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ABSTRACT The acidic polysaccharide succinoglycan produced by the rhizobial symbiont Sinorhizobium meliloti 1021 is re-
quired for this bacterium to invade the host plant Medicago truncatula and establish a nitrogen-fixing symbiosis. S. meliloti mu-
tants that cannot make succinoglycan cannot initiate invasion structures called infection threads in plant root hairs. S. meliloti
exoH mutants that cannot succinylate succinoglycan are also unable to form infection threads, despite the fact that they make
large quantities of succinoglycan. Succinoglycan produced by exoH mutants is refractory to cleavage by the glycanases encoded
by exoK and exsH, and thus succinoglycan produced by exoH mutants is made only in the high-molecular-weight (HMW) form.
One interpretation of the symbiotic defect of exoH mutants is that the low-molecular-weight (LMW) form of succinoglycan is
required for infection thread formation. However, our data demonstrate that production of the HMW form of succinoglycan by
S. meliloti 1021 is sufficient for invasion of the host M. truncatula and that the LMW form is not required. Here, we show that
S. meliloti strains deficient in the exoK- and exsH-encoded glycanases invade M. truncatula and form a productive symbiosis,
although they do this with somewhat less efficiency than the wild type. We have also characterized the polysaccharides produced
by these double glycanase mutants and determined that they consist of only HMW succinoglycan and no detectable LMW succi-
noglycan. This demonstrates that LMW succinoglycan is not required for host invasion. These results suggest succinoglycan
function is not dependent upon the presence of a small, readily diffusible form.

IMPORTANCE Sinorhizobium meliloti is a bacterium that forms a beneficial symbiosis with legume host plants. S. meliloti and
other rhizobia convert atmospheric nitrogen to ammonia, a nutrient source for the host plant. To establish the symbiosis, rhizo-
bia must invade plant roots, supplying the proper signals to prevent a plant immune response during invasion. A polysaccharide,
succinoglycan, produced by S. meliloti is required for successful invasion. Here, we show that the critical feature of succinogly-
can that allows infection to proceed is the attachment of a “succinyl” chemical group and that the chain length of succinoglycan
is much less important for its function. We also show that none of the short-chain versions of succinoglycan is produced in the
absence of two chain-cleaving enzymes.
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Sinorhizobium meliloti 1021 is a soil bacterium and nitrogen-
fixing symbiont of the host plants Medicago truncatula cv. “Je-

malong A17” and Medicago sativa (alfalfa) (1, 2). Under nitrogen-
limiting conditions, S. meliloti induces formation of nodules on
host plant roots, invades and colonizes the nodules (1, 2), and then
begins to convert or “fix” dinitrogen gas to ammonia, a form that
the host can use (2). For successful invasion of host plant roots by
rhizobia, the symbiotic partners must exchange multiple signals
that promote bacterial entry. Plant flavonoids signal S. meliloti to
produce a lipochitooligosaccharide signal called Nod factor (NF)
(3). NF induces host plant root hair curling that leads to trapping
of microcolonies of S. meliloti within the curl and induces cell
division in the root cortex, leading to formation of the nodule
primordium (2). Structures called infection threads initiate from

these colonized curled root hairs. An infection thread is a progres-
sive ingrowth of root hair cell membrane that leaves behind a
tubule filled with S. meliloti and a matrix composed of bacterial
exopolysaccharides (EPS) and plant cell wall material (4, 5). It is
through infection threads that rhizobia invade and colonize the
root interior (1). Infection thread initiation and development re-
quire that S. meliloti propagate in the infection thread and pro-
duce both NF and the EPS succinoglycan (1). Infection threads in
root hairs are extended to the base of these cells and through each
cell layer, eventually delivering the bacteria to proliferating cells of
the nodule primordium (6, 7). Succinoglycan production by
S. meliloti 1021 is required for this bacterium to induce infection
threads on host plants (8). S. meliloti 1021 strains that do not
produce succinoglycan, such as the exoY mutant (9), are able to
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colonize root surfaces and become tightly enclosed within curled
root hairs but fail to initiate infection threads (10).

