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Abstract

Motivation: Sequence homology searches are used in various fields. New sequencing technolo-

gies produce huge amounts of sequence data, which continuously increase the size of sequence

databases. As a result, homology searches require large amounts of computational time, especially

for metagenomic analysis.

Results: We developed a fast homology search method based on database subsequence cluster-

ing, and implemented it as GHOSTZ. This method clusters similar subsequences from a database

to perform an efficient seed search and ungapped extension by reducing alignment candidates

based on triangle inequality. The database subsequence clustering technique achieved an �2-fold

increase in speed without a large decrease in search sensitivity. When we measured with metage-

nomic data, GHOSTZ is �2.2–2.8 times faster than RAPSearch and is �185–261 times faster than

BLASTX.

Availability and implementation: The source code is freely available for download at http://www.

bi.cs.titech.ac.jp/ghostz/

Contact: akiyama@cs.titech.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA sequencing technologies have improved rapidly. The

HiSeq2500 can produce several hundred billion base pairs (bp) of

sequence data in a single run and its throughput is ~10 000 times

higher than that of old-generation sequencers. Most sequencers pro-

duce information in short fragments (reads) that range in length

from 100 to 1000 bp. Thus, it is necessary to determine the location

of each read in a genome, to use known biological information

even when a reference genome is available. This process is called

mapping, and many effective mapping programs, such as BWA

(Li and Durbin, 2009, 2010) and Bowtie (Langmead and

Salzberg, 2012; Langmead et al., 2009), have been developed for

this purpose.

In metagenomic analysis, environmental samples frequently

include DNA sequences from many different species, and the

reference database often does not contain closely related genome

sequences. Thus, more sensitive approaches are required to identify

novel genes in these samples. In a typical metagenomic analysis,

reads are translated into protein coding sequences and assigned to

protein families by running homology searches against publicly

available databases, such as COG (Tatusov et al., 1997, 2003) and

Pfam (Finn et al., 2010). The BLASTX program (Altschul et al.,

1990, 1997) is commonly used for such binning and classification

searches. To identify homologs that may not have high nucleotide

sequence identities, BLASTX translates nucleotide sequences into

protein sequences, because protein sequences are often more similar

than the original nucleotide sequences (Kurokawa et al., 2007;

Turnbaugh et al., 2006). However, the search speed of BLASTX has

become insufficient for analysis of the large quantities of sequence

data now available.
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Several currently available homology search tools are faster

than BLAST, but possess decreased sensitivity. For example, BLAT

(Kent, 2002) is ~50 times faster than BLAST; however, the search

sensitivity of BLAT is much lower than that of BLAST and is often

insufficient for metagenome sequence analysis. Thus, novel hom-

ology search tools, such as RAPSearch (Ye et al., 2011), have

recently been developed. RAPSearch has sufficient sensitivity for

metagenomic analysis and a faster homology search speed than

BLAST or BLAT because it uses a reduced amino acid alphabet

(Murphy et al., 2000) and a suffix array (Manber and Myers, 1993).

In addition, RAPSearch2 has been improved to use hash tables

instead of suffix arrays, making it more memory efficient (Zhao

et al., 2012).

However, several large metagenome projects, such as the

Human Microbiome Project (HMP) (The Human Microbiome

Project Consortium, 2012), the Metagenomics of the Human

Intestinal Tract (MetaHIT) (Qin et al., 2010) and the Earth

Microbiome Project (Gilbert et al., 2010), have recently produced

unprecedentedly large amounts of sequence information. For in-

stance, HMP has sequenced 681 human metagenome whole-genome

shotgun samples. Therefore, there is a high demand for analysis of

large amounts of metagenomic data. In addition, the numbers of ref-

erence sequences in databases will continue to increase with further

improvements of sequencing technologies. For instance, the size

of the National Center for Biotechnology Information (NCBI) non-

redundant protein database (nr) increased from ~4.1 billion amino

acid residues in 2010 to ~16.7 billion residues in 2014. Therefore,

the speed of homology searches needs to be increased to facilitate

metagenomic analysis.

