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Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder closely associated with chronic 
inflammation. Curcumin, a polyphenolic lipophilic compound, has been shown to improve the 
intestinal mucosal barrier and reduce low-grade systemic inflammation. This study aimed to assess 
the effects of curcumin on attenuation of PCOS in a mouse model and to explore the underlying 
mechanisms involved. C57BL/6J mice were divided into 4 groups (n = 15 per group): CON: control 
group, CON/CUR: CON with curcumin group, MOD: model group, MOD/CUR: MOD with curcumin 
group. The MOD and MOD/CUR groups were injected with dehydroepiandrosterone (DHEA) 
(6 mg/100 g BW) dissolved in soybean oil to induce a PCOS-like state. After curcumin intervention 
(200 mg/kg) for 45 days, the mice were euthanized for analysis of various physiological and biochemical 
parameters. In MOD/CUR group, significant decreases in body weight (BW) (p = 0.0254), testosterone 
(T) levels (p = 0.0052), luteinizing hormone (LH) levels (p = 0.0438), and the LH/follicle-stimulating 
hormone (FSH) (p = 0.0271) levels were observed, while estradiol (E2) (p = 0.0415) level and insulin 
sensitivity (p = 0.0441) were increased. Histological examination (HE) staining of ovarian and colon 
tissues showed that curcumin ameliorated both PCOS-associated morphological changes and colon 
tissue pathology. Western blot and immunohistochemistry analyses of colon tissues revealed increased 
levels of tight junction proteins, ZO-1 (Western blot, p = 0.0360; immunohistochemistry, p = 0.0273) 
and occluding (Western blot, p = 0.0189; immunohistochemistry, p = 0.0224) in the MOD/CUR group. 
Additionally, inflammatory indicators from plasma and ovary, including IL-17 A (plasma, p = 0.0120; 
ovary, p = 0.0414), IL-6 (plasma, p = 0.0344; ovary, p = 0.0379), TNF-α (plasma, p = 0.0078; ovary, 
p = 0.0488), and lipopolysaccharides (LPS) (plasma, p = 0.0144), were decreased, while IL-10 (plasma, 
p = 0.0270; ovary, p = 0.0267) was increased in MOD/CUR group. The levels of NF-κB p65 (p = 0.0229), 
TLR-4 (p = 0.0462) and MyD88 (p = 0.0152) in ovarian tissues were significantly increased in MOD/
CUR group. Our results revealed that curcumin alleviates PCOS by inhibiting TLR4/MyD88/NF-κB 
signaling pathway activation and reducing intestinal mucosal permeability. These findings suggest that 
curcumin may provide a potential clinical approach for managing PCOS.
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Polycystic ovary syndrome (PCOS) stands out as one of the prevalent endocrine-metabolic disorders, significantly 
impacting female fertility, with a reported global prevalence ranging from 4–21%1. PCOS is Characterized by 
ovulatory dysfunction and hyperandrogenism, and patients often experience various metabolic disturbances, 
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including insulin resistance and hyperinsulinemia2,3. Furthermore, PCOS is associated with several potential 
complications, such as type 2 diabetes (T2DM), metabolic syndrome, cardiovascular diseases, endometrial 
cancer, and chronic inflammatory conditions, all of which severely compromise reproductive health and quality 
of life4,5. Despite extensive research, the precise etiology of PCOS remains unclear, and there is a lack of effective 
pharmaceutical interventions, highlighting the need for the exploration of novel therapeutic strategies.

Emerging evidence highlights the pivotal role of gut microbiota in the progression and pathogenesis of 
PCOS6. Dysbiosis of the intestinal microbiota can compromise the integrity of the intestinal mucosal, resulting 
in increased intestinal mucosal permeability7–9. lipopolysaccharides (LPS) from Gram-negative gut bacteria 
activate Toll-like receptor 4 (TLR4), which in turn triggers downstream MyD88-dependent NF-κB signaling, 
promoting a pro-inflammatory milieu10–13. The activated NF-κB induces the release of pro-inflammatory 
cytokines, leading to low-grade systemic and ovarian inflammation, disrupted follicular development, and the 
subsequent onset of PCOS11,14,15.