Rhizobial acidic EPSs are either required for or enhance host
invasion in multiple rhizobial symbiont-host plant pairs (11–25).
In some cases, determining the importance of a symbiotic EPS in
host invasion has been complicated by production of multiple
EPSs by a single bacterial strain. However, in the S. meliloti 1021-
M. truncatula host-symbiont pair, succinoglycan is the only EPS
produced in sufficient quantities and in a functional form that can
enable infection thread formation (8, 19, 21, 23, 26) (see Discus-
sion). It has also been demonstrated that increased succinoglycan
production by S. meliloti leads to an increase in symbiotic produc-
tivity of inoculated M. truncatula plants (27). Acidic EPSs of bac-
terial pathogens of plants can also be virulence determinants in
plant disease. Many of these negatively charged polysaccharides
have been shown to suppress plant defense activation by seques-
tering Ca2� and preventing a signaling cascade (28). Both the EPS
xanthan of Xanthomonas campestris pv. campestris (29, 30) and the
EPS alginate of Pseudomonas syringae (31, 32) enhance host plant
infection by these pathogens and exacerbate disease symptoms. It
is not yet known if acidic EPSs of rhizobial plant symbionts and of
plant pathogens perform any similar functions in host invasion.

It is also not known why in S. meliloti 1021, succinoglycan is
required for infection thread initiation and progression or how it
might influence conditions within colonized curled root hairs to
facilitate these processes. The succinoglycan monomer is an oc-
tasaccharide composed of 1 galactose residue and 7 glucose resi-
dues, with acetyl, succinyl, and pyruvyl modifications (33). Neg-
atively charged carboxylates on the succinyl and pyruvyl groups
render the polysaccharide acidic. This structure, along with the
gene product that catalyzes each step in the biosynthetic pathway,
is shown in Fig. 1 (33–37). It has recently been determined that in
Mesorhizobium loti R7A, an acidic octasaccharide EPS with some
structural similarities to succinoglycan interacts with the Epr3
receptor-like kinase in its plant host Lotus japonicus (16). An
M. loti mutant that cannot make this EPS can successfully invade
and nodulate L. japonicus (13), but exoU mutants that produce a
truncated pentasaccharide EPS cannot invade wild-type plants
(13). Thus, there is a striking difference between the M. loti-L. ja-
ponicus system and the S. meliloti-M. truncatula system: EPS-

deficient mutants of M. loti can invade their host (13), whereas
S. meliloti succinoglycan-deficient mutants cannot invade
M. truncatula. S. meliloti exoY and exoA mutants, which produce
no succinoglycan (9, 34, 38), do not invade host plants (10, 38)
and in the case of exoY have been shown to fail in initiating infec-
tion threads (10).

S. meliloti strains that are completely succinoglycan deficient
are not the only type of succinoglycan mutant with a symbiotic
defect. An exoH mutant that produces succinoglycan lacking the
succinyl groups (Fig. 1) also cannot invade alfalfa roots (39) and
has previously been shown to initiate a reduced number of in-
fection threads on alfalfa and to abort all of the infection threads
that are initiated (10). exoH mutants produce only the high-
molecular-weight (HMW) form because the glycanases ExoK and
ExsH cannot cleave the unsuccinylated form (40). A long-
standing question about the nature of the defect in S. meliloti exoH
mutants is whether they fail to invade the host because the succi-
noglycan they produce is unsuccinylated or because they produce
only the HMW form of succinoglycan (40). It has not previously
been determined if there is a mechanism independent of ExoK
and ExsH cleavage for production of low-molecular-weight
(LMW) succinoglycan; however, the existence of alternate routes
to the LMW form has been proposed: either through cleavage by
another enzyme or through direct export of LMW forms (41, 42).
If LMW succinoglycan cannot be produced in the absence of the
ExoK and ExsH glycanases, and if LMW succinoglycan is required
for infection thread formation, then a double mutant with muta-
tions in both glycanase enzymes should have a very severe symbi-
otic defect similar to that of strains with a mutation in the exoH-
encoded succinyltransferase. Conversely, if LMW succinoglycan
is not required for infection thread formation, strains deficient in
both glycanases should not have a severe symbiotic defect. Thus, it
is critical to determine both the symbiotic phenotype of double
glycanase mutants and whether or not these strains produce any
residual LMW succinoglycan.

We have now characterized the polysaccharides produced by
strains deficient in both the ExoK and ExsH glycanases and deter-
mined that these strains do not produce any LMW succinoglycan.
We have also determined that these “double glycanase” mutants
invade M. truncatula roots and establish a productive symbiosis,
albeit with less efficiency than wild-type S. meliloti 1021. This
demonstrates that the LMW form of succinoglycan is not required
for host invasion. This also indicates that successful symbiosis
requires succinylation of succinoglycan for a reason that is inde-
pendent of the effect of succinylation on susceptibility to glyca-
nase cleavage.