To address the problem of increasing database size,

CaBLASTP (Daniels et al., 2013) introduced a compression ap-

proach and achieved a faster homology search than BLAST using

the compressed database. CaBLASTP initially searches against a

coarse database from which redundant subsequences have been

removed, and then it uses these initial results to search the ori-

ginal database for similar sequences. This approach provides a

more efficient homology search than BLAST, but the compression

approach has proven to be difficult to apply to RAPSearch and

BLAT, because their faster but less sensitive homology searches

often fail to identify similar sequences in the compressed data-

base, critically decreasing the sensitivity of the final search

results.

To address some of these problems, we developed a new faster

homology search method using database subsequence clustering.

Current homology searches require a large amount of time to extend

alignments without gaps, because the seed searches tend to produce

large numbers of seeds (Vouzis and Sahinidis, 2011). However, only

a small number of seeds produce ungapped extension scores that are

higher than the score threshold, and the wasted computation time

involved accounts for a large fraction of the time required for the

ungapped extensions. Our method clusters subsequences from a

database and filters out the non-representative seeds within these

clusters to minimize the computation time spent on ungapped exten-

sions. In our method, the subsequences in a cluster are more similar

to representative subsequences than those obtained using

CaBLASTP. Therefore, our method does not require high sensitivity

in the initial search for representative subsequences in a cluster.

In this research, we developed a novel fast homology search

method that uses hash tables, and then applied our subsequence

clustering technique to the index to further accelerate the sequence

homology search algorithm. We implemented this algorithm as

GHOSTZ.

2 Methods

2.1 Flow of the proposed homology search method

using subsequence clustering
GHOSTZ adopts the seed-extension approach used in BLAST. The

flow of GHOSTZ is shown in Figure 1. Subsequences are extracted

from a database, and similar subsequences are clustered. Then, hash

tables are constructed that contain indexes for the subsequences and

the clusters. The homology search method uses the hash tables to

select the seeds for the alignments from representative sequences

in the clusters. The distance between a query subsequence and the

cluster representative is calculated, and then the lower bounds of

the distance between the query subsequence and other members

of the cluster are computed based on triangle inequality, as shown

in Figure 2. If the computed lower bound is lower than or equal to

the distance threshold, the seed is taken into the next step, that is,

ungapped extension, to investigate the homology between the query

and the member sequences of the cluster. This filtering, using

the lower bounds of the distance, is referred to herein as ‘similarity

filtering’. Finally, chain filtering is used to bring similar extended

seeds together, and a gapped extension is performed to obtain an

alignment from the extended seed that contains gaps.

Seed search

Queries

Ungapped extension

Gapped extension

Trace back

Chain filtering

Clustering database subsequences

Database

Similarity filtering

Fig. 1. Flow of the proposed homology search method based on database

subsequence clustering. Clustering of database subsequences and similarity

filtering (shaded box) are included in this method

Cluster 0

Cluster 1

Fig. 2. Example of similarity filtering. CQ;i is the query subsequence. RD;j0 and

RD;l0 are the representative subsequences in the cluster 0 and the cluster 1, re-

spectively. The lower bound of the distance between CQ;i and the member

subsequence MD;j1 in the cluster 0 is calculated from the distance

dðCQ;i ;RD;j0 Þ. When the lower bound of dðCQ;i ;MD;j1 Þ�Tdistance, the seed for

CQ;i and MD;j1 is taken into the next step. The lower bound of the distance be-

tween CQ;i and the member subsequence MD;l1 in the cluster 1 is calculated

from distance dðCQ;i ;RD;l0 Þ. When the lower bound of dðCQ;i ;MD;l1 Þ > Tdistance,

the seed for CQ;i and MD;l1 is not taken into the next step
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In the database subsequence clustering and seed search processes,

the query and database amino acid sequences are both converted to

a reduced amino acid alphabet to increase search sensitivity.

We used a 10-letter reduced amino acid alphabet (A, {K, R}, {E, D,

N, Q}, C, G, H, {I, L, V, M}, {F, Y, W}, P, {S, T}), which was derived

based on the BLOSUM62 matrix (Murphy et al., 2000). This

reduced alphabet has been used successfully in previously reported

research on homology searches (Ye et al., 2011). For the ungapped

and gapped extensions, the alignments are performed with the

standard 20 amino acids.