Curcumin, a polyphenolic lipophilic compound derived from turmeric, is reputed for its diverse biological 
activities, including anti-inflammatory, anti-tumor, and antioxidant properties16–18. Research suggests that 
curcumin may help delay the onset and progression of T2DM by improving intestinal permeability, strengthening 
the intestinal barrier function, reducing circulating LPS levels, and mitigating systemic low-grade inflammation. 
PCOS is also characterized as an endocrine disorder with a state of chronic inflammation18,19. However, whether 
curcumin can prevent the progression of PCOS by improving intestinal barrier function and inhibiting the 
activation of the TLR4/MyD88/NF-κB signaling pathway has not yet been reported.

In this study, leveraging a murine PCOS model, we aimed to elucidate the effects of curcumin on PCOS 
pathogenesis and uncover the underlying mechanisms involved. Our findings provide insights into the complex 
interplay between PCOS, intestinal mucosal barrier integrity, and inflammation, potentially paving the way for 
novel clinical interventions.

Methods
Animal experiments
The experiments were approved by the Ethics Committee of Southwest Medical University (NO. KY2020031), 
and were reported in accordance with the ARRIVE guidelines20. All methods followed relevant guidelines and 
regulations. In this study, 21-day-old female C57BL/6J mice were purchased from Chengdu Dossy Experimental 
Animals Co., Ltd., Chengdu, China, and housed in specialized cages with a controlled temperature (25 ± 1 
°C) under a 12-hour light/dark cycle. All mice were randomly divided into 4 groups (15 mice/group): control 
group (CON), CON with curcumin group (CON/CUR), model group (MOD), and MOD with curcumin group 
(MOD/CUR). According to the previous method21–23, The mice in the MOD and MOD/CUR groups were 
subcutaneously injected with dehydroepiandrosterone (DHEA) (6 mg/100 g BW) dissolved in soybean oil for 
20 days to induce the PCOS model. PCOS mice with successful induction exhibited acyclic/irregular ovarian 
cyclicity. The CON and CON/CUR groups received daily injections of an equivalent amount of soybean oil.

After 20 days, the mice in the CON/CUR and MOD/CUR groups received Curcumin (200 mg/kg) dissolved 
in 1% carboxymethyl cellulose (CMC) for 45 days. Meanwhile, the CON and MOD groups were administered 
an equivalent dosage of 1% CMC as a control. After the 45-dayintervention, the mice were anesthetized by 
intraperitoneal injection with ketamine (20 mg/kg) and xylazine (3 mg/kg). The state of anesthesia was confirmed 
by observing slow breathing, muscle relaxation, and no response to experimental manipulation. Blood was then 
collected using the eyeball extraction method, centrifuged at 4000 rpm at 4 °C for 10 min, and stored at -80 °C 
for further serum analysis. The mice were euthanized by cervical dislocation. Ovarian and colon samples were 
collected immediately after euthanasia and stored at -80 °C for subsequent analysis.

Vaginal smear
From the first day of modeling to the last day of treatment, vaginal smears were collected at 9:00 AM to evaluate 
the estrous cycle of all mice using Wright-Giemsa staining microscopy. In normal mice, the estrous cycle 
progresses in the order of proestrus, estrus, metestrus, and diestrus, typically lasting 4–5 days24. A prolonged 
estrous cycle or a disordered pattern is considered indicative of an estrous cycle disorder25.

Hematoxylin-eosin (HE) staining
After the mice were sacrificed, the isolated ovary and colon tissues were immediately fixed in 4% paraformaldehyde. 
The tissues were then dehydrated, embedded in paraffin, and sectioned for histological analysis. To evaluate 
ovarian and colon damage, the sections were with hematoxylin and eosin (HE) and observed for morphological 
changes using an Olympus light microscope (Melville, NY). For the stained ovarian sections, the number of 
cystic follicle and corpora luteum was counted by two individuals who were blinded to the source of the sections. 
As described in previous literature, cystic follicles are defined as follicles without oocytes, characterized by large 
fluid-filled cysts with a thin granulosa cell layer and a thick theca cell layer19.

Insulin tolerance tests (ITT)
ITT were performed immediately after 45 days of curcumin treatment. After fasting the mice for 6 h, basal blood 
glucose levels of mice in each group were measured. Subsequently, intraperitoneal insulin (1 IU/kg body weight) 
was injected immediately, and blood glucose levels were measured at 30, 60, and 90 min post-injection. The total 
area under the glucose response curve (AUC) was calculated using GraphPad Prism software.

