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Background: Early embryonic arrest (EEA) leads to repeated cessation of fresh

cycles among infertile women undergoing in vitro fertilization (IVF). Whether

the levels of some essential trace elements [copper (Cu), zinc (Zn), selenium

(Se) and cobalt (Co)] in the bodies of women are related to the risk of EEA

warrants study.

Objective: Our study aimed to investigate the associations of peripheral blood

levels of Cu, Zn, Se, and Co and their mixtures with the risk of EEA.

Methods: A total of 74 EEA cases (123 IVF cycles) and 157 controls (180 IVF

cycles) from the reproductive center of the First Affiliated Hospital of Anhui

Medical University in Hefei, China, between June 2017 and March 2020 were

included in our study. Demographic and clinical data were collected from

electronic medical records. Cu, Zn, Se, and Co levels were measured in blood

samples collected on the day of oocyte retrieval when infertile women entered

clinical treatment for the first time using an inductively coupled plasma mass

spectrometer (ICP−MS). Generalized estimating equation (GEE) models were

used to evaluate the associations of four essential trace element

concentrations individually with the risk of EEA, and Bayesian kernel machine
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regression (BKMR) was used to explore the associations between four essential

trace element mixtures and the risk of EEA.

Results: Se concentrations of infertile women were significantly lower in the

case group compared with the control group. Co levels were significantly

higher in the case group compared with the control group. The differences in

Cu and Zn concentrations between the two groups were not significant. Based

on single-metal models, Co was positively associated with the risk of EEA

before and after adjustment for all confounders (odd ratio (OR) = 1.72, 95%

confidence interval (CI): 1.18−2.52; OR = 2.27, 95% CI: 1.37−3.77, respectively),

and Se was negatively associated with the risk of EEA before adjustment for all

confounders (OR = 0.18, 95% CI: 0.07−0.51). BKMR analyses showed that Se

was significantly and negatively associated with the risk of EEA when all the

other three metals (Cu, Zn, and Co) were fixed at the 25th, 50th, or 75th

percentiles, whereas Zn displayed a significant and positive association with the

risk of EEA when all the other three metals (Cu, Se and Co) were fixed at the

25th, 50th, or 75th percentiles. Co did not show any effect on the risk of EEA

when all the other metals (Cu, Zn, and Se) were fixed at the 25th, 50th, or 75th

percentiles. In addition, an increasing trend of the joint effect of four essential

trace elements on the risk of EEA was found, although it was not statistically

significant.

Conclusion: The levels of essential trace elements (Cu, Zn, Se, and Co) might

correlate with the risk of EEA to some extent. The present studymight provide a

real-world perspective on the relationship between essential trace elements

and the risk of EEA when considering them as a single element or as mixtures.
KEYWORDS

combined effects, early embryonic arrest, BKMR models, essential trace
element, mixtures
Introduction

Globally, 15% of couples suffer infertility worldwide, which

is equivalent to 48.5 million couples. In addition, the prevalence

change depends on the geographical region (1). In 2017, in vitro

fertilization (IVF) accounted for 99% of all assisted reproductive

technologies (ARTs) used in America (2); only 42% of cycles

could achieve clinical pregnancies. It is within the best interest of

the clinical community to maximize live birth rates from IVF, to

prevent the attendant financial costs (3), psychological stress (4),

and health concerns (5). Therefore, exploring risk factors

affecting the success of ART is of great importance.

Early embryonic arrest (EEA), which is defined as the

stagnation of the growth of early embryos cultured in vitro at

the four- to eight-cell stage and the cessation of development, is

one of the major causes of the recurrent failure of IVF cycles (6).

Previous studies have found that four- to eight-cell embryos are

in the phase of zygotic gene activation (7), a stage in which some
02
mechanisms are being established and transformed. Some

studies found that adverse environmental and genetic factors

may lead to embryo stagnation at the four- to eight-cell stage and

EEA occurrence, such as chromosomal aneuploidies (8), gene

mutations or deletions (9), and maternal obesity (10).