2.2 Database subsequence clustering and construction

of hash tables
The database subsequence clustering approach was developed for

efficient homology sequence searches. In this method, subsequences

in a database are clustered for use in similarity filtering; however,

we do not cluster subsequences for seed themselves used in seed

searches, but instead use longer subsequences, overlapping subse-

quences for seed (Fig. 3). To avoid confusion of terms, we use

‘subsequence for seed’ for subsequences used in general seed

searches, denoted by S. And we use ‘subsequence for clustering’

for subsequences used in the database subsequence clustering and

similarity filtering processes. These are denoted by C. All subse-

quences for clustering depend on a subsequence for seed. Therefore,

GHOSTZ first builds a hash table of subsequences for seed, and

then determines which subsequences should be used for clustering,

using this hash table. Database subsequence clustering is performed

using these subsequences. Therefore, we will first describe the con-

struction of hash tables of subsequences for seed, and then describe

the construction of subsequences for clustering and database subse-

quence clustering.

Here, the text T ¼ T½0; n� ¼ t0. . .tn�1 denotes a sequence of sym-

bols and the length of T is jTj ¼ n. Each symbol is an element of an

alphabet R (jRj of protein is 20). T½i� ¼ ti and T½i; iþ j� ¼ ti. . .tiþj�1

are substrings. The sequence of a query is Q. The sequences D0,

D1,. . .,DN�1 in a database are connected by inserting delimiters to

transform them into a single long sequence D ¼ D0D1;. . .;DN�1

(marked by the special symbol ). A seed is a pair of identical or simi-

lar subsequences of Q and D. SQ;i ¼ Q½i; iþ l� and SD;j ¼ D½j; jþ l�
is the subsequence of Q and D for a seed, and fSQi

; SD;jg is a seed.

The hash table used to identify subsequences for seed stores the pair

of hash values of SD;i and the starting point i of SD;i.

In BLAST-like seed-extension algorithms, the search speed can

be increased by decreasing the number of seeds. The number of seeds

can be decreased if longer subsequences are used for seeds, because

this decreases the number of randomly matched cases. However,

this also causes a decrease in the search sensitivity. Thus, tolerances

are required in the matching to retain sufficient search sensitivity.

In BLASTX, the length of the subsequence for seed is three and

neighborhood words are identified, as well as exact subsequences

(Altschul et al., 1997). A neighborhood word is a subsequence that

is similar to each subsequence (Altschul et al., 1990). BLAST uses a

large variety of subsequences of each subsequence in a seed search to

increase the search sensitivity using neighborhood words. However,

neighborhood words are ineffective for longer subsequences for seed

because the variety of neighborhood words is great.

GHOSTZ identifies long subsequences by employing a reduced

amino acid alphabet in the seed search. The amino acid alphabet in

the subsequences is converted to the reduced amino acid alphabet,

and then the hash value for this subsequence is calculated. The var-

iety of subsequences for each original subsequence becomes one,

using the reduced amino acid alphabet. In addition, use of the

reduced amino acid alphabet allows GHOSTZ to find longer subse-

quences without a large decrease in search sensitivity. In GHOSTZ,

the length of the subsequence for seed is determined by the sum of

the match scores of the subsequence. Because the frequency of each

amino acid differs in the subsequences, the probability of finding

each particular subsequence is different. Therefore, different subse-

quences may have different lengths. A score definition has previ-

ously been proposed for calculating matches between reduced

amino acid alphabets (Melo and Marti-Renom, 2006). However, in

this study we used a simpler definition. We defined the match scores

of the groups of reduced amino acid alphabets by the largest match

score in the group based on the original score matrix. For example,

in the BLOSUM62 score matrix, the match scores of amino acids F,

Y and W, are 6, 7 and 11, respectively; thus, the match score for the

group including F, Y and W is 11. To avoid insignificant hits, only

subsequences with scores that exceed the score threshold Tseed are

hashed as subsequences for seed. For example, when Tseed¼39,

‘HDGLNP’ is not used in the seed search because its score is 38 and

does not exceed Tseed. However, ‘HDGLNPA’ is used in the seed

search because its score is 42, which exceeds Tseed. In addition, in

our implementation, the length of subsequences for seed is restricted

to 6–8 residues, because a perfect hash function is used.