Enzyme linked immunosorbent assay (ELISA)
To measure the levels of testosterone (T), estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone 
(FSH) in plasma, as well as the levels of various inflammatory factors, including TNF-α (tumor necrosis factor-
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alpha, TNF-α), IL-6 (interleukin-6, IL-6), IL-10 and IL-17  A in ovaries and plasma, ELISA was conducted 
following the manufacturers’ instructions (Jiangsu Enzyme Immune Industrial Co., Ltd, Yancheng, China).

Western blot analysis
The total protein concentration of frozen ovarian tissue and colon tissue was determined using BCA protein 
assay kit. Proteins were separated by SDS-PAGE and transferred to PVDF membrane. The membrane was then 
blocked with 5% nonfat milk powder for 2 h. Following this, the membrane was incubated overnight at 4 °C with 
primary antibodies, which included TLR-4, MyD88, NF-κB p65, occludin, and ZO-1. The PVDF membrane was 
washed three times with TBST. Primary antibodies for TLR-4, MyD88, and NF-κB p65 were purchased from 
Wuhan Sanying Biotechnology Co., LTD., and those for occludin and ZO-1 were purchased from Beijing Bioss 
Biotechnology Co., LTD. The dilution ratio of all primary antibodies was 1:2000.

Subsequently, the PVDF membrane was incubated with an appropriate HRP-conjugated secondary antibody 
for 2  h at room temperature and washed three times with TBST. Chemiluminescence was used for color 
development, with GAPDH as the internal reference. The band intensity was analyzed using ImageJ software, 
and the blot of each protein was captured using a gel imaging system.

Immunohistochemistry
Paraffin slices underwent an antigen unmasking process and were treated with 3% H2O2 to eliminate endogenous 
peroxidase activity. Following this, the tissues were incubated with 10% bovine serum albumin for 60 min to 
block nonspecific binding. The slices were then incubated overnight at 4  °C with primary antibodies: anti-
occludin (13409-1-AP, Proteintech) and anti-ZO-1 (21773-1-AP, Proteintech).

On the following day, the slices were incubated with the corresponding HRP labeled secondary antibody at 
room temperature for 60 min. Finally, the slices were stained with DAB and examined under a light microscope 
at 200× magnification.

Plasma LPS analysis
Limulus amebocyte lysate kit was used to detect the plasma LPS levels of mice in each group (Xiamen Bioendo 
Technology Co., Ltd, Xiamen, China). According to the manufacturer’s instructions, 50 µL of diluted plasma 
(diluted 1:4 with endotoxin-free water) was added to each well of a 96-well plate. Subsequently, 50 µL/ well of 
limulus amebocyte lysate reagent was added to each well. The plates were then incubated at 37 °C for 30 min. 
After incubation, 100 µL of chromogenic, pre-warmed to 37 ° C, was added to each well. the plates were incubated 
again at 37  °C for 6  min. The reaction was terminated by adding 100µL of 25% glacial acetic acid solution. 
Finally, the optical density of the microplate at 545 nm was measured using a reader (Thermo Scientific, USA).

Statistical analysis
All experimental data were analyzed using GraphPad Prism software 6.01 (GraphPad Software Inc., CA, USA). 
The results were expressed as mean ± SEM. Differences among multiple comparisons were performed using 
one-way analysis of variance (ANOVA). Tukey’s post hoc test was used to identify the significance of pairwise 
comparison of mean values among the groups. Results with p < 0.05 were considered statistically significant.

Results
Routine parameters of mice in diverse groups
At the beginning of the study, there were no significant differences in body weights among 4 groups. After 45 
days of treatment, the body weight of mice in MOD/CUR group decreased significantly compared with that 
in MOD group(p = 0.0254), and there was no significant change in body weight of mice in CON/CUR group 
compared with that in CON group, indicating that curcumin effectively reduced weight in PCOS mice.

T and LH levels were significantly higher in MOD group compared to the CON group (T, p < 0.0001; LH, 
p = 0.0030). Compared with the MOD group, T and LH levels were significantly lower in the MOD/CUR group 
(T, p = 0.0052; LH, p = 0.0438). Additionally, the LH/FSH ratio in the MOD group was significantly higher than 
that in the CON group (p = 0.0025), while the LH/FSH ratio in the MOD/CUR group was notably lower than in 
the MOD group (p = 0.0415). FSH levels were significantly lower in the MOD group compared to the CON group 
(p = 0.0481), with no differences observed between the MOD and MOD/CUR groups. Furthermore, estradiol 
(E2) levels in the MOD group were significantly lower than in the CON group (p = 0.0053), but curcumin 
intervention significantly increased E2 levels compared to the MOD group (p = 0.0498) (Table 1).

