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Aims The current gold standard comprehensive assessment of coronary microvascular dysfunction (CMD) is through a
limited-access invasive catheterization lab procedure. We aimed to develop a point-of-care tool to assist clinical
guidance in patients presenting with chest pain and/or an abnormal cardiac functional stress test and with non-
obstructive coronary artery disease (NOCAD).

...................................................................................................................................................................................................
Methods
and results

This study included 1893 NOCAD patients (<50% angiographic stenosis) who underwent CMD evaluation as well
as an electrocardiogram (ECG) up to 1-year prior. Endothelial-independent CMD was defined by coronary flow re-
serve (CFR) <_2.5 in response to intracoronary adenosine. Endothelial-dependent CMD was defined by a maximal
percent increase in coronary blood flow (%DCBF) <_50% in response to intracoronary acetylcholine infusion. We
trained algorithms to distinguish between the following outcomes: CFR <_2.5, %DCBF <_50, and the combination of
both. Two classes of algorithms were trained, one depending on ECG waveforms as input, and another using tabu-
lar clinical data. Mean age was 51 ± 12 years and 66% were females (n = 1257). Area under the curve values ranged
from 0.49 to 0.67 for all the outcomes. The best performance in our analysis was for the outcome CFR <_2.5 with
clinical variables. Area under the curve and accuracy were 0.67% and 60%. When decreasing the threshold of posi-
tivity, sensitivity and negative predictive value increased to 92% and 90%, respectively, while specificity and positive
predictive value decreased to 25% and 29%, respectively.

...................................................................................................................................................................................................
Conclusion An artificial intelligence-enabled algorithm may be able to assist clinical guidance by ruling out CMD in patients pre-

senting with chest pain and/or an abnormal functional stress test. This algorithm needs to be prospectively vali-
dated in different cohorts.
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Introduction

Around two-thirds of patients presenting with angina and non-
obstructive coronary artery disease (NOCAD) on clinically indicated
coronary angiography have coronary microvascular dysfunction
(CMD) detected with pharmacologic provocation testing.1–3

Coronary microvascular dysfunction has been associated with athero-
sclerosis, myocardial ischaemia, heart failure with preserved ejection
fraction, increased mortality, and a higher risk of major adverse cardio-
vascular events, including myocardial infarction, progressive congestive
heart failure, atrial fibrillation, and sudden cardiac death.4–12

The gold standard method for the assessment of coronary micro-
vascular and endothelial function involves a comprehensive formal in-
vasive and expensive procedure. Multiple other non-invasive tests to
assess the coronary microvasculature have been evaluated (e.g.
echocardiography-derived or positron emission tomography-derived
coronary flow reserve [CFR]). However, a weak correlation has
been observed between non-invasive and invasive assessment of cor-
onary reserve and vasomotion in several studies.13–15

Artificial intelligence (AI) is an increasingly recognized powerful
tool to help equip clinicians in the decision-making process across
multiple domains and subspecialties.16,17 Artificial intelligence elec-
trocardiogram (ECG) analysis allows clinicians to identify physiologic-
al ageing18,19 and multiple cardiovascular diseases, such as
paroxysmal atrial fibrillation, depressed left ventricular (LV) dysfunc-
tion, and hypertrophic cardiomyopathy, through a single resting 10-s
12-lead ECG.20–22 In a previous study by our group, CMD was associ-
ated with minor ECG differences (QTc and T-waves),23,24 which
could potentially indicate that different ECG blueprints may be pre-
sent in patients with CMD. Therefore, the current study was
designed to test the hypothesis that AI can assist the clinical decision-
making and identify the patients with high and low probability to have
CMD and help physicians to decide whether to proceed with invasive
diagnostic procedures in patients presenting with signs/symptoms of
ischaemia.

Methods

Data sources and study population
This study included consecutive subjects with angina and NOCAD on
coronary angiography (<50% stenosis in major vessels) who underwent a
clinically indicated invasive coronary reactivity testing (CRT) for the
evaluation of CMD, as well as resting 10-s 12-lead ECG up to 1 year be-
fore CRT.3 Patients with acute coronary syndrome presentation and
those with a history of myocardial infarction or cerebrovascular accident
within the past 6 months, previous percutaneous coronary intervention
or coronary artery bypass surgery, use of radiographic contrast agents
within 12 h before catheterization, valvular heart disease, advanced
chronic kidney disease, cardiomyopathy (LV ejection fraction <45%), ac-
tive malignancy, local or systemic infectious disease within 4 weeks before
catheterization, and inflammatory diseases were excluded. Pregnant
patients and those unable to provide written informed consent were also
excluded from this study.