To date, limited studies have been conducted on the

relationship between the status of essential trace elements in

the human body and IVF outcomes, even though appropriate

levels of essential trace elements are seemingly needed for the

success of ART (11). For instance, Wu et al. found that seminal

Se levels were positively associated with pregnancy and live birth,

and female serum Se levels were positively associated with

blastocyst development (12). Another study in the USA

identified unexpected negative associations between follicular

fluid (FF) Zn and the proportion of oocytes fertilized, whereas

higher FF Co levels were associated with a lower average embryo

cell number per woman (13). Zinc (Zn), selenium (Se), copper

(Cu), and cobalt (Co) accomplish decisive functions to maintain
frontiersin.org

https://doi.org/10.3389/fendo.2022.906849
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cao et al. 10.3389/fendo.2022.906849
human health (12, 13) and play significant roles in human and

mammalian reproduction. However, data describing the

association of the status of essential trace elements with IVF

outcomes, especially EEA, are very limited.

Therefore, in the present study, we aimed to investigate the

associations of peripheral blood concentrations of four essential

trace elements (Cu, Zn, Se, and Co) and their mixtures with the

risk of EEA to provide a real-world perspective on the

relationship between essential trace elements and EEA.
Materials and methods

Study design and participants

Couples with infertility were recruited from June 2017 to

March 2020 at the Reproduction Centre of the First Affiliated

Hospital of Anhui Medical University in Hefei, Anhui Province,

China, to participate in this case−control study. The case group

was defined based on the following criteria (1): aged between 20

and 40 years (2); EEA occurred in at least one IVF or ICSI

treatment cycle; (3) both couples had no reported familial

genetic factors and normal chromosomes; (4) the male

partner’s sperm was of good quality; and (5) no donor oocytes

or sperm were used in the ART process. The control group was

matched for age and BMI with the same criteria as the case

group, except for embryo quality, who had normal early embryo

development and obtained at least 70% high-quality blastocysts

in each oocyte retrieval cycle. Finally, 74 cases undergoing 123

cycles and 157 controls undergoing 180 cycles were included in

this study. We obtained information about the demographic

characteristics, clinical features, and medical history of the

participants from the hospital electronic health system.
IVF procedure and outcome assessment

The IVF process occurred as follows. First, women

underwent one type of controlled ovarian hyperstimulation

(COH) protocol, including long, short, gonadotropin-releasing

hormone antagonist or microstimulation protocols, which were

based on their ovarian response function and ages. Second,

ovulation was triggered with human chorionic gonadotropin

(hCG; 10,000 IU) when a minimum of two follicles had matured

(diameter ≥18 mm). Third, after 36 h, oocyte retrieval was

performed, and fresh semen was collected on the same day.

Finally, the oocytes were fertilized by conventional insemination

or ICSI based on clinical indications.

The numbers of retrieved mature oocytes (metaphase II,

MII), oocytes with two pronuclei, and high-quality embryos was

assessed after oocyte retrieval and fertilization. The Gardner

system was used to evaluate blastocyst quality. Blastocysts of

grade ≥4 BB on Days 5–6 were designated as high-quality
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blastocysts. To ensure high intra- and interrater reliabilities,

we assigned two fixed embryologists to evaluate the quality of

each embryo simultaneously.
Sample collection and exposure
assessment

Fasting anticoagulant blood samples from infertile women

on the day of oocyte retrieval when they started clinical

treatment for the first time were stored at −80°C until further

assessment. Then, 500 ml HNO3 and a 10 mg/L gold (Au)

solution (50 ml) were added to 100 ml of blood after the blood

was thawed. The above mixture was digested for at least 1 h at

100°C. The completely digested mixture was diluted 1:50 with

0.05% Triton X-100.

The blood concentrations of Cu, Zn, Se, and Co were

determined by ICPMS (Perkin Elmer NexION 350X, Shelton,

CT, USA) simultaneously. In brief, 65Cu, 66Zn, 78Se, and 59Co

were used as the isotopes; a multiple-element mixture standard

stock solution (10 mg/ml, Perkin Elmer, USA, N9300233) and a

multiple internal standard mixture solution (10 mg/ml) (Perkin

Elmer, USA, N9303832) were used during determination.

