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Abstract: Background: Stroke is known to affect both men and women; however, incidence and
outcomes differ between them. Therefore, the discovery of novel, sex-specific, blood-based biomark-
ers for acute ischemic stroke (AIS) patients has the potential to enhance the understanding of the
etiology of this deadly disease in the content of sex. The objective of this study was to identify serum
metabolites associated with male and female AIS patients. Methods: Metabolites were measured
with the use of untargeted, reverse-phase ultra-performance liquid chromatography-tandem mass
spectrometry quantification from blood specimens collected from AIS patients. Samples were col-
lected from 36 patients comprising each of 18 men and women with matched controls. Metabolic
pathway analysis and principal component analysis (PCA) was used to differentiate metabolite
profiles for male and female AIS patients from the control, while logistic regression was used to de-
termine differences in metabolites between male and female AIS patients. Results: In female AIS
patients, 14 distinct altered metabolic pathways and 49 corresponding metabolites were identified, while
39 metabolites and 5 metabolic pathways were identified in male patients. Metabolites that are predic-
tive of ischemic stroke in female patients were 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4)
(AUC = 0.914, 0.765–1.000), 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) (AUC = 0.840, 0.656–
1.000), and 5,6-dihydrouracil (P-16:0/20:2) (AUC = 0.815, 0.601–1.000). Significant metabolites that were
predictive of stroke in male patients were 5alpha-androstan-3alpha,17beta-diol disulfate (AUC = 0.951,
0.857–1.000), alpha-hydroxyisocaproate (AUC = 0.938, 0.832–1.000), threonate (AUC = 0.877, 0.716–
1.000), and bilirubin (AUC = 0.817, 0.746–1.000). Conclusions: In the current study, the untargeted
serum metabolomics platform identified multiple pathways and metabolites associated with male
and female AIS patients. Further research is necessary to characterize how these metabolites are
associated with the pathophysiology in male and female AIS patients.

Keywords: ischemic stroke; metabolomics; male patients; female patients

1. Introduction

Stroke presents a more significant health burden on women than in men as women
present with more stroke events and are less likely to recover [1]. While age-specific stroke
rates are higher in men, women present with more stroke incidents than men because
of their longer life expectancy and much of a higher incidence at older ages [2]. Similar
to age-adjusted mortality, women present with more overall lower age-adjusted stroke
incidence than men [3,4]. In addition, functional outcomes and quality of life after stroke
are consistently poorer in women, and women are reported to present with worse pre-
stroke disability than men [3,5]. Moreover, men and women with stroke differ concerning
the prevalence of stroke risk factors [6,7]. Women with stroke are older at onset and
are more likely to have atrial fibrillation and hypertension [8]. In contrast, men with
stroke are more likely to present with a history of heart disease, myocardial infarction,
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peripheral arterial disease, diabetes, and alcohol and tobacco use [9,10]. The most common
biological explanation for differences in stroke between men and women is posited to
be hormonal [11]. In addition, studies in animal models demonstrate that women have
smaller stroke volumes than men [12].

The human blood contains a wide variety of chemically diverse low molecular
weight compounds, the metabolome, which can be measured in parallel through mod-
ern metabolomic technologies [13]. Analysis of the metabolome in AIS patients provides
new opportunities to understand the pathophysiology of ischemic stroke [14]. Therefore,
metabolomics is a promising technique for the evaluation of global metabolic changes
in stroke [13]. By comparing metabolic profiles and their dynamic changes, changes in
pretreated and treated patients can be elucidated. Metabolites in blood have been re-
ported to be associated with vascular diseases [15]. For example, lipoprotein associated
phospholipase A2 (Lp-PLA2) was reported to be linked with atherosclerosis and tran-
sient ischemic attack [16,17], and lysophosphatidylcholines (LysoPCs) were significantly
associated with recurrent stroke [18]. In addition, metabolic profiles in AIS are reported
to be significantly different from healthy people [19,20]. For example, changes in sphin-
gomyelin and phosphatidylcholine metabolism were independently linked with risk of
infarction in healthy adults. While different, there are multiple blood-based biomarkers
investigated in AIS patients. For example, multiple blood biomarkers (N-terminal pro-
brain natriuretic peptide [NT-proBNP], d-dimer, S100β, neuron-specific enolase, vitamin D,
cortisol, interleukin-6, insulin, uric acid, and albumin) were effective in the identification
of patients with increased possibility of cardioembolism and AF [21]. Moreover, various
blood-based biomarkers including BNP/NT-proBNP, d-dimer, CRP, TNF-α, IL-6, and IL-1
are reported to be significantly associated with ischemic stroke [21–23]. Findings from the
existing studies indicate that metabolomics is a powerful tool that can be used to explore
biomarkers and related pathways in stroke.