After building the hash table of subsequences for seed, the subse-

quences for clustering are constructed, and database subsequence

clustering is performed as follows: If i is the starting point of

SD;i ¼ D½i; j� and L is the length of the subsequence used for cluster-

ing, then let CD;i ¼ D½i� L=2; iþ L=2� be the subsequence for clus-

tering. For clustering, a subsequence for clustering with i as the

center is used, instead of a subsequence for seed with i as the starting

point. The relationship between CD;i and SD;i is shown in Figure 3.

If CD;i has delimiters, CD;i are not used for clustering because CD;i

contains the subsequence of several sequences in the database. CD;i

becomes a member of a cluster if it has the same hash value of SD;j

as the cluster representative CD;j and the distance between the repre-

sentative of a cluster CD;j and CD;i is lower than or equal to the dis-

tance threshold Tcluster. Hamming distance, which is the number of

mismatches between sequences, is used to measure this distance.

To reduce the computation time required for clustering, a greedy al-

gorithm similar to CD-HIT (Fu et al., 2012; Li and Godzik, 2006)

was employed. The algorithm for database subsequence clustering is

shown in Figure 4. In this algorithm, the first subsequence sampled

always becomes a cluster representative. All subsequences are com-

pared with each cluster representative, and the subsequence becomes

a new cluster representative if it is not a member of any other

cluster. Before running the database subsequence clustering, we

recommend that similar sequences are arranged close to each other

in the input file, using a clustering tool such as CD-HIT, because

this allows the clustering algorithm to cluster subsequences more

MGKTNLSHDGLNPAHVPYWWVN
L/2L/2

Subsequence for clustering          (         L        =10          )

seed (Tseed =39 )

Fig. 3. Relationship between a subsequence used for clustering and the start-

ing position of the seed
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efficiently. After subsequence clustering, the results are used to

construct three tables to be used as indexes for the seed searches.

The Be hash table stores the hash values of SD;i and the starting

points i of SD;i for the representatives of clusters where the number

of members in the cluster is only one. The Br hash table stores the

hash values of SD;i, their cluster IDs and the starting points i of SD;i

that are representative of a cluster (not stored in Be). The Bm table

stores the mapping from the cluster IDs to the starting points i of

SD;i whose CD;i are members of that cluster. These three tables are

used for the seed search. Examples of Be, Br and Bm are shown

in Supplementary Figure S1A–C.

2.3 Seed search and similarity filtering
The seed search is performed with Be, Br, Bm and the hash table of

queries. The hash table of the queries is constructed before the seed

search. This hash table contains the hash values of SQ;i, the query

IDs and the starting points of subsequences for the corresponding

hash values. An example of a hash table of queries is shown in

Supplementary Figure S1D.

In the seed search, seeds of query subsequences and representa-

tive subsequences in the database are found using Be and Br. If the

seeds are from Be, an ungapped extension is performed because

there are no other subsequences in the cluster. If the seeds are from

Br, the similarity filtering process is performed. Then, the hamming

distance between a query and the database subsequence is calcu-

lated. Given two sequences S1 and S2, we denote by dðS1; S2Þ the

distance between S1 and S2. The distance should satisfy the follow-

ing triangle inequality:

dðS1; S2Þ�dðS1; S3Þ þ dðS2; S3Þ (1)

If CQ;i is the subsequence of the query, MD;j (CD;j) is the sequence

of a cluster member, and RD;k (CD;k) is the subsequence of a repre-

sentative cluster member, then the lower bound of the distance be-

tween RD;i and MD;j from this inequality will be:

dðCQ;i;MD;jÞ�dðCQ;i;RD;kÞ � dðRD;k;MD;jÞ (2)

This lower bound of the distance between CQ;i and MD;j is calcu-

lated, and the seed is extended without gaps if this lower bound of

the distance is less than or equal to the distance threshold Tdistance.

The relationships among the query, the cluster representative and

the cluster members are shown in Figure 5. The pseudo-code for the

seed search and similarity filtering is shown in Figure 6.

2.4 Ungapped extension
Gapped extension generally requires large amounts of computation

time; therefore, most homology search algorithms perform an

ungapped extension before a gapped extension. We used an

ungapped extension to filter candidate seeds in the output from

the seed search. Only seeds with ungapped extension scores that

exceed the score threshold Tungapped are stored and extended with

gaps after the ungapped extension is complete. In the ungapped

extension, the cutoff technique that is used in BLAST (Altschul et

al., 1990) is used to accelerate the extension process. The Tungapped

and the other parameters for ungapped extensions are the same as

the BLAST default parameters.