RESULTS
Strains deficient in the exsH-encoded succinoglycan glycanase
do not have a significant reduction in symbiotic productivity.
We had previously constructed a nonpolar deletion mutant of the
succinoglycan glycanase-encoding gene exoK (see below) and
found that this strain can invade M. truncatula and form func-
tional nodules, but it does so less efficiently than the wild type
(43). To determine if loss of an additional succinoglycan glycanase
encoded by exsH also has an effect on symbiosis with M. trunca-
tula, we tested mutants carrying a Tn5-233 transposon insertion
in exsH and found that they do not have a statistically significant
defect in symbiotic productivity measured by shoot fresh weight,
but they do have a small statistically significant reduction in the

FIG 1 Structure of succinoglycan monomer. Sugar linkages, positions of
acetyl, succinyl, and pyruvyl substituents, and the gene product responsible for
forming each linkage are shown (33, 34). A second succinylation site is marked
with an asterisk (50). Adapted from Mendis et al., 2013 (43).
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number of pink, functional nodules (see Fig. S1 in the supplemen-
tal material). The pink color of root nodules induced by rhizobial
infection is due to the production of leghemoglobin by the host
plant and is indicative of a functional symbiosis (44, 45). This very
small effect on the symbiosis is consistent with the lack of detect-
able expression of the exsH glycanase gene in S. meliloti during
host invasion (Fig. 2). Using strains that carry both an exsH::uidA
�-glucuronidase (GUS) reporter fusion and a complete copy of
exsH in the genome, we found that expression of exsH cannot be
detected in S. meliloti in infection threads or root nodules at
14 days postinoculation (Fig. 2A to D), a time point at which
strong expression of the operon containing exoK can be detected

(43). GUS is expressed in exsH reporter strains when they are
grown on M9 medium, demonstrating that the reporter is func-
tional (see Fig. S2 in the supplemental material). Taken together,
our results show that expression of the exsH-encoded glycanase is
not detectable during host invasion, and loss of this glycanase does
not have a significant effect on the symbiotic productivity of the
association with M. truncatula.

Strains deficient in both the exoK- and exsH-encoded succi-
noglycan glycanases invade host roots and form functional nod-
ules. ExsH and ExoK are the only glycanases that have been dem-
onstrated to cleave succinoglycan to generate the LMW form in
the 1021 strain of S. meliloti (41, 46 [also see reference 47]). To
determine whether or not LMW succinoglycan is required for
successful host invasion of M. truncatula, it is necessary to deter-
mine the symbiotic phenotype of exoK exsH glycanase double mu-
tants and to determine whether or not these double glycanase
mutants produce any LMW succinoglycan. The nonpolar exoK
deletion strains described by Mendis et al. (43) (Kdel-trpexoL
strains) were constructed as part of a series of strains in which the
downstream exoLAMON genes are under identical regulatory
control despite alterations to the upstream exoHK region. The
design of these nonpolar exoK deletion strains and the “modified
wild-type” control strains (trpexoL strains) is shown in Fig. S3 in
the supplemental material. To construct the double glycanase mu-
tants, we transduced the exsH::Tn5-233 insertion into the Kdel-
trpexoL strains, generating 6 independently isolated double glyca-
nase mutants (strains 1325, 1326, 1328, 1329, 1332, and 1333). We
also transduced exsH::Tn5-233 into the trpexoL strains to make
exsH single mutants in the “modified wild-type” background.
Symbiotic phenotypes of double glycanase mutants are shown in
Fig. 3, along with symbiotic phenotypes of exoK single mutants
and exsH single mutants. Figure 3A shows average shoot fresh
weights of M. truncatula plants inoculated with each S. meliloti
strain. The Kdel-trpexoL exsH double glycanase mutants (here,
referred to as ExoK ExsH double glycanase mutants) have a small,
but statistically significant reduction in plant productivity relative
to S. meliloti 1021 wild-type and “modified wild-type” trpexoL
control strains and relative to the trpexoL exsH single mutants
(Fig. 3A). (Fig. 3B shows a representative M. truncatula plant in-
oculated with wild-type S. meliloti 1021 versus an uninoculated
plant.) The symbiotic performance of the double glycanase mu-
tants is similar to that of Kdel-trpexoL single glycanase mutants
(Fig. 3A). Most of the Kdel-trpexoL single mutants and the ExoK
ExsH double glycanase mutant strains also have a small, but sta-
tistically significant reduction in the number of pink, functional
nodules (Fig. 3C). These results demonstrate that ExoK ExsH
double glycanase mutants, like Kdel-trpexoL exoK single mutants,
have reduced symbiotic productivity relative to wild-type strains
but are still able to form a functional symbiosis on M. truncatula.