The vulnerability to several diseases and the response to treatments differ between men
and women [24]. Therefore, the differential treatment for men and women AIS patients would
represent personalized medicine approach [25] to provide care for AIS patients. However,
this requires an extensive understanding not only clinical risk factors but also the intrinsic
molecular differences between men and women AIS patients. As a basis for a gender-specific
care for AIS patients, the characterization of the molecular differences between the men
and women AIS patients is necessary. Moreover, affected pathways may reveal gender-
specific susceptibility. Knowledge of the underlying metabolic differences might lead to
concrete starting points for a future research to improve care for men and women AIS patients.
Existing studies [13,14,26–34] that investigated metabolites in stroke focused on differences
between stroke and control, hemorrhagic strokes compared with non-hemorrhagic or ischemic
strokes. For example, elevated plasma DNA concentrations were detected in patients with
hemorrhagic strokes compared with non-hemorrhagic strokes, with a 31% sensitivity and
83% specificity for discriminating the two types of stroke [34]. Moreover, plasma levels
of miR-124-3p, miR-125b-5p, and miR-192-5p, were found to be elevated and correlated
positively with infarct volume of stroke patients [35–37]. In addition, protein biomarkers for
brain injury and thrombosis were categorized and used to discriminate hemorrhagic stroke
from ischemic stroke patients [38]. A recent study by Daokun et al. [13] analyzed serum
metabolites and risk of ischemic stroke in men and women patients. The results reveal
circulating biomarkers for stroke and novel pathways for AIS and its subtypes. However,
differences between men and women patients were not reported. While findings from
existing studies [13,14,26–34] highlight the potential of metabolomics for discovering novel
circulating biomarkers for stroke and its subtypes, existing studies did not report gender-
differentiated results. Therefore, the specific metabolites and related pathways that are
directly associated with men and women AIS patients are not fully understood. Therefore,
we conducted an untargeted metabolomics study to investigate whether metabolic profiles
and related pathways are different in men and women patients with AIS.
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2. Methods

Approval for this study was obtained from the PRISMA Health Institutional review
board (Pro00072801), and all methods were performed in accordance with the relevant
guidelines and regulations. A total of 36 ischemic stroke patients comprising each of
18 female and male ischemic stroke subjects with matched controls were recruited for this
study. Healthy controls were randomly selected from PRISMA Health system. Samples
were collected from patients within 24 h of symptom onset based on relevant ischemic
lesions on CT or brain MRI. The general criteria for inclusion were as follows: at least
18 years of age and meeting the diagnostic criteria for ischemic stroke. Patients with cardiac,
kidney, or liver failure, acquired immunodeficiency syndrome, inflammatory bowel disease
and systemic infection were excluded. Morning, fasting blood samples were collected from
36 ischemic stroke patients comprising each of 18 female and male ischemic stroke subjects
with matched controls. The processing and preparation of samples have been described
in a previous study [39]. Briefly, samples were subjected to methanol extraction and then
divided into aliquots for analysis by ultrahigh performance liquid chromatography/mass
spectrometry (UHPLC/MS). The global biochemical profiling analysis was comprised of
four unique arms. These were reverse phase chromatography positive ionization methods
optimized for hydrophilic compounds (LC/MS Pos Polar) and hydrophobic compounds
(LC/MS Pos Lipid), reverse phase chromatography with negative ionization conditions
(LC/MS Neg), as well as a HILIC chromatography method coupled to negative (LC/MS
Polar) [40]. These methods alternated between full-scan MS and data-dependent MSn
scans. The scan range covered 70–1000 m/z with slight variation. Automated comparison
of the ion features in the experimental samples to a reference library of chemical standard
entries that included retention time, molecular weight (m/z), preferred adducts, and in-
source fragments as well as associated MS spectra and curated by visual inspection for
quality control using software developed at Metabolon was used to identify metabolites.
Identification of known chemical entities was based on comparison to metabolomic library
entries of purified standards [41].

Data Analysis

Data reduction was performed using phase and baseline correction. The corrected
spectra, which correspond to the chemical shift, were imported into AMIX 3.9.5 (Bruker
Biospin, Rheinstetten, Germany); all spectra were reduced into integral regions with equal
lengths. Regions that contained the resonance from residual water were set to zero. To
reduce the concentration differences between samples, data were normalized to the to-
tal spectral area, and datasets were analyzed by pattern recognition methods using the
software packages (Simca-P, version 11.5 (UmetricsAB, Umea, Sweden), and MetaboAna-
lyst 3.0 (www.metaboanalyst.ca, accessed on 15 September 2021). Skewed distributions
for more symmetric distribution were determined by transforming the data to nonlinear
conversions, while maximum variation between samples was determined using a PCA
decomposition approach. This was used to determine whether the samples could be differ-
entiated based on overarching components representing each sample’s global metabolite
profile. Individual metabolites that did not have any variation between the samples were
removed from the PCA analysis. The data were analyzed using a direct oblimin rotation to
obtain a non-orthogonal solution. After plotting samples onto a graph based on their two
components, outliers were removed from the PCA based on if they visually skewed the
data. The PCA was performed for both female and male patients separately. The specific
metabolites between classes were interpreted using variable importance in projection (VIP)
and the correlation coefficient. A pairwise comparison was performed between the male
and female stroke patients to discover distinct biomarkers associated with male and female
patients among the thousands of variables using Student T-tests. The level of significance
was set at p < 0.05.

To select biomarker candidates for men and women patients, we used a logistic
regression model. The data was split into training and validation, and the backward logistic

www.metaboanalyst.ca
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regression model was built on the training sample set to determine the best metabolite
combination. After calculating multivariate analysis, the specific metabolites between
classes were selected using VIP. Metabolites with VIP scores >1.0 in the partial least squares
(PLS) were examined and selected for their discrimination power by multiple statistical
criteria. VIP values were used as one method of identifying biomarkers with predictive
value in separating men from women. Metabolites with VIP scores ≤1 at each time
point were considered irrelevant to the prediction and excluded from analysis. A similar
approach was used by other studies [25,28]. The predictive ability of the model for each
time point was internally validated based on leave-one-out cross validation using the Q2
diagnostic statistic. In addition, logistic regression and ROC analysis (calculated from the
logistic regression) were used to establish a diagnostic model of metabolites for men and
women patients. The ROC allowed us to identify metabolites that may represent candidate
biomarkers for male and female AIS. The area under the ROC curve (AUC) value was used
as a measure of the prognostic accuracy of individual metabolites. Therefore, while ROC
curve analyses were performed for the designed model, the performance of each biomarker
model was assessed using the AUC to determine sensitivity and specificity.