To access memory efficiently when performing the ungapped ex-

tension, seed searches are performed for multiple queries simultan-

eously. If the hash values of query subsequences are the same, their

starting points are packed using the hash table. Then, an ungapped

extension is performed for the queries that have identical hash val-

ues in sequential order, because this increases the cache hit ratio

when accessing the positions of the sequences in the database

(line 9–31 in Fig. 6).

2.5 Chain filtering and gapped extension
Chain filtering is performed after an ungapped extension because

some seeds overlap. Therefore, the number of gapped extensions

can be reduced by merging overlapping seeds. After chain filtering,

the seeds are extended with gaps using a score-limited dynamic

programming technique (Altschul et al., 1997).

Fig. 4. Pseudo-code for database subsequence clustering

Fig. 5. Relationships among a query subsequence, a representative cluster

subsequence and a member of the cluster that satisfies the triangle inequality
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2.6 Execution of the homology search method without

subsequence clustering
The flow of the homology search without subsequence clustering

is shown in Figure 7. This method is almost identical to that used

in GHOSTZ, except that subsequence clustering and similarity fil-

tering are not used for the seed search. This method, without subse-

quence clustering, was used to evaluate the improvement in

processing time obtained by subsequence clustering. Here, the query

subsequences are searched against all the subsequences in the

database using hash tables. Next, all seeds are directly extended

using the ungapped extension process. Finally, chain filtering is

performed to merge similar seeds, and gapped extension is used to

extend the seed sequences.

3 Results

3.1 Datasets and the computing environment
We evaluated the performance of the homology searches with and

without subsequence clustering. We used the amino acid sequences

in the Kyoto Encyclopedia of Genes and Genomes (KEGG) GENES

database (as of May 2013). This database contains ~10 million pro-

tein sequences, which comprise a total of ~3.6 billion residues.

For the query sequences, we used three datasets: soil microbiome

metagenomic sequences (accession number, SRR407548, read

length¼150 bp), human microbiome metagenomic sequences

(accession number, SRS011098, read length¼101 bp) and marine

microbiome metagenomic sequences (accession number,

ERR315856, read length¼104 bp). SRR407548 and ERR315856

were obtained from the DNA Data Bank of Japan Sequence Read

Archive, which is a member of the International Nucleotide

Sequence Database Collaboration and which archives data in close

collaboration with the NCBI Sequence Read Archive and the

European Bioinformatics Institute Sequence Read Archive.

SRS011098 was obtained from the Data Analysis and Coordination

Center for the HMP web site (http://www.hmpdacc.org/). We used

the whole metagenomic shotgun sequencing data from SRS011098.

For all datasets, 10 000 DNA short reads were randomly selected

and used. The evaluation tests were performed on a workstation

with a 2.93 GHz Intel Xeon 5670 processor, 54 GB memory and

SUSE Linux Enterprise Server 11 Service Pack (SP) 1.

For the homology search with and without subsequence cluster-

ing, we used a seed score threshold of Tseed¼39. Tseed was deter-

mined to be similar in sensitivity to RAPSearch. The parameters

used for gapped and ungapped extensions were the same as the

BLASTX default parameters. To perform the database subsequence

clustering efficiently, similar sequences were arranged close to each

other in the database file, based on the results of CD-HIT.

3.2 Relationship between subsequence length and

acceleration ratio and accuracy
The subsequence clustering method has three parameters: the length

of the subsequence L, the distance threshold for the representative

of a cluster Tcluster and the distance threshold for the similarity check

Tdistance. The subsequence length L particularly affects the perform-

ance of the search method because Tcluster and Tdistance depend on L;

therefore, we first determined the optimal length of a subsequence

using L¼6, 8, 10, 12 and 14 and fixed distance thresholds of

Tcluster¼0.1 L and Tdistance¼0.2 L. We used 10 000 randomly

selected DNA short reads from soil microbiome metagenomic se-

quences (SRR407548) and the KEGG GENES database. The accel-

eration ratios with different L for the subsequence clustering search

method over the method without subsequence clustering are shown

in Table 1. As shown, the speed of the search method that included

subsequence clustering increased when L decreased.