Strains deficient in both the ExoK and ExsH succinoglycan
glycanases do not produce any detectable LMW succinoglycan.
In order to determine if the LMW form of succinoglycan is re-
quired for successful symbiosis by S. meliloti, it is necessary to
determine whether or not these symbiosis-functional ExoK ExsH
double glycanase mutants produce any LMW succinoglycan. We
had previously determined that Kdel-trpexoL exoK single mutants
produce a reduced but substantial amount of LMW succinoglycan
that can be seen in an LMW succinoglycan-diffusion “halo” assay
using the fluorescent dye Calcofluor (43). To determine if the
ExsH glycanase is the source of the LMW succinoglycan in these

FIG 2 The exsH-encoded glycanase is not expressed during invasion and
nodulation. (A to D) There is no expression of an exsH::�-glucuronidase
(GUS) reporter in S. meliloti in M. truncatula developing nodules at 14 days
postinoculation. The GUS reporter is under the transcriptional control of exsH
upstream elements in strains that also have a complete copy of exsH in the
genome. Three independently isolated GUS fusion strains are shown: (A)
the exsH::JH104.7A strain, (B and D) the exsH::JH104.12Cstrain, and (C) the
exsH::JH104.4B strain. All three exsH::GUS fusions are expressed when the
strains are grown on M9 medium (see Fig. S2 in the supplemental material),
demonstrating that the fusions are functional. (E and F) The negative control
was S. meliloti 1021 without a GUS fusion. (G and H) Positive control for
strong GUS expression from an SMc00911::JH104 reporter (70). In all panels,
the bar corresponds to 100 �m. Roots were stained with X-Gluc for 48 h.
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Kdel-trpexoL single mutants, we compared the ExoK ExsH double
glycanase mutants with the single glycanase mutants and control
strains in a Calcofluor halo assay (Fig. 4). We found that after 12
days of growth on GMS (glutamate mannitol salts medium) me-
dium containing 0.02% Calcofluor, ExoK ExsH double glycanase
mutants did not produce a visible halo of LMW succinoglycan
(Fig. 4E). This contrasts with the abundant LMW succinoglycan
produced by S. meliloti 1021 wild-type and trpexoL “modified
wild-type” strains (Fig. 4A). It also contrasts with the large
amount of LMW material made by exsH single mutants in both
the 1021 and the trpexoL backgrounds (Fig. 4D) and the interme-
diate amount of LMW material already demonstrated to be made
by Kdel-trpexoL exoK single mutants (43) (Fig. 4C). Thus, it ap-
pears that the majority of LMW succinoglycan is made by ExoK
cleavage of the polymer with some contribution by ExsH cleavage
that is apparent in the absence of ExoK.

It had previously been determined in another study (41) that
strains carrying transposon insertions in both exoK and exsH do
not produce an LMW succinoglycan “halo” in a Calcofluor assay,
but that these strains do produce a residual amount of LMW poly-
saccharide material that can be detected with the anthrone-
sulfuric acid assay for hexose sugars (48). However, the identity of
the LMW, hexose-containing material produced by these strains
was not established in this previous study. In order to determine

whether any of the LMW polysaccharide produced by ExoK ExsH
double glycanase mutants is succinoglycan, we characterized
LMW polysaccharide from these strains by size separation and
sugar composition analysis. We isolated culture supernatant from
GMS minimal medium cultures of wild-type 1021 and two inde-
pendently isolated ExoK ExsH double glycanase mutants, 1325
and 1328. Culture supernatant from the succinoglycan-deficient
exoY mutant (34) served as a negative control. We used total cul-
ture supernatant rather than alcohol-precipitated polysaccharide
because it has been reported that alcohol precipitation is ineffi-
cient in isolating LMW forms of succinoglycan (49). Table 1
shows the quantification of polysaccharide calculated from the
anthrone-positive material per milliliter from each culture super-
natant normalized to the cell density of the culture measured at
optical density at 600 nm (OD600). The two ExoK ExsH double
glycanase mutant strains tested, 1325 and 1328, produce 60 to
70% of the amount of polysaccharide produced by the wild type
(Table 1). In contrast, the succinoglycan-deficient exoY mutant
produces 10% of the amount of polysaccharide produced by the
wild type. This demonstrates that even the exoY mutant produces
a small amount of hexose-containing polysaccharide, while the
wild-type and the double glycanase mutants produce a large quan-
tity of hexose-containing material.