Multielement standard curves were prepared by serially

diluting the standard stock solution. Finally, calibration curve

details were as follows: 0.0 mg/L, 10.0 mg/L, 50.0 mg/L, 100.0
mg/L, and 200.0 mg/L for Cu; 0.0 mg/L, 50.0 mg/L, 100 mg/L, 200
mg/L, and 300 mg/L for Zn; 0.0 mg/L, 1.0 mg/L, 2.0 mg/L, 5.0 mg/L,
10.0 mg/L, and 20 mg/L for Se; and 0.0 mg/L, 1.0 mg/L, 2.0 mg/L,
5.0 mg/L, and 10.0 mg/L for Co. The kinetic energy

discrimination mode was used for four elements. Sc was used

as the internal standard element for the above analytes, and the

final concentration of the internal standard was 20.0 mg/L.
The limits of detection (LODs) of Cu, Zn, Se, and Co were

0.136 mg/L, 0.845 mg/L, 0.575 mg/L, and 0.008 mg/L, respectively.
The recovery rates of Cu, Zn, Se, and Co were 88.80%, 90.27%,

102.30%, and 105.55%, respectively.
Statistical analyses

We used the mean ± standard deviation (SD), median (P25-

P75), or percentiles to describe demographic characteristics and

clinical indicators, and the chi-square test was used to compare

categorical variables. Student’s t test was used to compare

continuous variables that conformed to a normal distribution,

and the Mann−Whitney U test was used to compare continuous

variables that were not normally distributed between the case

and control groups.

Generalized estimating equation (GEE) models were used to

account for multiple IVF cycles in the same women according to

previous studies (14, 15) to evaluate the associations of blood Cu,

Zn, Se, and Co levels with the risk of EEA, and a binary
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distribution with a logit link function was used. In the above

GEE models, Cu, Zn, Se, and Co levels were considered as

continuous variables. Some covariates retained in the GEE

models were selected based on the following criteria:

reportedly related with the outcome or levels of Cu, Zn, Se,

and Co or covariates that induced a >10% change in the main

effect estimate in the unadjusted model. Finally, the following

covariates were included in the adjusted models: cycle, age, BMI,

education, duration of infertility, infertility diagnosis, passive

smoking, and number of cycles. Active smoking and alcohol

consumption before pregnancy were not included in the models

because few infertile women reported smoking and drinking.

Because Cu, Zn, Se, and Co were highly correlated with each

other and the relationship between these levels and EEA might

not be linear, Bayesian kernel machine regression (BKMR) was

used to flexibly model the joint effect of the mixture of Cu, Zn,

Se, and Co levels on EEA and isolate single metal risk differences.

BKMR could not only allow us to estimate nonlinear and

nonadditive dose−response functions for a group of correlated

metal exposures but also identify the contribution of every

individual factor to the mixture effect; additionally, the form of

the exposure–response function does not require a priori

specification (16). In our present study, we modeled the

exposure–response function as a weighted sum of Gaussian

kernels. The following equation was employed: Yi = h{Cu, Zn,

Se, Co} + bq Zi + ei. Specifically, h{} was the exposure–response

function of different exposure levels (Cu, Zn, Se, Co). The

coefficient bq was the effect estimates of the covariates. Zi

represented potential confounding factors that needed to be

adjusted for, and ei represented residuals. The model was run for

up to 10,000 iterations. The combined effect of Cu, Zn, Se, and

Co was estimated with all four metals at a specified threshold

(25th, 30th, 35th,…, 75th percentile) compared to when the four

metals were all set at the 50th percentile. The single effect of four

metals was estimated by changing the levels of one metal from its

25th percentile to the 75th percentile while keeping the other

three metals at their 25th, 50th, or 75th percentile. The

univariate exposure–response function was employed when

one metal was regarded as an independent continuous variable

and EEA was regarded as a dependent binary outcome, while the

other three metals were set at their medians. Finally, in the

BKMR model, hierarchical variable selection was conducted

to identify the metal with the greatest contribution

within the mixture and displayed as the posterior inclusion

probability (PIP).