All variables were adjusted for in our analysis, and the effect of confounding vari-
ables did not mask our results. Just as any typical clinical studies, AIS patients who were
admitted for treatment vary widely, and some related factors may confound the results
of our analysis. In this study, we considered the following potentially confounding vari-
ables: gender is potentially a confounder, since the stroke incidence differs between men
and women, including hospitalization rates [42]. Age at admission by admission date
misused birth date as a confounder was categorized according to a related study [43].
Because comorbidities and complications associated with medication or infections were
associated with AIS [20,21], and could mask the interpretation or our metabolomics results,
we considered medications used including use of antibiotics, anti-hypertensive, use of
cholesterol reducing medication medications, antiplatelet medications. Comorbidities’
including chronic kidney disease, atrial fibrillation disease, carotid artery stenosis, diabetes
and systemic infection were considered as confounders. Treatments including the use of
tissue plasminogen activator (rtPA), thrombectomy or mechanical removal of clots were
added as confounding variables in our analysis. Other confounders considered in our
analysis were disease status at admission and discharge including mild, severe and critical
based on NIHSS stroke severity evaluation.

The metabolite profiles and pathways were analyzed for both men and women pa-
tients to reveal the metabolic network reprogramming of AIS with detailed impact using
metabolomic pathways analysis of the MetaboAnalyst 3.0 software. This allowed us to
determine both pathway enrichment and pathway topology, which identifies the most
relevant metabolic pathways that are differentially affected in male and female ischemic
stroke patients.

3. Results

A total of 1322 biochemicals, 1062 named compounds of known identity, and 260 un-
named compounds of unknown structural identity were identified. Of this, 55 metabolite
levels were significantly different between the ischemic and control group in the female
cohort (Table 1). The PCA did not reveal distinct potential biomarkers between the ischemic
and control groups for the female population (Figure 1). As shown in the figure, compo-
nent 1 encompassed 21.399% of the variance, and component 2 encompassed 10.783% of
the data. The biological pathway analysis for female patients revealed fourteen different
metabolic pathways (Figure 2 and Table 2), including glycerophospholipid metabolism,
pantothenate, and CoA biosynthesis, beta-alanine metabolism, linoleic acid metabolism,
pyrimidine metabolism, alpha-Linolenic acid metabolism, glycerolipid metabolism, seleno
compound metabolism, alanine, aspartate and glutamate metabolism, phosphatidylinositol
signaling system, arachidonic acid metabolism, biosynthesis of unsaturated fatty acids,
tryptophan metabolism and aminoacyl-tRNA biosynthesis.
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Table 1. Metabolite differences between ischemic stroke patients and control patients in the female population.

Biochemical Super Pathway Sub Pathway Control Ischemic p-Value

Alanine Amino Acid Alanine and Aspartate
Metabolism 1.29 ± 0.3 1.04 ± 0.16 0.043

Indoleacetate Amino Acid Tryptophan Metabolism 1.62 ± 1 0.82 ± 0.39 0.039

Isovalerate (C5) Amino Acid Leucine, Isoleucine and
Valine Metabolism 2.11 ± 1.57 0.72 ± 0.28 0.03

3-sulfo-L-alanine Amino Acid Methionine, Cysteine, SAM and
Taurine Metabolism 1.23 ± 0.48 0.78 ± 0.31 0.03

Retinol (Vitamin A) Cofactors and
Vitamins Vitamin A Metabolism 1.37 ± 0.55 0.88 ± 0.29 0.037

Arachidate (20:0) Lipid Long Chain Saturated
Fatty Acid 1.25 ± 0.26 0.97 ± 0.28 0.041

Palmitoloelycholine Lipid Fatty Acid Metabolism
(Acyl Choline) 2.33 ± 2.23 0.54 ± 0.49 0.044

Dihomo-linolenoyl-choline Lipid Fatty Acid Metabolism
(Acyl Choline) 4.06 ± 4.39 0.74 ± 0.77 0.04

Dtearoyl ethanolamide Lipid Endocannabinoid 0.88 ± 0.35 1.21 ± 0.3 0.045
N-oleoyltaurine Lipid Endocannabinoid 0.57 ± 0.35 1.11 ± 0.64 0.042
Glycerophosphorylcholine (GPC) Lipid Phospholipid Metabolism 1.43 ± 0.58 0.94 ± 0.32 0.041
1-myristoyl-2-palmitoyl-GPC
(14:0/16:0) Lipid Phosphatidylcholine (PC) 1.92 ± 0.79 1.12 ± 0.6 0.028

1-palmitoyl-2-palmitoleoyl-GPC
(16:0/16:1) Lipid Phosphatidylcholine (PC) 2.14 ± 1.17 1.13 ± 0.48 0.035

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) Lipid Phosphatidylcholine (PC) 1.17 ± 0.11 1 ± 0.14 0.014
1-palmitoyl-2-dihomo-linolenoyl-GPC
(16:0/20:3n3 or 6) Lipid Phosphatidylcholine (PC) 1.35 ± 0.24 1 ± 0.2 0.003