LMW succinoglycan produced by wild-type S. meliloti 1021

FIG 3 Mutants lacking both ExoK and ExsH glycanases have only a slight reduction in symbiotic productivity and nodulation. (A) Average shoot fresh weight
of M. truncatula A17 plants inoculated with the S. meliloti strain shown. (Multiple independent isolates of each strain were compared. Error bars show standard
errors of the mean [SEM] for plants inoculated with each strain.) The ExoK ExsH double glycanase mutants have a small but statistically significant reduction in
plant productivity relative to the S. meliloti 1021 wild-type strain, to “modified wild-type” trpexoL control strains, and to exsH single mutants. The symbiotic
performance of double glycanase mutants is similar to the symbiotic productivity of Kdel-trpexoL exoK single mutants. (B) Representative image of an
M. truncatula plant inoculated with wild-type S. meliloti versus an uninoculated plant. (C) Most Kdel-trpexoL exoK single mutants and ExoK ExsH double
glycanase mutants also have a small, but statistically significant reduction in the number of mature, pink nodules. (Error bars show SEM.)
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has previously been determined to consist of monomers, dimers,
and trimers of the octasaccharide (42, 50) with calculated molec-
ular masses of 1.5 to 1.7, 3.1 to 3.5, and 4.6 to 5.2 kDa, respectively.
(The molecular mass range is due to variability in degree of succi-
nylation of each succinoglycan monomer.) In order to isolate
LMW material, we collected solutes smaller than 10 kDa in size by
filtering the culture supernatants through a 10-kDa molecular
mass cutoff (MMCO) membrane. Table 1 shows the percentage of
total polysaccharide produced by each strain that is smaller than
10 kDa in size. The succinoglycan-deficient exoY mutant and both
ExoK ExsH double glycanase mutants produce similar percent-
ages (30 to 40%) of total polysaccharide as species smaller than
10 kDa, while the wild type produces a much greater percentage of
total polysaccharide in forms smaller than 10 kDa (70%).

The LMW fraction of each sample was further fractioned by
size exclusion on a Superdex 75 column and the hexose sugar

content of the fractions analyzed by anthrone-sulfuric acid assays.
The results are shown in Fig. S4 in the supplemental material.
Wild-type LMW polysaccharide from the Superdex 75 column
was collected for finer fractionation on a Superdex 30 column.
Wild-type LMW material was resolved on the Superdex 30 col-
umn (Fig. 5A) into 2 major peaks composed of fractions 25 to 28
(peak 2) and fractions 36 to 41 (peak 4) and 2 minor peaks of
fractions 20 to 23 (peak 1) and fractions 29 to 34 (peak 3)
(Fig. 5A). Vitamin B12 (1.35 kDa) served as LMW marker in all
column runs (Fig. 5). Samples of succinoglycan-deficient exoY
mutant and ExoK ExsH double glycanase mutants 1325 and 1328
were also separated on the Superdex 30 column (Fig. 5B). What
appears to be a single large polysaccharide peak was detected at an
identical position in fractions 25 to 34 in both ExoK ExsH double
glycanase mutants and in the succinoglycan-deficient exoY mu-
tant. This peak is centered on fraction 30, which is the same posi-
tion as peak 3 from the wild type. The fact that ExoK ExsH double
glycanase mutants have an LMW polysaccharide profile nearly
identical to the succinoglycan-deficient exoY mutant suggests that
LMW polysaccharides produced by the ExoK ExsH double glyca-
nase mutants are not succinoglycan.