All data were analyzed using SPSS for Windows (version

22.0; SPSS UK Ltd., Surrey, UK) or R (version 4.0.5, package

‘‘bkmr’’ and ‘‘ggplot2’’), and a two-sided p value <0.05 was

considered statistically significant for all the tests unless

otherwise indicated.
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Results

Demographic and clinical characteristics

The demographic characteristics of 231 participants are

shown in Table 1. The mean ± SD ages of women in the case

and control groups were 33.28 ± 4.93 years and 32.04 ± 3.70

years, respectively, and the body mass index (BMI, calculated as

body mass (kg) divided by height squared (m2), normal range:

18.5−24.9 kg/m2) was 22.43 ± 3.57 kg/m2 and 22.17 ± 3.12 kg/

m2, respectively. Greater than 50% of women in both groups had

higher education (college or above); 39.2% of cases and 42.7% of

controls were exposed to secondhand smoke. The differences in

the above characteristics were not significant between the two

groups. In addition, other than diagnoses regarding causes of

infertility, no significant differences were observed between the

women of both groups with respect to women’s ages at

menarche, their husbands’ ages, and sperm quality indices.

With regard to levels of essential trace elements, the levels of

Se of infertile women in the case group were lower than those in

the control group (p = 0.034). No differences in Cu, Co, and Zn

levels were noted between groups.

The mean number of IVF cycles per woman was 1.7 in the case

group (74 women with 123 cycles) and 1.1 in the control group

(157 women with 180 cycles), as presented in Table S1. Therefore,

the number of total cycles was 303 for all infertile women in the

study. The clinical characteristics and cycle outcomes of the 231

participants (303 cycles) are shown in Table S2. All the clinical

characteristics and cycle outcomes, including treatment protocol,

COH outcomes, oocyte insemination technique, and in vitro

fertilization outcomes, in the case group were significantly

different from those in the control group.

We treated natural logarithm transformed levels of Cu, Zn, Se,

and Co as continuous variables and fitted GEEmodels to assess the

single effect of every element on the risk of EEA. A significantly

positive association between Co concentration and EEA risk was

found in both the unadjusted and adjusted models (OR = 1.72;

95% CI: 1.18−2.52 and OR = 2.27; 95% CI: 1.37−3.77, respectively).

A significantly negative association between Se concentration and

the risk of EEA was found in the unadjusted model (OR = 0.18;

95% CI 0.07−0.51); however, the significant association

disappeared after adjusting for some confounders (OR = 0.32;

95% CI: 0.07−1.34). No significant association was noted between

Cu or Zn and the risk of EEA. The results are presented in Table 2.

Spearman correlation analyses showed that the natural

logarithm transformed levels of Cu, Zn, Se, and Co were

highly correlated with each other (Table 3). Considering that

these elements exist simultaneously in the human body, the

BKMR model was used to assess the joint effect of the four-

element mixture on the risk of EEA. Figure 1 shows the results of
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the covariate-adjusted BKMR analyses for the risk of EEA.

Figure 1A represents the overall effects of the four-element

mixture, showing the estimated differences in odds ratios of

EEA and 95% CIs when all element concentrations were held at a

certain percentile compared to when all elements were held at
Frontiers in Endocrinology 05
their median concentrations. We did not observe an overall

effect of the four-element mixture on the risk of EEA. Single-

element risk differences of changing the concentration of a single

element from the observed 25th percentile to the 75th percentile

while holding other metals at their 25th, 50th, or 75th percentiles
TABLE 1 Basic characteristics of cases and controls [Mean ± SD, Median (P25, P75) or n (%)].