1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) Lipid Phosphatidylethanolamine (PE) 1.96 ± 0.75 1.05 ± 0.55 0.009
1-stearoyl-2-linoleoyl-GPE (18:0/18:2) Lipid Phosphatidylethanolamine (PE) 1.9 ± 0.77 1.14 ± 0.5 0.025
1-oleoyl-2-linoleoyl-GPE (18:1/18:2) Lipid Phosphatidylethanolamine (PE) 2.54 ± 1.18 1.29 ± 0.73 0.016
1-palmitoyl-2-oleoyl-GPI (16:0/18:1) Lipid Phosphatidylinositol (PI) 1.97 ± 0.56 1.33 ± 0.55 0.026
1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) Lipid Phosphatidylinositol (PI) 1.83 ± 0.58 1.23 ± 0.44 0.026
1-palmitoyl-2-arachidonoyl-GPI
(16:0/20:4) Lipid Phosphatidylinositol (PI) 1.65 ± 0.57 1.04 ± 0.36 0.016

1-linoleoyl-GPA (18:2) Lipid Lysophospholipid 2.2 ± 1.04 1.13 ± 0.62 0.017
1-palmitoyl-GPC (16:0) Lipid Lysophospholipid 1.17 ± 0.17 0.93 ± 0.11 0.003
2-palmitoyl-GPC (16:0) Lipid Lysophospholipid 1.28 ± 0.37 0.9 ± 0.36 0.041
1-palmitoleoyl-GPC (16:1) Lipid Lysophospholipid 1.79 ± 0.68 1.01 ± 0.32 0.006
2-palmitoleoyl-GPC (16:1) Lipid Lysophospholipid 1.63 ± 0.9 0.75 ± 0.47 0.02
1-palmitoyl-GPI (16:0) Lipid Lysophospholipid 1.92 ± 0.96 0.86 ± 0.64 0.015
1-stearoyl-GPI (18:0) Lipid Lysophospholipid 1.36 ± 0.43 0.89 ± 0.5 0.048
1-linoleoyl-GPI (18:2) Lipid Lysophospholipid 1.54 ± 0.59 1 ± 0.49 0.048
1-(1-enyl-palmitoyl)-2-palmitoyl-GPC
(P-16:0/16:0) Lipid Plasmalogen 0.92 ± 0.21 1.27 ± 0.29 0.01

1-(1-enyl-palmitoyl)-2-arachidonoyl-
GPC
(P-16:0/20:4)

Lipid Plasmalogen 0.86 ± 0.23 1.25 ± 0.27 0.005

1-palmitoylglycerol (16:0) Lipid Monoacylglycerol 2.12 ± 1.1 0.7 ± 0.31 0.004
1-palmitoleoylglycerol (16:1) Lipid Monoacylglycerol 2.6 ± 2.06 0.72 ± 0.44 0.026
1-oleoylglycerol (18:1) Lipid Monoacylglycerol 1.69 ± 1.01 0.83 ± 0.5 0.035
1-linoleoylglycerol (18:2) Lipid Monoacylglycerol 1.65 ± 0.92 0.85 ± 0.53 0.037
1-linolenoylglycerol (18:3) Lipid Monoacylglycerol 1.76 ± 1 0.86 ± 0.52 0.034
1-dihomo-linolenylglycerol (20:3) Lipid Monoacylglycerol 2.69 ± 2.15 0.87 ± 0.63 0.027
2-palmitoylglycerol (16:0) Lipid Monoacylglycerol 1.35 ± 1.11 0.39 ± 0.35 0.034
2-palmitoleoylglycerol (16:1) Lipid Monoacylglycerol 2.17 ± 1.99 0.31 ± 0.51 0.024
1-heptadecenoylglycerol (17:1) Lipid Monoacylglycerol 1.49 ± 1.04 0.61 ± 0.31 0.037
Palmitoyl-oleoyl-glycerol (16:0/18:1) Lipid Diacylglycerol 3.07 ± 2.59 0.95 ± 0.8 0.032
Palmitoyl-linoleoyl-glycerol (16:0/18:2) Lipid Diacylglycerol 1.94 ± 1.26 0.92 ± 0.53 0.046
Palmitoyl-docosahexaenoyl-glycerol
(16:0/22:6) Lipid Diacylglycerol 1.63 ± 1.06 0.67 ± 0.46 0.03

Oleoyl-oleoyl-glycerol (18:1/18:1) Lipid Diacylglycerol 3.03 ± 2.4 1.09 ± 0.64 0.044
Sphingomyelin (d17:1/14:0, d16:1/15:0) Lipid Sphingomyelins 1.63 ± 0.52 1.13 ± 0.47 0.047
Sphingomyelin (d18:2/24:1, d18:1/24:2) Lipid Sphingomyelins 1.04 ± 0.2 1.27 ± 0.23 0.038

5,6-dihydrouracil Nucleotide Pyrimidine Metabolism, Uracil
containing 0.89 ± 0.29 1.43 ± 0.6 0.027

Gamma-glutamylalanine Peptide Gamma-glutamyl Amino Acid 1.57 ± 0.59 0.82 ± 0.32 0.004
Gamma-glutamylhistidine Peptide Gamma-glutamyl Amino Acid 1.23 ± 0.37 0.81 ± 0.32 0.021
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Table 1. Cont.

