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ABSTRACT Food sustainability, e.g., fruit and vegetables, is a major agricultural prob-
lem that requires monitoring. Rhizosphere microbiomes’ abundance and functionality
are essential in promoting tomato plants’ growth and health. We selected farms in
South Africa’s North West Province and present the metagenomes of their tomato rhi-
zospheres and associated functional potentials.

The North West Province is a semiarid region with high temperatures. The soil in this
region is populated by important microorganisms, with essential characteristics that

promote the planting of tomatoes (1). Tomatoes produce annual crops of about 600,000
tonnes and find their way to South Africa through Europe and South American countries
like Peru and Ecuador (2). The availability of these fruits in South Africa will enhance food
production for human consumption because of their richness in essential vitamins and car-
otenoids (3). Three main cultivars of tomatoes are predominant in South Africa, namely,
round or fresh tomatoes, Roma tomatoes, and cherry tomatoes, contributing about 24%
of the total vegetable production in South Africa (4). Tomatoes are cultivated in open fields
under irrigation in the following South African provinces: Eastern Cape, Western Cape,
northern Kwazulu-Natal, North West, Mpumalanga, and Limpopo.

We collected the soil samples used in this study from the root region of Roma tomato
plants at the experimental farm of the North-West University, Mafikeng (26°019936.90S, 26°
053919.00E; 25°47919.10S, 25°37905.10E; 25°47917.00S, 25°37903.20E; altitude, 159 km). The
site has a 450-mm annual rainfall record and regional temperatures ranging from 25°C to
37°C (5). The experimental soil samples were collected from the rhizosphere of healthy and
diseased tomato plants and the bulk soil. Bulk soil, which served as the control soil, was col-
lected from a natural grassland with no tomato plantation, 20 m from the tomato planta-
tion field. We took rhizosphere soil from the Roma tomato plants from three different areas
of a site. Fifteen samples were put in separate sterile polyethene bags, kept in a cold box at
24°C, and transported to the laboratory. All collected soil samples were then stored at a
temperature of220°C before extraction of DNA for shotgun metagenomic sequencing.

From the stored rhizosphere soil, 5 g from each sample was measured using a cali-
brated scale. DNA was extracted using the NucleoSpin Soil kit (Macherey-Nagel, Germany).
The quality of the extracted DNA was assessed using a NanoDrop spectrophotometer.

The libraries were prepared with 50 ng DNA using a Nextra DNA Flex kit, undergoing
fragmentation and the ligation of adapter sequences. The final concentrations of the libra-
ries were measured using the Qubit double-stranded DNA (dsDNA) HS assay kit (Life
Technologies), and the mean lengths of the DNA fragments were ascertained using a 2100
Bioanalyzer (Agilent Technologies). The libraries were then monitored, combined at
0.6 nM, and sequenced using a NovaSeq 6000 system (Illumina) with 300 cycles.

SolexaQA v1.6 was used to conduct the quality control (QC) of raw data, reduce
low-quality reads, and remove replicate data (6). Duplicate read inferred sequencing
error estimation (DRISEE) enables us to assess the error of sequenced samples
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caused by artificial replicated sequenced data (7). We employed the default settings
of the MG-RAST v4.0.3 server to perform analytical processing downstream (8, 9)
(Table 1).

The domain or kingdoms obtained according to the taxonomic system are Bacteria,
Eukaryota, and Archaea. The most abundant phyla belonged to the Bacteria domain;
Proteobacteria (38.8 to 54%) and Actinobacteria (25.4 to 35.5%) were the most abun-
dant, and others, such as Acidobacteria (2.3 to 5.2%), Bacteroidetes (3.0 to 3.9%),
Planctomycetes (2.6 to 3.4%), Verrucomicrobia (2.2 to 2.3%), and Firmicutes (1.7 to 2.4%),
were also significant. Moreover, reads for fungi (Ascomycota and Basidiomycota) and
archaea (Thaumarchaeota and Euryarchaeota) were also identified but at ,1% relative
abundance (Fig. 1).

Functional annotation after mapping with SEED subsystems (10) revealed the
presence of the following important attributes: carbohydrates (13.2 to 14.8%),
clustering-based systems (12.7 to 12.8%), amino acids and derivatives (10.1 to
10.3%), protein metabolism (8.2 to 8.3%), DNA metabolism (4.3 to 4.6%), cell wall
and capsule (3.4 to 3.6%), RNA metabolism (3.3 to 3.5%), and stress response (2.5
to 2.7%).

Data availability. The metagenomes of rhizosphere soil sequence reads were submit-
ted to the NCBI with BioProject accession number PRJNA766489 and Sequence Read
Archive (SRA) accession numbers SRX12366062, SRX12366063, and SRX12366064 (healthy),
SRX12366065, SRX12366066, and SRX12366067 (diseased), and SRX12366068, SRX12366069,
and SRX12366070 (bulk).
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