Curcumin intervention improved the estrous cycles of PCOS in mice
Wright-Giemsa staining was performed on vaginal smears to evaluate differences in estrous cycles of mice in 
each group (Fig. 1). The CON (Fig. 1E) and CON/CUR (Fig. 1F) groups showed a regular estrous cycle, lasting 
4–5 days. In contrast, as the modeling progressed, the estrous cycle in the MOD group became disordered, with 
a prolonged estrus phase (Fig. 1G). Remarkably, after curcumin intervention, the estrous cycle of mice in the 
MOD/CUR group gradually returned to normal (Fig. 1H), indicating that curcumin can improve the estrous 
cycle disorder associated with PCOS.

Curcumin ameliorated ovarian histopathological injury in PCOS
HE staining was used to assess the alteration of ovarian pathology in mice from each group (Fig. 2A-D). Compared 
to the CON group, the MOD group exhibited a significant increase in the number of cystic follicles (p = 0.0022) 
and a reduction or absence of corpus luteum (p = 0.0388), indicating impaired ovarian function Intriguingly, 
curcumin intervention resulted in a significant reduction in the number of cystic follicles (p = 0.0488) and an 
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Fig. 1. Estrous cycle changes in each group of mice. (A) Vaginal smears of proestrus stage. (B) Vaginal 
smears of estrous stage. (C) Vaginal smears of metestrus stage. (D) Vaginal smears of diestrus stage. (E–H) 
Representative estrous cycles of diverse groups, 1: diestrus stage, 2: proestrus stage, 3: estrus stage, 4: metestrus 
stage. Original magnification (×100). (I) Schematic time diagram of experimental design.

 

Measurements CON CON/CUR MOD MOD/CUR

Unpaired t tests

a b c

Body Weight, g 20.78 ± 0.34 20.95 ± 0.41 22.76 ± 0.29 21.38 ± 0.29 0.9841 0.0006 0.0254

T, ng/ml 0.48 ± 0.06 0.50 ± 0.06 1.30 ± 0.12 0.85 ± 0.06 0.9981 < 0.0001 0.0052

FSH, mIU/ml 11.41 ± 1.97 11.24 ± 2.13 5.08 ± 0.60 8.02 ± 0.94 0.9998 0.0481 0.5540

LH, mIU/ml 5.95 ± 0.33 5.90 ± 0.43 8.39 ± 0.42 6.72 ± 0.42 0.9997 0.0030 0.0438

LH/FSH, 0.59 ± 0.11 0.60 ± 0.12 1.75 ± 0.31 0.91 ± 0.15 > 0.9999 0.0025 0.0415

E2, µmol/l 51.99 ± 1.25 52.29 ± 1.32 41.64 ± 3.06 49.31 ± 0.91 0.9994 0.0053 0.0498

Table 1. Routine parameters of mice with diverse groups in PCOS. CON: control group, CON/CUR: CON 
with curcumin group, MOD: model group, MOD/CUR: MOD with curcumin group, a: CON vs. CON/CUR, 
b: CON vs. MOD, c: MOD vs. MOD/CUR, the values of a, b, and c are P-values.
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increase in corpus luteum formation (p = 0.0388), indicating that curcumin helps improve pathological changes 
in ovarian tissue (Fig. 2E–F).

Curcumin improved insulin resistance in PCOS
According to area under the curve AUC from insulin tolerance tests, Insulin sensitivity in the MOD group was 
significantly lower than in the CON group (p = 0.0092). However, insulin sensitivity was increased in the MOD/
CUR group (p = 0.0441) compared to the MOD group (Fig. 3).

Curcumin improved the mucosal barrier of colon
colonic tissue revealed significant pathological injury in the MOD group, characterized by colon mucosal 
erosion, disordered and sparse villus structure, and discontinuous brush border. In contrast, curcumin 
intervention alleviated these issues, showing reduced mucosal erosion, improved villus structure, and continuity 

Fig. 3. Insulin tolerance test. (A) blood glucose levels, (B) AUC of glucose. *P<0.05, **P<0.01.

 

Fig. 2. Effects of curcumin on ovarian tissue morphology in PCOS with Hematoxylin-eosin (H&E) staining. 
(A) CON, (B) CON/CUR, (C) MOD, (D) MOD/CUR, (E) Changes in the number of cystic follicles, (F) 
Changes in the number of corpus luteum. GCL: granular cell layer, L: luteum, CON: control group, CON/
CUR: CON with curcumin group, MOD: model group, MOD/CUR: MOD with curcumin group. *P < 0.05, 
**P < 0.01. Original magnification (40×).
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of the brush border. These findings indicate that curcumin helps improve the pathological changes in colon 
tissue (Fig. 4A–D).