Biochemical Super Pathway Sub Pathway Control Ischemic p-Value

Gamma-glutamyl-epsilon-lysine Peptide Gamma-glutamyl Amino Acid 1.17 ± 0.29 0.9 ± 0.25 0.049

Metabolonic lactone sulfate
Partially

Characterized
Molecules

Partially
Characterized Molecules 2 ± 1.34 0.47 ± 0.49 0.009

4-allylcatechol sulfate Xenobiotics Benzoate Metabolism 1.21 ± 0.79 0.52 ± 0.42 0.032
S-allylcysteine Xenobiotics Food Component/Plant 2.49 ± 2.47 0.32 ± 0.38 0.03
2,6-dihydroxybenzoic acid Xenobiotics Drug—Topical Agents 2.31 ± 1.2 1 ± 0.58 0.009
Thioproline Xenobiotics Chemical 1.13 ± 0.36 0.8 ± 0.27 0.048

Note: A pairwise comparison was performed between the male and female stroke patients to identify distinct biomarkers associated with
male and female patients among the thousands of variables using Student T-tests. The level of significance was set at p < 0.05.

Table 2. A summary of the detailed results from the pathway analysis for female patients. We tested many pathways at the
same time, and the statistical p values from enrichment analysis were further adjusted for multiple testings. From the table,
the “Total” in the table is the total number of compounds in the pathway; the “Hits” is the actually matched number from
the user uploaded data; the “Raw p” is the original p value calculated from the enrichment analysis; the “Holm p” is the p
value adjusted by Holm-Bonferroni method; the “FDR p” is the p value adjusted using false discovery rate; the “Impact” is
the pathway impact value calculated from pathway topology analysis.

Metabolites Total Expected Hits Raw p −log10(p) Holm Adjust FDR Impact

Glycerophospholipid metabolism 36 0.37 3 5.24 × 10−3 2.28 × 100 4.40 × 10−1 4.40 × 101 0.25
Pantothenate and CoA biosynthesis 19 0.20 2 1.54 × 10−2 1.81 × 100 1.00 × 100 5.24 × 101 0.05
beta-Alanine metabolism 21 0.22 2 1.87 × 10−2 1.73 × 100 1.00 × 100 5.24 × 101 0.16
Linoleic acid metabolism 5 0.05 1 5.06 × 10−2 1.30 × 100 1.00 × 100 9.96 × 101 0.00
Pyrimidine metabolism 39 0.40 2 5.93 × 10−2 1.23 × 100 1.00 × 100 9.96 × 101 0.04
alpha-Linolenic acid metabolism 13 0.13 1 1.27 × 10−1 8.97 × 10−1 1.00 × 100 1.00 × 100 0.00
Glycerolipid metabolism 16 0.17 1 1.54 × 10−1 8.13 × 10−1 1.00 × 100 1.00 × 100 0.01
Selenocompound metabolism 20 0.21 1 1.88 × 10−1 7.25 × 10−1 1.00 × 100 1.00 × 100 0.00
Alanine, aspartate and
glutamate metabolism 28 0.29 1 2.54 × 10−1 5.95 × 10−1 1.00 × 100 11.00 × 100 0.00

Phosphatidylinositol
signaling system 28 0.29 1 2.54 × 10−1 5.95 × 10−1 1.00 × 100 1.00 × 100 0.00

Arachidonic acid metabolism 36 0.37 1 3.15 × 10−1 5.02 × 10−1 1.00 × 100 1.00 × 100 0.00
Biosynthesis of unsaturated
fatty acids 36 0.37 1 3.15 × 10−1 5.02 × 10−1 1.00 × 100 1.00 × 100 0.00

Tryptophan metabolism 41 0.42 1 3.50 × 10−1 4.56 × 10−1 1.00 × 100 1.00 × 100 0.01
Aminoacyl-tRNA biosynthesis 48 0.50 1 3.97 × 10−1 4.01 × 10−1 1.00 × 100 1.00 × 100 0.00

Notably, 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) (AUC = 0.914,
0.765–1.000), 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) (AUC = 0.840, 0.656–
1.000), and 5,6-dihydrouracil (P-16:0/20:2) (AUC = 0.815, 0.601–1.000) were all found to
be significant predictors in female ischemic stroke patients. The AUC of the optimized
model was 0.945 (95% CI: 0.875–0.956) in the training set and 0.845 (95% CI: 0.721–0.923) in
the validation set. None of the other metabolites were included in the model because of
multicolinearity in the information provided by these compounds, and three metabolites
contributed to the combined model. The constructed receiver operating characteristic
(ROC) curve for the three individual metabolites is presented in Figure 3.

The PCA did not reveal separation between male patients’ ischemic and control
groups based on factor-reducing components (Figure 4). The control selection, that was
not originally designed for metabolomics study may introduce selection bias, especially
if not properly accounted for. This could induce the bias in the metabolite-phenotype
relationships in selected groups and affect the results. Component 1 encompassed 23.890%
of the variance, and Component 2 encompassed 12.218% of the data. 39 metabolite levels
were significantly different between the ischemic and control group in the male cohort
(Table 3). Biological pathway analysis for male patients revealed five metabolic pathways
(Figure 5 and Table 4), including valine, leucine, and isoleucine biosynthesis, valine, leucine,
and isoleucine degradation, pantothenate and CoA biosynthesis, primary bile acid biosyn-
thesis, and steroid hormone biosynthesis. Significant metabolites that were predictive of
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male ischemic patients were 5alpha-androstan-3alpha,17beta-diol disulfate (AUC = 0.951,
0.857–1.000), alpha-hydroxyisocaproate (AUC = 0.938, 0.832–1.000), threonate (AUC = 0.877,
0.716–1.000), and bilirubin (AUC = 0.817, 0.746–1.000). The AUC of the optimized model
was 0.913 (95% CI: 0.825–0.915 in the training set and 0.845 (95% CI: 0.7016–0.9015) in the
validation set. The ROC curve for the four metabolites is presented in Figure 6.
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Table 3. Metabolite differences between ischemic stroke patients and control patients in the male population.