Standard 10-s, 12-lead ECG acquired in the supine position at the
Mayo Clinic ECG laboratory between 1992 and 2019 were included in
this analysis. All ECGs were analysed at a sampling rate of 500 Hz using a
GE-Marquette ECG machine (Marquette, WI, USA), ECGs that were

originally sampled at 250 Hz were unsampled to 500 Hz using the
‘Resample’ function from SciPy python package.25 The raw data were
stored using the MUSE data management system. The study was compli-
ant with the Declaration of Helsinki and approved by the Mayo
Foundation Institutional Review Board.

Patient information and variable selection
Clinical history, laboratory data, and current medications were collected
from a detailed chart review by an investigator blinded to functional angi-
ography results from 1975 patients seen in Mayo Clinic as previously
described.3,26 Data were collected on conventional cardiovascular risk
factors including age, hypertension (HTN), diabetes mellitus (DM), hyper-
lipidaemia (HLD), smoking status, and body mass index (BMI); biochem-
ical parameters including serum total cholesterol (TCHOL) , low-density
lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) choles-
terol, and triglycerides (TGs). Smoking was defined as positive for expos-
ure (current or former) or never. The estimated glomerular filtration
rate (eGFR) was calculated using the CKD-EPI formula. All blood levels
documented had been drawn up to 2 weeks before the index procedure.
Dyslipidaemia was defined by a documented history of hyperlipidaemia,
treatment with lipid-lowering therapy, an LDL cholesterol level above
the target (<130 mg/dL for low-risk patients, <100 mg/dL for moderate-
high-risk patients, <70 mg/dL for very high-risk patients, and <55 mg/dL
for extreme high-risk patients based on 10-year atherosclerotic cardio-
vascular disease risk), HDL cholesterol <40 mg/dL in men or <50 mg/dL
in women, or TGs >150 mg/dL. Type 2 diabetes mellitus was defined as a
documented history of or treatment for type 2 diabetes, or an HbA1c of
>6.5, if available. Hypertension was defined as a documented history of
the disease or treatment.

Coronary reactivity testing
Patients discontinued vasodilatory medications (calcium channel block-
ers, beta-blockers, and long-acting nitrates) at least 24 h before the study.
They were only allowed to take sublingual nitroglycerine tablets or spray
for angina up to 6 h before the catheterization procedure. The Mayo
Clinic protocol of CRT has been described previously in detail.3,26–31 In
brief, patients underwent diagnostic coronary angiography using standard
clinical protocols. Those with NOCAD (no or mild angiographic stenosis
<50% in any major vessel) went on to receive 5000 U of heparin intraven-
ously, after which a Doppler guidewire (FloWire, Philips/Volcano Corp.,
San Diego, CA, USA) was positioned in the mid-left anterior descending
coronary artery (LAD) along with an infusion catheter. First, to assess
endothelium-independent vasodilation, intracoronary bolus injections of
incremental doses (18–72lg) of adenosine were administered through
the guiding catheter until maximal hyperaemia was achieved. Coronary
flow reserve was calculated as the ratio of hyperaemic over baseline
blood velocities. Abnormal CFR was subsequently defined as CFR <_2.5 in
response to adenosine.3 Next, coronary microvascular endothelial func-
tion was assessed using infusions of increasing concentrations at 1 mL/
min of intracoronary acetylcholine (10-6, 10-5, and 10-4mol/L for 3 min
each). Doppler measurements of peak velocity were performed after
each acetylcholine infusion, followed by repeat coronary angiography.
The mid-LAD diameter was measured in the segment 5 mm distal to the
tip of the Doppler wire, using a quantitative coronary angiography pro-
gram (QAngio, Medis Corp, Leiden, Netherlands). Coronary blood flow
(CBF) was then calculated using the formula: CBF = p� (peak velocity/
2)� (coronary artery diameter/2)2, as previously described.27,28,31,32 The
maximal percent change in CBF in response to acetylcholine compared
to baseline (%DCBF) was then calculated, and abnormal response was
defined as %DCBF <_50%.3,31,33
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Overview of the artificial intelligence model
Two primary modelling frameworks were developed: a traditional ma-
chine learning (ML) framework based on the tabular clinical data and a
deep learning (DL) framework using convolutional neural networks
(CNN) applied on both the ECG waveform and clinical data.