The accuracy of the homology search for the different query

sequences was estimated using the search results obtained by the

Smith–Waterman local alignment algorithm implemented in

SSEARCH (Pearson, 1991) as the correct result. The performance

was estimated in terms of the fraction of the results that corres-

ponded to the correct result. A search result was considered to be

Seed search

Queries

Ungapped extension

Gapped extension

Trace back

Chain filtering

Database

Fig. 7. Flow of the proposed homology search method without database

subsequence clustering for the purpose of comparison

Fig. 6. Pseudo-code for seed search, similarity filtering and ungapped exten-

sion in the case of multiple cluster members
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correct when the subject sequence with the highest score in

SSEARCH was the same as the subject sequence obtained by our

search method with subsequence clustering. The accuracy of L¼10

was better than the accuracy of the other lengths (Fig. 8). Therefore,

we determined that L¼10 was the optimal subsequence length be-

cause it yielded a good balance between sensitivity and computation

time. GHOSTZ, using database subsequence clustering, achieved

an ~2-fold increase in processing speed, without a large decrease

in search accuracy.

3.3 Comparison of the proposed search method with

other methods
To further evaluate GHOSTZ, we compared its search accuracy and

computation time with the accuracy and computation time of NCBI

BLAST (version 2.2.28þ), BLAT (version 34 standalone) and

RAPSearch (version 2.12). The metagenomic DNA sequences

(SRR407548, SRS011098 and ERR315856) and the KEGG GENES

database were used to evaluate these tools. The BLASTX program

was executed with the command line options ‘-outfmt 6 -comp_

based_stats 0’, which instructed the program to output in tabular

format. Composition-based statistics (Altschul et al., 2005) were not

used because this method was not employed in SSEARCH. The

BLAT program does not include a function to translate the DNA

reads to protein sequences; therefore, we translated the DNA reads

into protein sequences based on the standard codon table. The

BLAT program was executed with the command line options

‘-q¼prot -t¼prot -out¼blast8’, which instructed the program to

use protein queries and a protein database, and to output the data in

the BLAST tabular format. The RAPSearch program was executed

with the default command line options. The proposed homology

search method was executed with L¼10.

The accuracy was evaluated in the same way as the relationship

between the length of the subsequence and the acceleration ratio.

The results for SRR407548, SRS011098 and ERR315856 are

shown in Figure 9, Supplementary Figures S2 and S3, respectively.

The accuracy of GHOSTZ was better than that of BLAT and was

almost equal to that of RAPSearch. However, the accuracy of

GHOSTZ was lower than that of BLASTX, especially for hits with

E-values above 1:0� E�6. However, hits with such high E-values

are not used in practice because they are unreliable. For instance,

Turnbaugh et al. (2006) used hits with E-values below 1:0� E�5,

and Kurokawa et al. (2007) used hits with E-values below

1:0� E�8. Therefore, we consider that GHOSTZ has sufficient

search accuracy for most metagenomic applications.

The computation time of each method was also evaluated.

The software was run with the same commands that were used to

evaluate the search accuracy. The computation times of the tested

methods for SRR407548, SRS011098 and ERR315856 are

shown in Table 2, Supplementary Tables S1 and S2, respectively.

GHOSTZ had the fastest search speed of the software packages

tested. GHOSTZ achieved ~185.2–261.3 times faster processing

than BLASTX, and ~2.2–2.8 times faster processing than

RAPSearch.

Fig. 8. Search accuracy of GHOSTZ for the SRR407548 sequence alignments

against the KEGG GENES database. The percentage of correct answers is

shown on the vertical axis. The E-values of the alignments are shown on the

horizontal axis

Fig. 9. Search accuracy of different search methods for the SRR407548

sequence alignments against the KEGG GENES database. The percentage of

correct answers is shown on the vertical axis. The E-values of the alignments

are shown on the horizontal axis

Table 2. Computation times for the SRR407548 reads against the

KEGG GENES database

Computation time (s) Acceleration ratio

GHOSTZ 460.8 261.3

RAPSearch 1285.5 93.7

BLAT 2514.9 47.9

BLASTX 120395.2 1.0

Note: The acceleration in processing speed for the search method using

subsequence clustering relative to BLASTX using one thread.