In order to establish the identity of these peaks, the glucose/
galactose ratio of each peak was determined. Sugar composition of
the peaks from fractions 25 to 28 (peak 2), 29 to 34 (peak 3), and
36 to 41 (peak 4) from wild-type S. meliloti 1021 and of the peaks
centered on fraction 30 from the mutants was determined by the
alditol acetate method at the University of Georgia Complex Car-
bohydrate Research Center, and the results are summarized in
Table 2. The succinoglycan monomer has previously been deter-
mined by mass spectrometry to contain 7 glucose sugars and 1
galactose sugar (33). In contrast, cyclic �-glucans are pure glu-
cose, and in S. meliloti are close in size to the succinoglycan dimer
(51). The other polysaccharide that may be produced by S. meliloti
1021 in very small quantities, EPSII (also known as galactoglucan)
has a repeating unit of 1 galactose:1 glucose (52, 53). The sugar
composition analysis described below indicates that the peaks
from the wild type are composed chiefly of succinoglycan, while
the peaks centered on fraction 30 from the exoY mutant and from
the ExoK ExsH double glycanase mutants are cyclic �-glucans.

Wild-type fractions 25 to 28 (peak 2) contain 80.0% glucose
and 16.6% galactose with small quantities of other sugars (for full
results, see Table S2 in the supplemental material), which is a
glucose/galactose ratio of ~5:1. Wild-type fractions 36 to 41 con-
tain 81.3% glucose and 16.4% galactose, which is also a glucose/
galactose ratio of 5:1. Although a glucose/galactose ratio of 7:1
rather than 5:1 is predicted based on succinoglycan structure (33),
a 5:1 ratio is very close to values previously detected for succi-
noglycan monomer by the alditol acetate method (e.g., see Fig. 1 in
reference 42, in which the monomer peak glucose/galactose ratio

FIG 4 There is no LMW succinoglycan detectable from ExoK ExsH double
glycanase mutants with the Calcofluor-fluorescence halo assay. After 12 days
of growth on GMS medium containing 0.02% Calcofluor, S. meliloti 1021
wild-type and trpexoL “modified wild-type” strains (A) produce a large halo of
diffused LMW succinoglycan. Negative-control, succinoglycan-deficient exoY
and exoA strains (B) are “Calcofluor dark,” showing that they do not produce
succinoglycan. (C) Kdel-trpexoL exoK single mutants have a reduced halo di-
ameter, consistent with production of an intermediate amount of LMW suc-
cinoglycan. (D) exsH single mutants in both the 1021 and the trpexoL back-
grounds have halos of similar size to the wild type, suggesting that loss of exsH
has little effect on production of LMW succinoglycan. (E) ExoK ExsH double
glycanase mutants produce no detectable Calcofluor halo, suggesting that no
LMW succinoglycan is produced in the absence of these two glycanases.

TABLE 1 EPS production by the S. meliloti wild type and mutants

Strain

Amt of anthrone-positive material normalized
to culture density OD620 of anthrone
per ml/OD600 cell density

% of total anthrone-positive
material of �10 kDa

S. meliloti 1021 wild type 5.00 70
exoY::Tn5 mutant (no succinoglycan) 0.46 (10% of wild type) 40
1325 ExoK ExsH double glycanase mutant 2.81 (60% of wild type) 40
1328 ExoK ExsH double glycanase mutant 3.57 (70% of wild type) 30
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was ~5.5:1) (42). In contrast, wild-type fractions 29 to 34 (peak 3)
contain 88.6% glucose and 8% galactose, which is a glucose/galac-
tose ratio of 11:1 and is also similar to the value previously deter-
mined for peaks that are a mixture of succinoglycan and cyclic
�-glucans (42). Based on the elution positions of Superdex 30
column peaks, sugar composition analysis, and comparisons with
earlier work (42, 50), we conclude that wild-type fractions 25 to 28
(peak 2) are succinoglycan dimer, fractions 29 to 34 (peak 3) are a

mixture of cyclic �-glucans and succinoglycan, and fractions 36 to
41 (peak 4) are succinoglycan monomer. The sugar composition
of fractions 20 to 23 (peak 1) was not tested since it has such a
small amount of hexose-positive material, but its elution position
is consistent with succinoglycan trimer. Compared with previous
observations, we isolated a smaller quantity of trimer relative to
the quantity of dimer and monomer (50). One possible explana-
tion for this is that by not alcohol precipitating polysaccharide, we

FIG 5 Separation of S. meliloti polysaccharides on a Superdex 30 column. (A) For each of the 6 wild-type sample aliquots fractionated on the Superdex 75
column, fractions 26 to 56 were pooled, concentrated, and separated individually on a Superdex 30 column. This material resolved into 4 peaks, discussed in the
main text. Error bars show SEM for the average of 6 column runs. Vitamin B12 (1.35 kDa) served as an LMW marker in all column runs. (B) Separation of the
�10-kDa polysaccharide material from the succinoglycan-deficient exoY mutant and ExoK ExsH double glycanase mutants 1325 and 1328. This material
resolved into a single major peak centered on fraction 30. Error bars show SEM for the average of 3 column runs for each strain.