Biochemical. Super Pathway Sub Pathway Control Ischemic p-Value

N6-acetyllysine Amino Acid Lysine Metabolism 1.13 ± 0.34 0.69 ± 0.21 0.004
Fructosyllysine Amino Acid Lysine Metabolism 0.79 ± 0.25 1.52 ± 0.93 0.037

4-methyl-2-oxopentanoate Amino Acid Leucine, Isoleucine and
Valine Metabolism 0.8 ± 0.32 1.73 ± 1.07 0.033

Alpha-hydroxyisocaproate Amino Acid Leucine, Isoleucine and
Valine Metabolism 0.71 ± 0.3 1.75 ± 0.68 0.001

3-methyl-2-oxovalerate Amino Acid Leucine, Isoleucine and
Valine Metabolism 0.77 ± 0.37 1.41 ± 0.77 0.045

3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine and
Valine Metabolism 0.89 ± 0.25 1.36 ± 0.57 0.048

N-acetylmethionine sulfoxide Amino Acid Methionine, Cysteine, SAM and
Taurine Metabolism 1.81 ± 1.27 0.59 ± 0.24 0.02

Threonate Cofactors
and Vitamins

Ascorbate and
Aldarate Metabolism 0.58 ± 0.34 1.12 ± 0.3 0.003

Oxalate (ethanedioate) Cofactors
and Vitamins

Ascorbate and
Aldarate Metabolism 0.53 ± 0.36 1.17 ± 0.42 0.003

Bilirubin (E,Z or Z,E) Cofactors
and Vitamins

Hemoglobin and
Porphyrin Metabolism 1.03 ± 0.65 1.79 ± 0.85 0.049

Erucate (22:1n9) Lipid Long Chain Monounsaturated
Fatty Acid 0.92 ± 0.28 1.2 ± 0.28 0.049

Linolenoylcarnitine (C18:3) Lipid Fatty Acid Metabolism (Acyl
Carnitine, Polyunsaturated) 0.77 ± 0.42 1.23 ± 0.5 0.049

3-hydroxyoleoylcarnitine Lipid Fatty Acid Metabolism (Acyl
Carnitine, Hydroxy) 0.7 ± 0.4 1.18 ± 0.54 0.047

3-hydroxydecanoate Lipid Fatty Acid, Monohydroxy 0.86 ± 0.38 1.39 ± 0.5 0.021
3-hydroxylaurate Lipid Fatty Acid, Monohydroxy 0.76 ± 0.45 1.38 ± 0.61 0.026
3-hydroxymyristate Lipid Fatty Acid, Monohydroxy 0.74 ± 0.31 1.41 ± 0.56 0.006
3-hydroxyoleate Lipid Fatty Acid, Monohydroxy 0.75 ± 0.41 1.95 ± 1.2 0.018
1-linoleoyl-GPG (18:2) Lipid Lysophospholipid 0.71 ± 0.35 1.18 ± 0.36 0.013
Glycosyl ceramide (d18:2/24:1,
d18:1/24:2) Lipid Hexosylceramides (HCER) 1.2 ± 0.42 0.76 ± 0.23 0.014

5alpha-pregnan-3beta,20alpha-diol
monosulfate (2) Lipid Progestin Steroids 0.51 ± 0.4 1.14 ± 0.71 0.039

5alpha-pregnan-3beta,20alpha-
diol disulfate Lipid Progestin Steroids 0.78 ± 0.55 1.54 ± 0.58 0.013

Cortisone Lipid Corticosteroids 0.67 ± 0.43 1.13 ± 0.34 0.024
Androstenediol (3beta,17beta)
monosulfate (1) Lipid Androgenic Steroids 0.67 ± 0.41 2.46 ± 1.87 0.021

Androstenediol
(3beta,17beta) disulfate Lipid Androgenic Steroids 1.13 ± 0.99 2.39 ± 0.98 0.015

Androstenediol (3alpha,17alpha)
monosulfate Lipid Androgenic Steroids 0.87 ± 0.75 2.48 ± 2.02 0.039

5alpha-androstan-3alpha,17beta-
diol disulfate Lipid Androgenic Steroids 0.63 ± 0.39 3.06 ± 2.51 0.02

5alpha-androstan-3alpha,17beta-diol
17-glucuronide Lipid Androgenic Steroids 0.72 ± 0.74 1.58 ± 0.89 0.041

5alpha-androstan-3beta,17beta-
diol disulfate Lipid Androgenic Steroids 1.26 ± 1.65 3.95 ± 2.22 0.01

Glycochenodeoxycholate Lipid Primary Bile Acid Metabolism 1.44 ± 0.94 0.51 ± 0.53 0.022
Glyco-beta-muricholate Lipid Primary Bile Acid Metabolism 1.32 ± 1.32 0.11 ± 0.06 0.026
Glycodeoxycholate Lipid Secondary Bile Acid Metabolism 1.93 ± 1.77 0.19 ± 0.36 0.018
Taurodeoxycholate Lipid Secondary Bile Acid Metabolism 1.81 ± 1.9 0.18 ± 0.16 0.033
Glycodeoxycholate 3-sulfate Lipid Secondary Bile Acid Metabolism 1.39 ± 0.98 0.55 ± 0.58 0.044
Gamma-glutamylphenylalanine Peptide Gamma-glutamyl Amino Acid 1.13 ± 0.32 0.82 ± 0.29 0.048
Gamma-glutamyltryptophan Peptide Gamma-glutamyl Amino Acid 1.07 ± 0.41 0.72 ± 0.22 0.04
Saccharin Xenobiotics Food Component/Plant 1.17 ± 1.37 0.06 ± 0 0.042
4-acetamidophenylglucuronide Xenobiotics Drug—Analgesics, Anesthetics 0.84 ± 0.7 0.26 ± 0.29 0.043
2-methoxyacetaminophen
glucuronide Xenobiotics Drug—Analgesics, Anesthetics 1.09 ± 1.06 0.13 ± 0.1 0.027

