher Australia Pty Ltd AJA318

Ammonium sulfate Lomb Scientific Australia Pty Ltd 56–500G

Antigen retrieval solution Dako, Carpinteria, California, USA. S1699

Boric acid powder Thermo Fisher Australia Pty Ltd B6768

Bovine Calf Serum (BCS) (Australian origin) Serana, Australia Pty Ltd, Bunbury, Western 
Australia, Australia. S-FBS-AU-015

Bovine Serum Albumin (BSA) Bovogen Biologicals Australia Pty Ltd, 
Keilor East, Victoria, Australia. BSAS1.0

Citrate buffer (pH 4.5) In-house laboratory N/A

Chloroform Sigma-Aldrich C2432
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REAGENT or RESOURCE SOURCE IDENTIFIER

Creon Forte (pancrelipase) (prescription drug) Abbott Laboratories, Lake Bluff, Illinois, 
USA. 90010

Crystal violet stain Sigma-Aldrich C3886

Direct Red 80 Sigma-Aldrich 365548

Disodium hydrogen orthophosphate Thermo Fisher Australia Pty Ltd 478

Dimethyl sulfoxide (DMSO) Lomb Scientific Australia Pty Ltd 2225

Ethylenediaminetetraacetic acid Disodium (EDTA) Thermo Fisher Australia Pty Ltd AJA180

Eosin Y stain solution with Phloxine Sigma-Aldrich HT110332

Ethanol (100% molecular grade Ethyl alcohol) Sigma-Aldrich E7023

Fast Green FCF Sigma-Aldrich F7258

Ficoll-Plaque Plus 1.077 GE Healthcare, Parramatta, NSW, Australia. 17–1440

Fluoromount aqueous mounting medium Sigma-Aldrich F4680

Formamide(≥99.0%) Sigma-Aldrich F7503

Glacial acetic acid Thermo Fisher Australia Pty Ltd AJA1

HEPES(1M) Life Technologies 15630–080

Hydrochloric acid Thermo Fisher Australia Pty Ltd AJA256

Insulin Actrapid 100U/ml (short acting) Novo Nordisk Pharmaceuticals Pty. Ltd 
Baulkham Hills, NSW, Australia. N/A

Insulin Levemir 100U/ml (long acting) Novo Nordisk Pharmaceuticals Pty. Ltd, 
Baulkham Hills, NSW, Australia. N/A

Isopropanol (2-propanol) Sigma-Aldrich 19516

L-glutamine Life Technologies 25030–081

Liberase-Enzyme Blend-RI Roche Diagnostics, Indianapolis, Indiana, 
USA. 05989132001

Medium 199 (M199) Life Technologies 31100–035

Magnesium sulfate Sigma-Aldrich M7506

MEM Non-Essential Amino Acids Life Technologies 11140–050

Methanol Thermo Fisher Australia Pty Ltd AJA318

Neutral buffered formalin 10% (NBF) Sigma-Aldrich HT50-1-1

Normocin Integrated Sciences Pty Ltd, Chatswood, 
NSW, Australia. ANT-NR-1

Optimal Cutting Temperature compound (OCT) Tissue-Tek, Sakura Finetek, Torrance, 
California, USA. 4583

Penicillin/Streptomycin Life Technologies 15070–063

Picric acid solution Sigma-Aldrich P6744

Proteinase K Roche Diagnostics, Mannheim, Germany. 03115828001

Potassium chloride Thermo Fisher Australia Pty Ltd AJA383

Potassium dihydrogen phosphate Thermo Fisher Australia Pty Ltd AJA391

Recombinant IL-1β/IL-1F2 R&D Systems, Minneapolis, Minnesota, 
USA. 401-ML-025

Red blood cell lysis buffer Sigma-Aldrich. R7757

Roswell Park Memorial lnstitute-1640 medium (RPMI 
1640) Life Technologies 1875–119

SeaKem® LE Agarose Lonza Australia Pty Ltd, Mount Waverley, 
Victoria, Australia. 50004

SeaPlaque® Agarose Lonza Australia. 50101
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REAGENT or RESOURCE SOURCE IDENTIFIER

Shandon Instant Hemotoxylin Thermo Fisher Australia Pty Ltd 6765015

Sodium bicarbonate Life Technologies 25080–094

Sodium chloride Thermo Fisher Australia Pty Ltd 465

Sodium hydrogen carbonate Thermo Fisher Australia Pty Ltd AJA475

Sodium pyruvate Life Technologies Australia Pty Ltd, 
Mulgrave, Victoria, Australia. 11360–070

Streptozotocin Sigma-Aldrich S0130

TRI Reagent Sigma-Aldrich T9424

Tris (hydroxymethyl) aminomethane base Merck Millipore Bayswater, Victoria, 
Australia. CM0054

Triton X-100 Sigma-Aldrich 234729

Trypan blue Sigma-Aldrich T8154

Trypsin-EDTA Life Technologies 25300–054

Water for irrigation 1L Baxter Healthcare Pty Ltd, Old Toongabbie, 
NSW, Australia. AHF7114

Critical Commercial Assays

Amylase activity kit Sigma-Aldrich MAK009–1KT

Crystal Chem rat insulin ELISA kit Crystal Chem Inc., Downers Grove, Illinois, 
USA. 90010

DakoCytomation EnVision+Dual Link System-HRP 
(DAB+) kit (DAKO kit) Dako, Carpinteria, California, USA. K4011

QIAGEN RNeasy Mini kit QIAGEN, Valencia, California, USA. 74106

QIAshredder spin column QIAGEN, Valencia, California, USA. 79654

Power SYBR green master mix Life Technologies. 4367659

Experimental Models: Cell Lines

HeLa cells (originally obtained by Assoc. Prof Cecile 
King) ATCC N/A

Experimental Models: Organisms/Strains

C57BL/6 mice Animal Resource Centre (ARC, Canning 
Vale, WA, Australia) N/A

Non-Obese Diabetic (NOD) mice ARC, Canning Vale, WA, Australia N/A

Severe Combined ImmunoDeficient SCID mice ARC, Canning Vale, WA, Australia N/A

NOD-SCID mice ARC, Canning Vale, WA, Australia N/A

βHIF-1α NOD mice Backcrossed with original βHIF-1α mice on 
C57BL/6 background N/A

Oligonucleotides

Primers for mouse PCRs, see Table S2 This paper N/A

Primers for human PCRs, see Table S3 This paper N/A

shRNA targeting sequence: HIF-1 alpha This paper (Santa Cruz Biotechnology) sc-35561-SH

Recombinant DNA

Not applicable N/A N/A

Software and Algorithms

ImageJ https://imagej.nih.gov/ij/

FACSdiva software BD Biosciences http://www.bdbiosciences.com/
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