Characteristics Cases Controls p-Value

Maternal age (y) 33.28 ± 4.93 32.04 ± 3.70 0.056

Maternal BMIa (kg/m2) 0.424

Underweight 7 (9.6) 11 (7.1)

Normal 46 (63.0) 112 (72.3)

Overweight 17 (23.3) 24 (15.5)

Obesity 3 (4.1) 8 (5.2)

Education 0.991

High school or below 40 (54.1) 84 (53.5)

College 31 (41.9) 67 (42.7)

University or above 3 (4.1) 6 (3.8)

Duration of infertility (y) 0.846

< 5 58 (78.4) 128 (81.5)

5 - 10 14 (18.9) 25 (15.9)

> 10 2 (2.7) 4 (2.5)

Passive smoking 0.669

No 45 (60.8) 90 (57.3)

Yes 29 (39.2) 67 (42.7)

Age at menarche (y) 0.561

≤12 8 (10.8) 12 (7.6)

13–14 51 (68.9) 106 (67.5)

15–16 14 (18.9) 32 (20.4)

≥17 1 (1.4) 7 (4.5)

Infertility diagnosis <0.001

Pelvic adhesion, oviductal obstruction, etc.b 51 (68.9) 152 (96.8)

DOR 11 (14.9) 2 (1.3)

PCOS & EMT 10 (13.5) 2 (1.3)

RSA 2 (2.7) 1 (0.6)

Paternal age 34.18 ± 5.83 32.90 ± 4.87 0.083

Paternal sperm concentration (× 106)c 40.55 (23.60, 82.83) 54.60( 32.15, 99.75) 0.053

Paternal sperm motility (%)d 36.10 (22.40, 54.40) 42.10 (29.58, 55.85) 0.075

Paternal sperm viability (%)e 59.65 (43.93, 78.10) 68.60 (52.68, 79.75) 0.181

Essential trace element concentration

Cu (mg/L) 587.79 (540.75, 663.49) 572.73 (529.44, 653.35) 0.468

Zn (mg/L) 7231.98 (5981.56, 7854.43) 6715.91 (5601.17, 7645.23) 0.095

Se (mg/L) 93.54 (75.78, 105.07) 98.69 (83.80, 112.21) 0.034

Co (mg/L ) 0.28 (0.19, 0.46) 0.25 (0.19, 0.36) 0.152
front
BMI, body mass index; DOR, diminished ovarian reserve; PCOS & EMT, polycystic ovarian syndrome & endometriosis; RSA, recurrent abortion;
aIn the case group, one participant whose information about BMI was missing; in the control group, two participants whose information about BMI were missing;
bPelvic adhesion, oviductal obstruction, etc. included the sequelae of pelvic inflammatory disease, scar uterus, chronic salpingitis, salpingectomy after ectopic pregnancy, unilateral tubal
obstruction, and bilateral tubal obstruction;
cIn the case group, six participants whose information about paternal sperm concentration were missing; in the control group, eight participants whose information about paternal sperm
concentration were missing;
dIn the case group, 26 participants whose information about paternal sperm viability were missing; in the control group, 35 participants whose information about paternal sperm viability
were missing;
eIn the case group, 11 participants whose information about paternal sperm motility were missing; in the controls group, 23 participants whose information about paternal sperm motility
were missing.
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were also estimated. We found that only the 95% CI for the ORs

of Se and Zn did not cross 0, and the risk of EEA decreased with

increasing Se concentrations, whereas the risk of EEA increased

with increasing Zn (Figure 1B). Based upon the estimated PIPs,

BKMR identified Se (0.9506) as the most important contributor

to the overall association followed by Zn, Co, and Cu (Table 4).