Machine learning framework

We implemented several predictive algorithms using Python 3.7 with the
Scikit-learn and XGBoost packages.34 These included logistic regression,
Gaussian naive Bayes, K-nearest neighbours, GradientBoost, XGBoost,
and random forest.34 Model hyperparameters were tuned using grid
search in combination with K = three-fold cross-validation to determine
the best model.35 Continuous variables were normalized, and categorical
variables were level encoded to multiple binary variables. Patients with
missing values were dropped from the analysis.

Deep learning framework

We implemented several CNN using Keras36 with a Tensorflow
(Google; Mountain View, CA, USA) backend and Python 3.7 to train bin-
ary classification models. For each outcome, we created two models: one
containing only ECG waveforms as input and a second with tabular data
in addition to the ECG waveforms. Electrocardiograms with paced
rhythms and complete left bundle branch blocks were excluded.

For the training process, each ECG was converted to the matrix of
12� 5000, where the first dimension represents the spatial leads and the
second a time series of 10 s at 500 Hz. The CNN architecture in this
framework was identical to a network published by our group previously
for detecting patient age and sex from a single ECG alone.19

To maximize the utility of available data we used transfer learning from
the aforementioned model, where the weights of the pre-existing net-
work were either updated very slowly or frozen entirely and then inte-
grated into the new model. Although a full explanation is beyond the
scope of this article, for CNN these ‘weights’ refer to tunable parameters
that are updated during training as the model learns the data.37 They are
similar to coefficients in linear regression, mathematically combining in-
formation from different portions of the image to calculate the predicted
output. For this to work well, however, large quantities of data are
required, and a common workaround is to use transfer learning.37 In a
transfer learning approach, the weights of a pre-existing network that is

known to work well on a similar scientific question are used as the start-
ing point and are ‘frozen’ such that they are not updated during training.
Since the new network starts closer to the optimal state, less data are
needed for training, but if the entire network is frozen then the new net-
work cannot learn, so the number of layers frozen from the update is
determined by the experiment. In our case, the number of frozen layers
did not have a big impact on the performance, with 15 layers being frozen
for final models. Models were trained for 30 epochs with a 0.001 learning
rate and a batch size of 32. Further experiments were done using differ-
ent hyperparameter values but did not impact results.

To create the models that contained both tabular and waveform data
a similar architecture was used, but before the final fully connected layer
the tabular data were concatenated with the features extracted by the
convolutional blocks from the ECG waveform.38 These networks were
trained using the same parameters as above.

Threshold tuning

To choose the classification threshold for sensitivity analysis, different
approaches were taken for the ML and DL frameworks. For the DL
framework, the classification threshold was determined by selecting the
point on the validation set receptor operating characteristics curve that
maximized Youden’s J index. For the ML framework threshold was
chosen to yield the best balance between sensitivity and specificity.

Experiments performed

Our primary goal was to evaluate the ability of the ML/DL algorithms to
predict the following outcomes: CFR <_2.5, DCBF (%) <_50, or the com-
bination of both, the latter of which corresponds to CMD.

To do so we first assessed the ability of each tabular data and ECG
data separately to discriminate between normal and abnormal. After that,
we combined both and trained it all over again to see if this provided an
added benefit. During models where ECG waveforms are used, the QRS
and QT values were removed from the variables to avoid the redundancy
of information.

Statistical analysis
Continuous variables distributed normally were expressed as mean ±
standard deviation, and those with a skewed distribution were expressed
as the median with interquartile range. Categorical variables were
expressed as frequency (percentage). To compare variables between
groups, we performed an unpaired t-test for normally distributed con-
tinuous variables, a Mann–Whitney U test for non-normally distributed
variables, and a v2 test (or Fisher’s exact test) for categorical variables.
For the structured data analysis, common cardiovascular disease risk fac-
tors and biochemical markers, previously shown to be related to CMD,
were included in the models. The features used in the tabular data models
include the following: age, sex, BMI, smoking, diabetes mellitus, dyslipidae-
mia, hypertension, cholesterol levels (total cholesterol, LDL cholesterol,
HDL cholesterol, TGs), eGFR, and ECG parameters (QRS and QT inter-
vals), and QCA. All statistical analyses were performed using R 3.6.1 or
Python 3.7.7.