Table 1. Computation times for homology searches using different

subsequence lengths for the SRR407548 reads against the KEGG

GENES database

Computation time (s) Acceleration ratio

Without clustering 936.5 1.0

L¼ 6 348.7 2.7

L¼ 8 384.3 2.4

L¼ 10 460.8 2.0

L¼ 12 460.8 2.0

L¼ 14 509.3 1.8

Note: L is the length of the subsequence. The acceleration in processing

speed is given as the ratio of the time used for the search method with subse-

quence clustering relative to the time used for the search method without

subsequence clustering.
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We also measured the search accuracy and computation time

of each tool using different parameters. We used 10 000 randomly

selected DNA short reads from SRR407548 and the KEGG GENES

database. Because it is difficult to compare many plots showing the

results for various parameters, we used single-value accuracy, which

is calculated as the ratio of correctly searched queries to all queries

whose E-values < 1:0� E�3. These evaluations were performed on

the same workstation used for the other evaluation, but the version

of the operating system had been updated from SUSE Linux

Enterprise Server 11 SP1 to SP3. Using this computing environment

and these measurements, the computation time of GHOSTZ was

396.3 s and the accuracy was 0.84. Supplementary Tables S3, S4

and S5 show the accuracy and computation time of RAPSearch,

BLAT and BLASTX, respectively, using different parameters.

RAPSearch showed a drastic decrease in accuracy in the fast mode,

and the accuracy of BLAT was not drastically improved the accur-

acy, even using a smaller tile size parameter. Using the fastest par-

ameter, the accuracy of BLASTX was similar to that of GHOSTZ;

however, the computation time required was much greater.

3.4 Evaluation of memory size
The amount of memory required for running GHOSTZ depends

on the size of database. Current computing systems often have rela-

tively small memory sizes relative to the size of current databases.

Therefore, GHOSTZ divides a database into several chunks.

GHOSTZ sequentially searches each database chunk, and merges its

results with the results of previous chunk searches, when this chunk

division is performed before the construction of its database indexes.

The default chunk size is 1 GB. Using this approach, GHOSTZ dra-

matically reduces working memory requirements. However, even

using this technique, GHOSTZ requires more memory than

RAPSearch. When we used 10 000 randomly selected DNA short

reads from soil microbiome metagenomic sequences (SRR407548)

and the KEGG GENES database, GHOSTZ required ~41 GB of

memory for constructing the indexes of the database, and ~7 GB for

the homology search itself (Table 3). In contrast, RAPSearch

required only ~4 GB for the homology search. However, GHOSTZ

can reduce the memory required by decreasing the database chunk

size. As shown in Table 3, the memory required for GHOSTZ in-

creases nearly linearly in proportion to the size of the database

chunks. If a database is divided into a larger number of chunks, the

memory required decreases accordingly. Of course, a trade-off exists

between database chunk size and search speed. Homology search

computation times increase as the size of a database chunk

decreases. This is so because the number of clusters increases and

the cache hit ratio in ungapped extension decreases. However, the

situation is not dire, as shown in Table 4, the search speed of

GHOSTZ with 128 MB chunks is ~12% slower than that with 1 GB

chunks. Therefore, using smaller database chunks, GHOSTZ is

executable even on a typical PC.

4 Discussion

In the evaluation experiment, GHOSTZ achieved an ~2-fold

increase in speed, relative to GHOSTZ without clustering. This

acceleration can probably be attributed to the reduction in the num-

ber of ungapped extensions that were required when using

GHOSTZ. To validate this hypothesis, we compared the total num-

ber of ungapped extensions required by each method. In the data-

base subsequence clustering approach, similarity filtering requires

comparable computing time to the ungapped extension process;

therefore, we added the number of similarity filterings performed to

the number of ungapped extensions. We found that the number of

ungapped extensions could be reduced to approximately one-third

of the original number using database subsequence clustering.

Currently, ungapped extension is one of the primary bottlenecks

in fast homology searches. Thus, we think that this effective de-

crease in ungapped extensions contributed to the large acceleration

we observed when using subsequence clustering for homology

searches.