Figure 1C shows the univariate exposure−response relationship

and 95% CIs for one element and the risk of EEA based upon the

estimated kernel function, controlling for the other three

elements by holding them at their median concentrations. We

found that the blood level of Se was negatively associated with

the risk of early embryonic arrest, whereas Cu, Zn, and Co levels

were positively related to the risk of early embryonic arrest.
Discussion

The results of this exploratory study indicated that the levels

of essential trace elements (Cu, Zn, Se, and Co) might correlate

with the risk of EEA to some extent. Although Co is an

important constituent of vitamin B12 (17), higher Co levels in

the human body can still lead to damage to various organs and

tissues, such as the liver, kidney, pancreas, and heart, possibly

through the generation of reactive oxygen species (ROS) and/or

disturbance of DNA repair processes (17–21). To date,

epidemiological studies on the association between Co levels in

the human body and reproductive outcomes are very limited. In

our study, the blood Co levels of women in the case group were

not significantly higher than those in the control group.
Frontiers in Endocrinology 06
Additionally, we found that blood Co levels were positively

associated with the risk of EEA only in the single-metal model,

and the positive association no longer existed when all the other

three metals (Cu, Zn, and Se) were fixed at the 25th, 50th, or 75th

percentiles. Because blood Se level was negatively associated with

the risk of EEA in infertile Chinese women in both the single-

metal and BKMR models, the results implied that the harmful

effect of Co on the risk of early embryonic development might be

antagonized by the protective effect of Se.

A double-blind randomized intervention study including

120 female patients undergoing assisted reproductive

techniques indicated that oral Se supplementation was

significant in terms of obtaining good-quality embryos (22).

Despite no statistically significant difference between the Se level

and the risk of EEA in the adjusted single-metal model, our

findings still showed that Se blood levels were negatively

associated with the risk of EEA in Chinese infertile women,

and the result was robust in the BKMR model. These findings

implied that Se was beneficial for embryonic development.

Additionally, women were always exposed to trace element

mixtures rather than only one type of element. Element

mixtures may have reciprocal effects on the risk of EEA, and

Se was the most important element in the BKMR model. The

results of the BKMR model were clearly more convincing. The

beneficial effect of Se on reproduction might be because Se is a

cofactor of antioxidative enzymes. These enzymes are

responsible for the neutralization, elimination, and prevention

of the synthesis of reactive oxygen species (ROS) (23, 24), and

ROS could adversely affect the quality of female oocytes (25).

At present, there are few studies about the relationship between

blood copper levels and human early embryonic development.

Using a model of rat embryos in vitro, Jankovsky et al.

demonstrated that copper is essential for early embryonic

development (26). The results from a meta-analysis by

Levandovska et al. showed that a decrease in serum copper levels

at the beginning of pregnancy was associated with an increased risk

of gestational hypertension (27). Prohaska and Brokate found that

a specific amount of copper in the body had a protective effect

during pregnancy (28). Excessive copper is harmful but rare given

that it can lead to the formation of free radicals and destroy cell
TABLE 3 Correlations between ln-transformed concentrations of
blood essential trace elements (Cu, Zn, Se, Co).

Metals lnCu lnZn lnSe lnCo

lnCu 1 -0.28** 0.07 0.26**

lnZn 1 0.55** -0.19*

lnSe 1 -0.17*

lnCo 1
*indicates p value < 0.05; ** indicates p value < 0.001 Table 4.
TABLE 2 OR [95% (CI)] for the associations of early embryonic arrest with concentrations of blood essential trace elements (Cu, Zn, Se, Co).

Metals Model 1a Model 2b

OR (95% CI) p-value OR (95% CI) p-value

lnCu 1.18 (0.42, 3.33) 0.631 1.67 (0.46, 6.07) 0.433

lnZn 1.43 (0.50, 4.08) 0.503 3.36 (0.59, 19.14) 0.173

lnSe 0.18 (0.07, 0.51) 0.001 0.32 (0.07, 1.34) 0.118

lnCo 1.72 (1.18, 2.52) 0.005 2.27 (1.37, 3.77) 0.001
fronti
OR, odds ratio; CI, confidence interval; Cu, copper; Zn, zinc; Se, Selenium; Co, cobalt; ln, natural logarithm transformed.
acovariates included number of cycles.
bcovariates included age, BMI, education, duration of infertility, infertility diagnosis, passive smoking and number of cycles.
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A