Results

Of the 1975 patients in the CRT registry, 1893 patients had complete
CRT study outcomes (both CFR and DCBF available) ECG available
within the year preceding the CRT study date (Figure 1). The mean
age was 51± 12 years and 66% were females (n = 1257). The preva-
lence of patients with CFR <_2.5, DCBF (%) <_50, and DCBF (%) <_50

Figure 1 Patients included in the study. CRT, coronary reactivity
testing; ECG, electrocardiogram; NOCAD, non-obstructive coron-
ary artery disease
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and/or CFR <_2.5 was 25%, 53%, and 62%, respectively. Patients’ char-
acteristics and CMD outcomes distribution were similar among train-
ing (60%), validation (20%), and holdout test (20%) groups across
different outcomes and analyses. Baseline characteristics are shown
in Table 1. The time between ECG and CRT study was 1 (0–4) days.

Artificial intelligence model
performance
The holdout test set area under the curve (AUC) sensitivity, specifi-
city, accuracy, positive predictive value (PPV), and negative predictive
value (NPV) for different models is described in Table 2.

As shown in Table 2, the models did not exhibit a great discrimin-
atory ability to detect the outcomes. For the CFR <_2.5 outcome,
AUC values ranged from 0.56 to 0.67, for the DCBF (%) <_50 out-
come, values ranged from 0.49 to 0.57. And finally, for the outcome
of CMD [DCBF (%) <_ 50 and/or CFR <_ 2.5], AUC values ranged
from 0.48 to 0.61. The performance was not different between the
structured (tabular) and unstructured (ECG only) models.
Furthermore, combining the two networks, as outlined above, did
not improve the performance of the model.

The best performance in our analysis was for the outcome CFR
<_2.5, with an AUC of 0.67 (0.62, 0.73) 95% confidence interval, by
the logistic regression ML algorithm using tabular variables, with ac-
curacy, sensitivity, specificity, PPV, and NPV values of 60%, 70%, 56%,
35%, and 85%, respectively (Figure 2). Feature importance analysis
(Figure 3) showed that sex, age, and smoking exposure were the

most important variables. The technical calculation was done via the
‘Weight’ method in the XGBoost package and essentially looks at
how often a variable appears in all trees. A theoretical explanation is
found in books such as The Elements of Statistical Learning,39 while
practical instructions are found in the latest XGBoost instructions
edition.40

Finally, we observed different threshold options for different clinical
needs. When decreasing the threshold of what is considered a positive
test arbitrarily from the ‘optimal’ one (24%) to 15%, sensitivity and
NPV increase to 92% and 90%, respectively, while specificity and PPV
decreased to 25% and 29%, respectively. When increasing the thresh-
old to 37%, specificity and PPV increases to 92% and 50%, respectively,
sensitivity and NPV decrease to 25% and 78%, respectively (Figure 2).

Discussion

The current study demonstrated that an AI-enabled algorithm based
on demographics and ECG waveforms was not able to detect the dif-
ference between patients with and without CMD with high sensitivity
and/or specificity. However, it has sufficient power so that with the
selection of a different point along the receiver operator characteris-
tic, the algorithm could function with a high NPV, which if prospect-
ively confirmed could eliminate the need for invasive testing in a
subset of angina patients by integrated the AI ECG into clinical guid-
ance and decision-making in patients presenting with signs or symp-
toms of angina and NOCAD with suspicion of CMD. This early proof

....................................................................................................................................................................................................................