CaBLASTP, which is based on a compression approach,

achieved 2.4–3.1-fold faster processing speed than the original

BLASTP (Daniels et al., 2013). The acceleration achieved by

GHOSTZ was ~2-fold faster than the speed of GHOSTZ without

clustering, which is comparable to that of CaBLASTP. However, we

achieved a processing speed that was much faster than that of the

BLAST homology search algorithm. As described earlier, the com-

pression approach used in CaBLASTP requires high search sensitiv-

ity and cannot be applied to faster, but less sensitive, homology

search algorithms. In the initial processing, the compression search

algorithm needs to find remote homologs in a coarse database,

and less sensitive homology search algorithms often fail to find such

sequences. In contrast, the clustering targets used in our approach

are subsequences in a database, which does not depend on search

sensitivity. In addition, GHOSTZ uses hamming distance in data-

base subsequence clustering to measure the dissimilarity between

sequences, whereas CaBLASTP uses sequence similarity. Using

distance allows search seeds to be pruned efficiently using triangle

inequality in an ungapped extension process, contributing to the

acceleration in processing.

GHOSTZ allows the indexes of a database to be constructed

anew, so that users who wish to use other parameters can use this

Table 3. Memory usage for database construction and homology

search with various database chunk sizes

Tool (chunk size) Memory size for

constructing index (GB)

Memory size for

homology search (GB)

GHOSTZ (128 MB) 5.4 1.4

GHOSTZ (256 MB) 10.1 2.2

GHOSTZ (512 MB) 21.0 3.8

GHOSTZ (1 GB) 41.0 6.7

RAPSearch 6.9 4.1

Note: The first, second and third columns show the size of the database

chunks, the memory required for constructing the index (GB) and the memory

required for the homology search (GB), respectively. We searched the KEGG

GENES (3.9 GB) database.

Table 4. Computation time for database construction and hom-

ology search with various database chunk sizes

Tool (chunk size) Computation time (s) Acceleration ratio

GHOSTZ (128 MB) 545.2 0.88

GHOSTZ (256 MB) 488.2 0.94

GHOSTZ (512 MB) 479.1 0.96

GHOSTZ (1 GB) 460.8 1.00

RAPSearch 1285.5 0.35

Note: The first, second and third columns show the size of the database

chunks, the computation time and the acceleration in processing speed

relative to GHOSTZ, respectively, using 1 GB database chunks. We searched

the KEGG GENES (3.9 GB) database.
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method. Construction of database indexes for a 1 GB database

requires ~3 h of computation time. However, when a huge number

of DNA reads obtained using next-generation sequencing are to be

processed, the computation time for homology searches is generally

much greater than the time required for database construction.

Therefore, we consider that the computational time involved in

rebuilding database indexes and clustering is not likely to be a prob-

lem in practice.

4.1 Evaluation of computing time for more queries
Reading of database files, including indexes, accounts for a larger

fraction of the computing time required for GHOSTZ, compared

with the other tools evaluated, especially if the number of queries is

small. In Section 3, we used 10 000 queries for evaluation because

of the limitations imposed by our computational resources. Thus,

the performance of GHOSTZ might have been underestimated. To

investigate the point, we evaluated the computation time required

for GHOSTZ and RAPSearch for 1000, 10 000, 100 000 and 1 000

000 queries. The queries were randomly selected from SRR407548

and searched against the KEGG GENES database. These evaluation

tests were performed on a workstation with a 2.93 GHz Intel Xeon

5670 processor, 54 GB memory and SUSE Linux Enterprise Server

11 Service Pack 3. The acceleration ratio of GHOSTZ relative to

RAPSearch is shown in Supplementary Figure S4. When 1000

queries were used, the acceleration was only 2.9. In contrast,

GHOSTZ was ~3.8-fold faster than RAPSearch when the number

of queries was 1 000 000. These results indicate that GHOSTZ

achieves its full potential only when working on a sufficient number

of queries.

5 Conclusion

We developed a new homology search algorithm with subsequence

clustering. We reduced the number of ungapped alignment exten-

sions by clustering subsequences in a database, and achieved a

2-fold acceleration in processing speed without a drop in search

sensitivity. The algorithm was designed for functional and taxo-

nomic annotation in metagenome analysis. The proposed database

subsequence clustering method could also be useful in proteome

research, which requires a huge number of sequence homology

searches.
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