Western blot showed that, compared to the CON group, the levels of colon tissue ZO-1 (p = 0.0043) and 
occludin (p = 0.0010) were significantly decreased in the MOD group. In the MOD/CUR group, curcumin 
treatment resulted in a significant increase in the levels of ZO-1 (p = 0.0360) and occludin (p = 0.0189) compared 
to the MOD group. These results indicate that curcumin can enhance the levels of ZO-1 and Occludin in colonic 
tissue, thereby ameliorating the intestinal mucosal barrier (Fig. 4E–G).

To assess the effects of curcumin on intestinal barrier integrity, immunohistochemistry was used to analyze 
the expression of tight junction proteins, including occluding (Fig. 5A–D) and ZO-1(Fig. 5E–H). Compared 
to the CON group, the levels of occludin (p = 0.0002) and ZO-1 (p = 0.0001) were significantly decreased in 
the MOD group. However, compared with the MOD group, the expression of both occludin (p = 0.0224) and 
ZO-1 (p = 0.0273) was significantly increased in the MOD/CUR group. These results suggest that curcumin may 
improve intestinal barrier function by enhancing the expression of occludin (Fig. 5I) and ZO-1 proteins (Fig. 5J).

Fig. 4. changes of Pathology for colon tissue and intestinal mucosal barrier in each group. (A–D) Colon 
tissue in each group with Hematoxylin-eosin (H&E) staining, (E) Western blot bands of ZO-1 and occludin in 
colonic tissues, (F) occludin expression levels, G: ZO-1 expression levels. Original magnification (200×). *P < 
0.05, **P < 0.01.
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Curcumin reduced inflammation of plasma and ovary in PCOS
Experimental analysis revealed that the levels of IL-17 A (plasma, p = 0.0031; ovary, p = 0.0090) (Fig. 6A and E), 
IL-6 (plasma, p = 0.0139; ovary, p = 0.0233) (Fig. 6B and F), and TNF-α (plasma, p = 0.0033; ovary, p = 0.0280) 
(Fig. 6D and H)were significantly elevated in the MOD group compared to the CON group, while the level 
of IL-10 (plasma, p = 0.0041; ovary, p = 0.0086) (Fig.  6C and G) was significantly lower. Following curcumin 
intervention, levels of IL-17 A (plasma, p = 0.0120; ovary, p = 0.0414), IL-6 (plasma, p = 0.0344; ovary, p = 0.0379), 
and TNF-α (plasma, p = 0.0078; ovary, p = 0.0488) were significantly decreased, and the level of IL-10 (plasma, 
p = 0.0270; ovary, p = 0.0267) was significantly increased(Fig. 6A and H). These results indicate that curcumin 
reduced inflammation in the plasma and ovaries of PCOS by suppressing pro-inflammatory cytokines and 
enhancing anti-inflammatory IL-10.

Curcumin attenuated metabolic endotoxemia by decreasing LPS and TLR4/MyD88/NF-κB 
signaling pathway
Plasma-translocated LPS derived from Gram-negative bacteria was detected with Limulus reagent. Compared 
to the CON group, plasma LPS was significantly increased in the MOD group (p = 0.0012). However, plasma 
LPS was significantly lower in the MOD/CUR group compared to the MOD group (p = 0.0144), indicating that 
curcumin can reduce endotoxemia in PCOS (Fig. 6I). In addition, the relative expression of TLR4, MyD88 and 
NF-κB p65 was significantly elevated in the MOD group (p = 0.0100, p = 0.0004, p = 0.0020) but these levels were 
reduced following curcumin administration (p = 0.0462, p = 0.0152, p = 0.0229) (Fig. 6L, K, J, M, J and K).