FIGURE 1

Joint effect of the Cu, Zn, Se, Co in blood on early embryonic arrest by Bayesian Kernel Machine Regression (BKMR) Model was adjusted for
age, BMI, education, duration of infertility, infertility diagnosis, passive smoking and number of cycles. (A) overall effect of the Cu, Zn, Se and Co
(estimates and 95% credible intervals). This plot compared the early embryonic arrest risk when Cu, Zn, Se and Co were at a particular quantile
to when they were at the 50th percentile, respectively. (B) independent association of Cu, Zn, Se and Co (estimates and 95% credible intervals).
This plot compared the early embryonic arrest risk when Cu, Zn, Se and Co was at the 75th of the metal concentrations with its 25th percentile,
when concentrations of all the other metals were held at either the 25th (red line), 50th (green line), or 75th percentile (blue line). (C) Univariate
exposure-response function and 95% confidence interval (grey part) for Cu, Zn, Se and Co when concentrations of other metals were hold at
their median concentrations.
Frontiers in Endocrinology frontiersin.org07

https://doi.org/10.3389/fendo.2022.906849
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cao et al. 10.3389/fendo.2022.906849
membranes and proteins in the body (29). Our study revealed no

significant differences in blood copper levels between the two

groups, which might explain why blood Cu levels were not

associated with the risk of early embryonic arrest.

Zn is a cofactor of more than 3000 enzymes that regulate

various cellular processes and cellular signaling; it is responsible

for the DNA-binding ability of many transcription factors via

the unique ability to form molecules known as Zn finger (Znf)

proteins. Moreover, Zn is essential for cell division,

differentiation, and the development of organs, such as the

heart and kidney (30). Surprisingly, the results from our

present study showed that when Cu, Se, and Co were fixed at

the 25th, 50th, or 75th percentiles using BKMR models, Zn

blood levels were positively correlated with the risk of EEA.

Although the joint effect of these four elements on EEA was not

significant, it still implies that infertile women should maintain

appropriate levels of Cu, Zn, Se, and Co to avoid EEA.

To the best of our knowledge, this is the first study to explore

the correlation between the risk of early embryonic arrest and

Cu, Zn, Se, and Co blood levels in infertile women undergoing

IVF in China. In addition, we investigated the associations using

the single-element models and the BKMR model to select which

element played a leading role. The results from both models

showed that Se blood levels were negatively associated with the

risk of early embryonic arrest in infertile Chinese women. This

finding has important significance for the clinical prevention of

early embryonic arrest among infertile women undergoing IVF.

Finally, the majority of infertile women in the present study

underwent at least one oocyte retrieval cycle; thus, selection bias

was effectively avoided.

However, our study still has several limitations that should be

interpreted carefully. One potential limitation is that the number

of enrolled participants was relatively small, and the findings may

be more convincing if a larger sample size was conducted.

Another potential limitation is that the biological samples we

used to measure the levels of Cu, Zn, Se, and Co were peripheral

blood. In contrast, clinical laboratory protocols generally

recommend analyzing serum Cu, Zn, Se, and Co levels to assess

essential trace element status, including deficiency and overload

conditions (31). However, some previous studies also used blood

as a biological sample to assess the status of some essential trace

elements in the human body (32, 33). Moreover, as a

microenvironment composed of a serum ultrafiltrate, follicular
Frontiers in Endocrinology 08
fluid is in direct contact with a developing oocyte and its

surrounding somatic cells (34, 35). Compared with blood,

follicular fluid better reflects the internal environmental state

(36). Another limitation of our study is that we measured the

levels of these four elements at a single time point: on the day of

oocyte retrieval when women initially began clinical treatment.

However, our ability to assess the average cumulative status of

these trace elements was limited in those patients who have

undergone two or more oocyte retrieval cycles. Finally, this was

a case−control study that could not infer a causal relationship

between essential trace element status and the risk of EEA.
Conclusion

We found that the levels of essential trace elements (Cu, Zn,

Se, and Co) might correlate with the risk of EEA to some extent.

The present study might provide a real-world perspective of the

relationship between essential trace elements and the risk of EEA

when considering them as a single element or as mixtures.
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