Table 1 Baseline characteristics

All patients (n 5 1893) Missing data

Age (years) 51.3 ± 12.4 0

Female sex (%) 66% (n = 1257) 0

Outcomes

CFR <_ 2.5 25% (n = 483) 0

DCBF (%) <_ 50 53% (n = 1004) 0

CMD [DCBF (%) <_ 50 and/or CFR <_ 2.5] 62% (n = 1181) 0

Comorbidities

Diabetes (%) 11% (n = 205) 0

Hypertension (%) 43% (n = 813) 0

Hyperlipidaemia (%) 56% (n = 1058) 0

Smoking exposure (%) 46% (n = 869) 0

Labs

eGFR (m2/mL/kg) 78 ± 18 0

Leucocytes 6.8 ± 2.1 2%

Neutrophils 4.0 ± 1.7 18%

Neutrophils/leucocytes 0.59 ± 0.1 19%

Total cholesterol 183 (155–212) 5%

High-density lipoprotein cholesterol 51 (42–64) 6%

Low-density lipoprotein cholesterol 102 (78–127) 6%

QCA (%) 0 (0–20) 1%

QRS duration (ms) 90 (84–98) 0

QTc (ms) 423 (409–442) 0

DCBF, percent change in coronary blood flow; CFR, coronary flow reserve; CMD, coronary microvascular dysfunction; eGFR, estimated glomerular filtration rate; QCA, per-
cent coronary stenosis.

ML aids clinical decision-making 601



....................................................................................................................................................................................................................

Table 2 Results of structured data analysis: the area under for the receptor operating characteristics curve, accuracy,
sensitivity, specify, negative predictive value, and positive predictive value for various machine learning algorithms for
different outcomes

Outcome Model AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

CFR <_ 2.5 LogisticRegression 0.67 (0.62–0.73) 60 70 56 35 85

GaussianNB 0.66 (0.62–0.72) 65 60 66 38 83

RandomForest 0.65 (0.60–0.70) 61 62 60 35 83

GradientBoost 0.63 (0.58–0.68) 54 74 48 32 85

XGBoost 0.61 (0.55–0.66) 59 53 61 31 79

AI ECG 0.56 (0.51–0.63) 54 43 57 26 75

AI ECG þ tabular data 0.64 (0.57,0.70) 57 51 59 57 53

DCBF (%) <_ 50 LogisticRegression 0.55 (0.50–0.60) 55 57 55 58 54

GaussianNB 0.57 (0.52–0.62) 56 55 46 52 49

RandomForest 0.51 (0.46–0.56) 51 59 53 58 55

GradientBoost 0.54 (0.49–0.59) 56 61 47 56 53

XGBoost 0.52 (0.47–0.57) 55 42 60 54 48

AI ECG 0.51 (0.45,0.57) 50 51 67 73 45

AI ECG þ tabular data 0.53 (0.53,0.60) 52 58 62 72 46

DCBF (%) <_ 50

and/or CFR

<_ 2.5

LogisticRegression 0.61 (0.57–0.66) 57 55 59 70 43

GaussianNB 0.61 (0.56–0.66) 59 49 63 70 42

RandomForest 0.59 (0.54–0.64) 56 59 54 69 44

GradientBoost 0.59 (0.54–0.64) 54 54 35 58 32

XGBoost 0.58 (0.53–0.63) 57 70 56 35 85

AI ECG 0.51 (0.45–0.57) 47 60 66 38 83

AI ECG þ tabular data 0.52 (0.54–0.59) 52 62 60 35 83

AI, artificial intelligence; AUC, area under the curve; DCBF, percent change in coronary blood flow; CFR, coronary flow reserve; CI, confidence interval; ECG, electrocardio-
gram; NPV, negative predictive value; PPV, positive predictive value.

Figure 2 Receiver operating characteristic curve for the coronary flow reserve <_2.5 outcome with proposed optimal and two other thresholds
along with their corresponding confusion matrices. AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.
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of concept analysis demonstrated biological plausibility, with moder-
ate signal strength.

In the current study, we assessed separately multiple comprehen-
sive underlying mechanisms for the diagnosis of CMD, including
endothelium-dependent CMD, endothelium-independent CMD, and
the combination of both. We integrated the use of both structured
(tabular) and unstructured (ECG waveforms) data into the same net-
work. However, our networks were unable to discriminate between
normal and abnormal CMD with high power. In the best model pre-
dicting CFR <_2.5, the use of tabular data with the logistic regression
algorithm provided an AUC of 0.67. Decreasing the threshold of
positivity increased the sensitivity to 92% and NPV to 90%.