Discussion
In this study, we explored the therapeutic potential of curcumin for treating PCOS. Through various conventional 
indicators such as pathological examination, weight loss, improvement in insulin resistance, and normalization 
of abnormal hormone levels, we established that curcumin effectively alleviates PCOS symptoms, aligning 
with previous research findings26–32. Our results demonstrated that curcumin offers promising preventive and 
therapeutic benefits for PCOS management. Furthermore, our study suggest that the amelioration of PCOS 

Fig. 5. Curcumin enhanced the expression of occludin and ZO-1 proteins in each group. (A–D) occludin was 
assessed by immunohistochemistry in each group, (E–H) ZO-1 was assessed by immunohistochemistry in 
each group, (I) occludin expression levels, (J) ZO-1 expression levels. CON: control group, CON/CUR: CON 
with curcumin group, MOD: model group, MOD/CUR: MOD with curcumin group. Original magnification 
(200×). *P<0.05, **P<0.01, ***P<0.001.
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phenotype may be closely associated with the reduction in intestinal mucosal permeability and the inhibition of 
TLR4/MyD88/NF-κB signaling pathway.

Numerous studies have shown that dysregulation of gut microbiota in PCOS leads to increased intestinal 
mucosal permeability33–35. This disruption allows LPS translocation from gram-negative bacteria to enter the 
bloodstream, triggering systemic low-grade inflammation and subsequent ovarian inflammation10,11,36. Our 
findings demonstrated marked colonic tissue pathology in the MOD group, with decreased expression of 
tight junction proteins (ZO-1, Occludin) and elevated plasma LPS levels. Remarkably, curcumin intervention 

Fig. 6. Detection of plasma or ovarian inflammatory in diverse groups of mice. (A–D) Plasma in each group 
was collected respectively for detection of IL-17 A (A), IL-6 (B), IL-10 (C), TNF-α (D). (E–H) Ovary in each 
group was collected respectively for detection of IL-17 A (E), IL-6 (F), IL-10 (G), TNF-α (H). (I) Plasma LPS 
levels. (J) Western blot bands of NF-κB p65, TLR4 and MyD88 in ovary tissues. (K–M) The expression levels of 
NF-κB p65, TLR4 and MyD88. Data are expressed as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001.
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ameliorated colonic pathological damage, increased tight junction protein expression, and decreased plasma 
LPS levels. These results suggest that curcumin may reduce intestinal mucosal permeability, reduce intestinal 
LPS transport to the liver and blood circulation, and eventually contributing to the reduction of ovarian 
inflammation.

Proinflammatory cytokines were increased and anti-inflammatory cytokines decreased in PCOS37,38. Notably, 
aberrant levels of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-17 A in plasma and follicular fluid 
have been associated with poor oocyte quality and compromised reproductive outcomes37,39,40. These cytokines, 
including TNF-α, IL-6 and IL-10, play crucial roles in the occurrence and development of inflammation and 
oxidative stress19. Our study showed that curcumin intervention significantly reduced the levels of these pro-
inflammatory cytokines and increased the levels of the anti-inflammatory cytokine IL-10. This suggests that 
curcumin may help alleviate PCOS by reducing pro-inflammatory cytokines and increasing anti-inflammatory 
cytokines, which is consistent with findings from previous studies18,41,42.

The TLR4/MyD88/NF-κB is crucial for the LPS-induced intestinal innate immune response, particularly in 
PCOS12,43,44, and is known to exacerbate insulin resistance15,16. Activation of TLR4 by LPS from Gram-negative 
gut bacteria triggers downstream MyD88-dependent NF-κB signaling. creating a pro-inflammatory environment 
that contributes to low-grade systemic and ovarian inflammation10–13. Our study demonstrated that curcumin 
intervention effectively down-regulated the expression levels of TLR4, MyD88 and NF-κB p65 in ovarian tissue, 
suggesting that curcumin may reduce the inflammatory cascade and, consequently, alleviate PCOS.

In this study, several limitations should be considered. the role of curcumin in improving gut microbiota 
and its impact on intestinal mucosal permeability and ovarian inflammation in PCOS remains unclear. Future 
research will be needed to address these questions and further clarify the mechanisms by which curcumin exerts 
its effects.

Conclusion
This study highlights the significant role of intestinal mucosal barrier damage and systemic inflammatory 
response in PCOS pathophysiology, particularly implicating the activation of the TLR4/MyD88/NF-κB signaling 
pathway. Curcumin emerges as a promising therapeutic intervention, demonstrating the ability to mitigate 
ovarian tissue damage, restore intestinal mucosal integrity, reduce mucosal permeability, and alleviate systemic 
and ovarian inflammation by inhibiting the TLR4/MyD88/NF-κB signaling pathway. These findings support 
curcumin’s potential as a promising intervention for the prevention and treatment of PCOS.

Data availability
Data is provided within the manuscript or supplementary information files.
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