3-(methylthio)acetaminophen sulfate Xenobiotics Drug—Analgesics, Anesthetics 1.97 ± 2.25 0.04 ± 0.07 0.033

Note: A pairwise comparison was performed between the male and female stroke patients to identify distinct biomarkers associated with
male and female patients among the thousands of variables using Student T-tests. The level of significance was set at p < 0.05.
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Table 4. Detailed results from the pathway analysis for male patients. From the table, the “Total” in the table is the total
number of compounds in the pathway; the “Hits” is the actually matched number from the user uploaded data; the “Raw
p” is the original p value calculated from the enrichment analysis; the “Holm p” is the p value adjusted by Holm-Bonferroni
method; the “FDR p” is the p value adjusted using false discovery rate; the “Impact” is the pathway impact value calculated
from pathway topology analysis.

Total Expected Hits Raw p −log10(p) Holm Adjust FDR Impact

Valine, leucine and
isoleucine biosynthesis 8 0.07 3 3.20 × 10−5 4.49 × 100 2.69 × 10−3 2.69 × 10−3 0.00

Valine, leucine and
isoleucine degradation 40 0.36 3 4.76 × 103 2.32 × 100 3.95 × 10−1 2.00 × 10−1 0.03

Pantothenate and
CoA biosynthesis 19 0.17 1 1.59 × 10−1 7.98 × 10−1 1.00 × 100 1.00 × 100 0.00

Primary bile acid biosynthesis 46 0.42 1 3.45 × 10−1 4.62 × 10−1 1.00 × 100 1.00 × 100 0.01
Steroid hormone biosynthesis 85 0.77 1 5.48 × 10−1 2.62 × 10−1 1.00 × 100 1.00 × 100 0.01

4. Discussion

Computer tomography (CT) scans can resolve some aspects of stroke onset, and
behavioral evaluations of diagnosis are entirely symptom-based, decreasing diagnostic
reliability and hindering treatment [44]. Blood biomarkers related to stroke would provide
an objective measurement to inform clinical assessments and treatment decisions [45].
There is no single biomarker that directly captures all the pathophysiology of stroke [45].
Therefore, using a metabolomics approach to analyze metabolites holds promise to cap-
ture the complex pathophysiological processes of AIS. This is because the metabolomics
approach monitors alterations in metabolites in ways that formal identification of a single
biomarker does not capture [46]. This in turn allows for the identification of metabolic
changes that drive pathology.

While gender differences in risk factors of stroke has been investigated [47,48], differ-
ences in metabolites among male and female patients with AIS is not fully understood. This
study uses biological samples from AIS patients from a large, carefully phenotyped epi-
demiologic patient cohort to identify distinctive metabolic signatures in men and women
AIS patients. First, we detected 49 distinct metabolites and 15 metabolic pathways for
women and 39 metabolites and 5 metabolic pathways that exhibited reprogramming. Our
logistic regression and ROC analysis reveal 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC, 1-
(1-enyl-palmitoyl)-2-palmitoyl-GPC, and 5,6-dihydrouracil to be significant predictors
for female AIS patients. Moreover, 5alpha-androstan-3alpha,17beta-diol disulfate, alpha-
hydroxyisocaproate, threonate, and bilirubin were associated with male AIS patients.

Glycerophosphocholine (GPC) metabolites modulate atherosclerosis and are asso-
ciated with many risk factors [49]. GPC metabolites are platelet activating metabolites
that modulate systemic oxidative stress and inflammation [50]. Findings from recent
studies [51–53] indicate that GPC metabolites may improve the prediction of outcomes in
different clinical conditions. This finding supports our current results that GPCs, includ-
ing 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC and 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC
identified in this study, maybe sensitive indicators that can be used to help improve our
understanding of the pathobiology of stroke in female patients.

Dihydrouracil (5,6-Dihydrouracil) is a metabolite of uracil that has been used as a
marker to identify dihydropyrimidine dehydrogenase (DPD)-deficient [54]. Deficiencies in
DPD activity are associated with reducing 5,6-Dihydrouracil catabolism, which can lead
to severe toxicity in different clinical conditions [55]. Since DPD deficiency impairs the
metabolic breakdown of 5,6-Dihydrouracil, the accumulation of this uracil can be detected
in the plasma of patients with specific clinical conditions [56]. Therefore, identifying
toxicity in stroke patients has the potential to significantly improve patient care using
5,6-Dihydrouracil as a marker. Moreover, since deficiency in enzymes downstream of
DPD, such as dihydropyrimidase (DHP) and/or β-ureidopropionase (UDP), could alter
the 5,6-Dihydrouracil catabolic pathway [57], our finding supports the possibility that DPD
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function could indicate an error of 5,6-Dihydrouracil metabolism detected in metabolomic
analysis in our female ischemic stroke patients [54]. This possibility is supported by other
studies [58,59] that DPD function could indicate an error of 5,6-Dihydrouracil metabolism.