TABLE 2 Glycosyl composition of LMW polysaccharide fractions

Strain

�g glucose equivalents of hexose sugars (anthrone/sulfuric acid assay)a mol% of glycosyl residues in samplea,b

Fractions 25–28 Fractions 29–34 Fractions 36–41 Fractions 25–28 Fractions 29–34 Fractions 36–41

S. meliloti 1021
wild type

142 (peak 2) 92 (peak 3) 316 (peak 4) 80.0% glucose,
16.6% galactose

88.6% glucose,
8.0% galactose

81.3% glucose,
16.4% galactose

exoY::Tn5 mutant
(no succinoglycan)

171 497 12 96.5% glucose,
0.5% galactose

94.7% glucose,
3.4% galactose

NDc

1325 ExoK ExsH double
glycanase mutant

189 450 13 98.4% glucose,
0.7% galactose

100.0% glucose,
0% galactose

ND

1328 ExoK ExsH double
glycanase mutant

288 674 27 97.8% glucose,
0% galactose

94.9% glucose,
1.6% galactose

ND

a The fraction numbers shown are from the Superdex 30 column.
b Some samples contained �2.2% each mannose, xylose, and/or arabinose. Full glycosyl composition results are shown in Table S2 in the supplemental material.
c ND, not determined (no polysaccharide peak).
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retained a larger percentage of the dimer and monomer present in
the culture supernatant. This is consistent with the observation
that precipitation of LMW succinoglycan is inefficient (49).

LMW polysaccharide material from the succinoglycan-
deficient exoY mutant and from both ExoK ExsH double glyca-
nase mutants appears to be a single broad peak centered on frac-
tion 30. However, based on the Superdex 30 separation alone, we
could not exclude the possibility that there were multiple peaks in
these fractions representing multiple hexose-containing species.
Therefore, we separately analyzed fractions 25 to 28 and fractions
29 to 34 as we had done for the peaks from the wild type. The
results are summarized in Table 2. The material from fractions 25
to 28 and from fractions 29 to 34 from ExoK ExsH double glyca-
nase mutants are �95% glucose and �1.6% galactose, indicating
that these mutants do not produce a significant amount of
galactose-containing polysaccharide of this size. In fact, these frac-
tions from the ExoK ExsH double glycanase mutants have less
galactose than the same fractions from the succinoglycan-
deficient exoY mutant, which strongly suggests that these mutants
do not produce any LMW succinoglycan. The size of oligosaccha-
rides from all these mutants and the fact that they are composed
almost exclusively of glucose, strongly suggest that they are cyclic
�-glucans.

Strains deficient in the exoH-encoded succinyltransferase
and both succinoglycan glycanases cannot engage in a produc-
tive symbiosis. In order to determine whether succinylation of
succinoglycan is the critical factor in its symbiotic function, we
made strains that are isogenic to the ExoK ExsH double glycanase
mutants, except that they are also deleted for the exoH-encoded
succinyltransferase. (For deletion design, see Fig. S3 in the supple-
mental material.) The symbiotic phenotypes of these triple mu-
tant strains that lack both glycanases and the succinyltransferase
are shown in Fig. 6. Growth of plants inoculated with any of 6
independently isolated, triple mutants (strains 1342, 1343, 1344,
1345, 1348, and 1349) on nitrogen-free medium is completely
arrested and is indistinguishable from that of uninoculated plants
(Fig. 6A). These plants form only small, nonfunctional nodules
(Fig. 6B). When exoH is introduced on a plasmid into the triple
mutants, symbiotic performance is restored to the level of the
ExoK ExsH double glycanase mutants (data not shown). Intro-
duction of a plasmid carrying exoK into the triple mutants has no
effect on symbiosis (data not shown).