The limited modest power of the resting, unprovoked ECG to de-
tect CMD may reflect the biology of CMD. In the catheterization la-
boratory, pharmacologic manipulations are utilized to assess
endothelial and non-endothelial function. Since a resting 12-lead
ECG is performed in a supine, relaxed state, typically in the absence
of angina, the physiologic changes that may manifest on the ECG may
be absent at the time of the recording. Given that CMD is among the
earliest stages of coronary atherosclerosis,41 the inter-episode elec-
trocardiographic abnormalities are likely more subtle or even absent,
providing a weaker signal-to-noise ratio, even with the addition of
demographical data. However, the fact that a very weak signal was
present suggests that a provoked or symptomatic test may have a
higher yield. Since smartphone-enabled ECGs are now widely avail-
able, further study using platforms with greater temporal data acquisi-
tion, potentially during symptoms, may have a higher yield.

The utility of this algorithm stems from the use of widely available
demographical data along with a simple, inexpensive, non-invasive,

universally available, 10-s test, to permit the identification of patients
without CMD. The application of the algorithm may identify the
patients who will benefit and require further invasive testing to con-
firm the diagnosis. An invasive test would also be needed for the iden-
tification of the endotype of CMD, endothelium-dependent or -
independent, which would usually result in slightly different treatment
strategies.

Historically, several other medical screening tests do not have fa-
vourable AUC values over 0.7. For example, tests such as B-type
natriuretic peptide for heart failure (AUC 0.60–0.70),42 CHA2DS2-
VASc Score for stroke risk (0.57–0.72),43 and even the Papanicolaou
smear for cervical cancer (AUC 0.70),44 all show a modest AUC
value. Given that the output produced by the algorithm is continuous;
the threshold for a positive result could be altered for various clinical
applications. The binary cut-off is usually chosen to balance sensitivity
and specificity, but a more sensitive cut-off might be useful in exclud-
ing patients who do not need invasive assessment of their microcircu-
lation for the diagnosis of CMD.

Confirmatory diagnosis of CMD varies between centres and
requires specialized technique and equipment.27,45,46 The gold stand-
ard constitutes an invasive assessment using pharmacological
reagents such as adenosine and acetylcholine. Although generally safe
and well-tolerated, adenosine/acetylcholine might be associated with
unpleasant side effects in some patients while contraindicated in
other patients. Furthermore, non-invasive modalities to diagnose
peripheral endothelial dysfunction, as a surrogate for coronary
microcirculation, were shown to have a moderate correlation with
CMD.13–15 Hence, the development of an algorithm that uses demo-
graphical and ECG data would be of great value.

Impaired endothelial microcirculatory function is considered to be
the earliest form of atherosclerosis.41,47,48 Thus, CMD shares mul-
tiple risk factors with atherosclerosis, including age, sex, and common
cardiovascular risk factors (hypertension, dyslipidaemia, and dia-
betes).47,49–53 Furthermore, structural changes that might accompany
CMD, which might include fibrosis, might lead to subtle changes that
are detected by an AI algorithm. We previously also noted some
minor electrical changes in QTc between patients with and without
CMD.23 These small variations, in addition to the small number of
patients, could be the reason our model did not detect a clear pat-
tern of differences between CMD and non-CMD patients. However,
another biologically plausible reason is that CMD represents a very
early disease process with very minor changes as opposed to other
more advanced disease processes (like heart failure and aortic sten-
osis) detected by ECG. Moreover, CMD might not be a binary dis-
ease. This is highlighted in a previous paper showing that CMD
indices like CFR and hyperemic microvascular resistance (HMR) pro-
vide prognostic values more precisely as continuous than as binary
variables.12 Finally, current methods to detect CMD almost always in-
clude a strategy to increase the physiological demand on the heart,
therefore, unmasking abnormalities that are only apparent during
states of increased demand.

Machine learning and other computational methods enable the sci-
entific community to consider complex datasets with structured and
unstructured data rather than preselecting only relevant variables.
However, a key limitation for the application of these networks in
the current world is validation and explainability. Uncovering the so-

Figure 3 Feature importance for the outcome coronary flow
reserve <_2.5. BMI, body mass index; DM, diabetes mellitus;
eGFR, estimated glomerular filtration rate; HDL, high-density
lipoprotein; HLD, hyperlipidemia; HTN, hypertension; LDL,
low-density lipoprotein; TCHOL, total cholesterol.
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.
called black box would add to the certainty of physicians to use the
models. Although the list of feature importance may explain what the
network prioritizes in the structured data model. Investigations are
ongoing to uncover how the network looks at unstructured data
such as ECG waveforms.