5 alpha-Androstane-3 alpha 17 beta-diol is a testosterone metabolite. The modulatory
role of testosterone was initially thought to be via 5 alpha reduction to the potent androgen
dihydrotestosterone (DHT) and its subsequent binding to the androgen receptor [60].
However, DHT is metabolized to the estrogen receptor beta-isoform (ERbeta) agonist,
5 α-androstane 3 β, 17 β Diol (3β-Diol) [61]. This finding suggests that 3a/b-diol also
represent potential precursors of DHT, and that the back conversion of DHT from 3 α—and
3 β-diol can represent a promising target in maintaining hormonal homeostasis in male
ischemic stroke patients.

Alpha-hydroxyisocaproate (HICA) is derived from leucine metabolism in the hu-
man connective tissue [62]. HICA helps protect against muscle breakdown due to its
anti-catabolic properties by protecting against excessive muscle damage and protein break-
down [63,64]. Elevated levels of HICA have been reported in the urine of patients with
dihydrolipoyl dehydrogenase deficiency [65]. Our finding of significant levels of HICA in
male AIS, suggests that HICA may be linked with ischemic stroke among male patients. In
the connective tissue where HICA is well expressed, the HICA functions are not fully un-
derstood [66]. A relatively low basal protein synthesis caused by pretreatment with HICA
is reported to suppress inflammatory responses of iNOS, IL-6, and ubiquitin-proteasome
system’s downregulation [67]. In general, HICA is proposed to improve systemic inflam-
mation because AMPK activation generally suppresses inflammation in several tissues [68].
The suppression of systemic inflammation results in increased energy efficiency and a
decrease in proinflammatory cytokines [69]. It is also possible that systemic effects of HICA
may be associated with systemic inflammation among male AIS patients. A future study
on HICA among male AIS patients will help elucidate how the health benefits of HICA
may contribute to the extension of healthy life in AIS patients.

Bilirubin is an end product of heme metabolism, and higher levels of serum bilirubin
have been proposed to offer therapeutic advantages in oxidative stress-mediated dis-
eases [70]. Blirubin possesses potent antioxidant properties [71], indicating that higher lev-
els of serum bilirubin might provide a therapeutic advantage in oxidative stress-mediated
conditions including stroke [72]. Mechanisms of oxidative stress-related neuronal death are
associated with oxidative stress linked to pathogenesis of stroke [72]. This finding indicates
that elevated serum bilirubin levels may reflect the intensity of oxidative stress [73]. In
this study, we found that higher serum bilirubin was associated with male stroke patients.
Therefore, male stroke patients may provide an opportunity to examine further the role of
bilirubin in the pathophysiology related to oxidative stress in stroke patients. This may
offer therapeutic avenues to limit the damage from a stroke facilitated by oxidative stress
that results in neuronal loss.

Magnesium L-Threonate is a novel form of magnesium, and magnesium is a critical
cofactor for many enzymes involved in glucose metabolism, protein production, and
nucleic acid synthesis [74]. Therefore, magnesium deficiency is associated with many
diseases, such as Alzheimer’s, asthma, attention deficit hyperactivity disorder, type 2
diabetes, hypertension, and stroke [75]. Moreover, magnesium intake is reported to have
an inverse association with total and ischemic stroke in a dose-response pattern [76]. Our
finding of an association of magnesium with male ischemic stroke patients suggests the
optimization of magnesium for stroke prevention or management of stroke. This can
improve not only population-wide cardiovascular health but also initiate dietary healthcare
to prevent stroke.

Several studies have investigated different metabolites in stroke [26,28,32,33]. Findings
reveal new metabolites pathways for ischemic stroke subtypes and provide a new avenue
to explore the pathophysiological mechanisms underlying ischemic stroke and its subtypes.
A recent study by Daokun et al. [13] that focused on men and women stroke patients
identified circulating biomarkers for stroke and novel pathways for AIS and its subtypes.
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The results reveal promising blood-based biomarkers and novel etiologic pathways of
ischemic stroke, but the study did not focus on differences in metabolites between men and
women AIS patients. While findings from existing studies [13,26–34] highlight the potential
of metabolomics for discovering novel circulating biomarkers for stroke and its subtypes,
most of the studies did not report gender-differentiated results. Therefore, the specific
metabolites and related pathways that are directly associated with men and women AIS
patients are not fully understood. As a basis for a gender-specific care for AIS patients, the
characterization of differences in metabolites between the men and women AIS patients in
the current study might lead to concrete starting points for a future research to improve
care for men and men AIS patients.

5. Conclusions

The need to improve the diagnosis of stroke for both male and female patients has
motivated the use of omic-based approaches to identify novel markers for stroke biology
and biomarker development. Although several markers have shown promise, none has
been translated into clinical practice. Ischemic stroke is a heterogeneous clinical condition
and a single biomarker may not be able to capture the complicated pathophysiology
changes associated with stroke in both male and female patients. In the current study, we
identified (1-enyl-palmitoyl)-2-arachidonoyl-GPC, 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC
and 5,6-dihydrouracil as metabolites that are predictive of ischemic stroke among women
while 5alpha-androstan-3alpha,17beta-diol disulfate, alpha-hydroxyisocaproate, threonate
and bilirubin predicted ischemic stroke in men patients. Our findings highlight the potential
of metabolomics to reveal new pathways for IS and provide a new avenue to explore IS’s
pathophysiological mechanisms among men and women ischemic stroke patients.
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