Once an algorithm is trained, it can be applied to any set of
demographical data. This would greatly facilitate point-of-care
clinical guidance in patients presenting with symptoms of ischae-
mia but who have NOCAD on angiogram. Furthermore, if ECG
data are included in the model, widely available smartphone tech-
nology could have a role in implementing the algorithm on the
ECG. For example, our group has previously shown the ability to
implement these algorithms, on single-lead smartphone-
generated waveforms.54

Limitations
Our study is best understood in the context of its limitations. In
comparison to other applications of CNN by our group,19–21 the
population size is small, which might diminish the discriminatory
power of our models. Furthermore, our centre is a tertiary centre
therefore referral bias cannot be excluded. Furthermore, other
labs such as hsCRP, homocysteine, and NT-proBNP were
included in separate models, but this decreased the sample num-
ber severely since patients with missing values (hsCRP 43%,
homocysteine 51%, and NT-proBNP 62% patients with missing
values, respectively) were excluded from the pipeline. This may
have led to selection bias. Further development with larger popu-
lations would assess if this lack of high discriminatory power is due
to CMD being a challenging diagnosis without invasive provoca-
tory testing, if the algorithm lacks enough data, or a mixture of
both limitations. Additional validation is also needed to ensure the
diagnostic performance of this model in specific, such as in
patients with co-existing obstructive coronary artery disease or
patients with heart failure. Finally, NPV is dependent on the pre-
test probability and the prevalence of the disease, therefore, sensi-
tivity is a better assessor of the utility of this algorithm.

Conclusion

Coronary microvascular dysfunction is common in patients with
NOCAD presenting with signs/symptoms of ischaemia. An AI-based
method may be able to assist in the clinical decision in this population
and be used to exclude patients who may not require further invasive
testing.

Funding
A.A. is supported by the James Nutter Family and Maria Long Family
Fellowship in Cardiovascular Research grant.

Conflict of interest: none declared.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

References
1. Jespersen L, Hvelplund A, Abildstrom SZ, Pedersen F, Galatius S, Madsen JK,

Jorgensen E, Kelbaek H, Prescott E. Stable angina pectoris with no obstructive
coronary artery disease is associated with increased risks of major adverse car-
diovascular events. Eur Heart J 2012;33:734–744.

2. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, Brindis
RG, Douglas PS. Low diagnostic yield of elective coronary angiography. N Engl J
Med 2010;362:886–895.

3. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence
of coronary microvascular dysfunction among patients with chest pain and nonob-
structive coronary artery disease. JACC Cardiovasc Interv 2015;8:1445–1453.

4. Britten MB, Zeiher AM, Schachinger V. Microvascular dysfunction in angiographi-
cally normal or mildly diseased coronary arteries predicts adverse cardiovascular
long-term outcome. Coron Artery Dis 2004;15:259–264.

5. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clin-
ical setting: from mystery to reality. Eur Heart J 2012;33:2771–2782b.

6. Marinescu MA, Loffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM.
Coronary microvascular dysfunction, microvascular angina, and treatment strat-
egies. JACC Cardiovasc Imaging 2015;8:210–220.

7. Marks DS, Gudapati S, Prisant LM, Weir B, diDonato-Gonzalez C, Waller JL,
Houghton JL. Mortality in patients with microvascular disease. J Clin Hypertens
(Greenwich) 2004;6:304–309.

8. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, Johnson
BD, Sopko G, Bairey Merz CN. Coronary microvascular reactivity to adenosine
predicts adverse outcome in women evaluated for suspected ischemia results
from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia
Syndrome Evaluation) study. J Am Coll Cardiol 2010;55:2825–2832.

9. Serruys PW, di Mario C, Piek J, Schroeder E, Vrints C, Probst P, de Bruyne B,
Hanet C, Fleck E, Haude M, Verna E, Voudris V, Geschwind H, Emanuelsson
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