Compared with the symbiotic performance of the ExoK ExsH
double glycanase mutants that produce no LMW succinoglycan,
but still have the exoH succinyltransferase, the difference is strik-
ing. Loss of the exoH-encoded succinyltransferase results in a

FIG 6 Triple mutants lacking ExoK and ExsH glycanases and the exoH-encoded succinyltransferase cannot form a functional symbiosis. (A) Average shoot fresh
weight of M. truncatula A17 plants inoculated with the S. meliloti strain shown on the label. Growth of plants inoculated with any of 6 independently isolated triple
mutant strains (1342, 1343, 1344, 1345, 1348, and 1349) on nitrogen-free medium is completely arrested and is indistinguishable from that of uninoculated
plants. (B) Plants inoculated with triple mutants form only small, white, nonfunctional nodules. (Error bars show SEM.) The number of plants inoculated with
each strain is shown.
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complete inability to form functional nodules and to support host
plant growth, while strains that lack only the glycanases have
merely a slight reduction in symbiotic productivity. This demon-
strates that succinylation of succinoglycan is required for S. meli-
loti to engage in a functional symbiosis and that this requirement
is independent of the effect that succinylation has on susceptibility
to glycanase cleavage.

DISCUSSION

We have demonstrated that S. meliloti 1021 double mutants
deficient in both ExoK and ExsH glycanases make only HMW
succinoglycan and that these strains can form a productive sym-
biosis with the host M. truncatula. This is the first report providing
biochemical evidence that the residual LMW hexose-sugar-
containing material produced by S. meliloti 1021 ExoK ExsH dou-
ble glycanase mutants is not succinoglycan but is most likely cyclic
�-glucans. This demonstrates that, at least under these growth
conditions, production of LMW succinoglycan is completely de-
pendent upon ExoK and ExsH glycanases. Our results also dem-
onstrate that ExoK ExsH double glycanase mutants can form a
productive symbiosis with M. truncatula, which in this case must
be mediated by HMW succinoglycan. In studies that report partial
rescue of host invasion by an S. meliloti succinoglycan-deficient
mutant by coinoculation with succinoglycan, it was the LMW
succinoglycan fraction that promoted rescue (50, 54, 55). These
findings are not mutually exclusive with our results. A require-
ment for the LMW form in rescue studies could be specific to
experiments in which succinoglycan is exogenously applied to the
root hair surface and is not actively being secreted by bacteria in
infection threads.

Other symbiotic EPSs can mediate infection thread formation
by other strains of Sinorhizobium meliloti (19), but these other
polysaccharides are not produced in S. meliloti 1021. For example,
an expR101 mutant of S. meliloti 1021, S. meliloti 8530, produces
the EPS galactoglucan (EPSII) in sufficient quantities to mediate
infection thread formation on the host alfalfa (19). However, in
S. meliloti 1021, under phosphate-replete conditions, EPSII is pro-
duced in, at most, trace amounts (56–58). Also, EPSII cannot
support invasion on the host M. truncatula (21). Therefore, EPSII
cannot have been responsible for host invasion of M. truncatula by
the ExoK ExsH double glycanase mutants. In addition, the capsu-
lar K antigen of S. meliloti strain Rm41 can also mediate infection
thread formation on the host alfalfa (19), but the S. meliloti 1021
strain lacks fully functional paralogs of the critical Rm41 rkpZ
gene and consequently cannot produce K antigen in a symbioti-
cally functional form (23, 59, 60). Therefore, infection thread for-
mation on M. truncatula by S. meliloti 1021 is dependent on suc-
cinoglycan, and successful host invasion by the ExoK ExsH double
glycanase mutants is not mediated by EPSII or K antigen.

This work also answers the long-standing question regarding
whether S. meliloti strains with a mutation in the exoH-encoded
succinyltransferase fail to form a productive symbiosis because the
succinoglycan they produce is unsuccinylated or, instead, be-
cause it cannot be cleaved by the glycanases and is therefore
only in the HMW form. ExoK ExsH double glycanase mutants
producing HMW succinylated succinoglycan form a successful
symbiosis with M. truncatula, while triple mutants with mutations
in both glycanases and exoH, producing HMW unsuccinylated
succinoglycan, form neither functional nodules nor a productive
symbiosis. Since we have shown that the successful ExoK ExsH

double glycanase mutants do not produce LMW succinoglycan,
this strongly suggests that the symbiotic defect in exoH
succinyltransferase-deficient mutants is due to the lack of the
acidic succinyl group on succinoglycan.

The unsuccinylated succinoglycan produced by an exoH mu-
tant of S. meliloti lacks 1 to 2 negatively charged substituents per
monomer, although it retains the negatively charged pyruvyl
group (39). The degree of succinylation of EPS produced by other
S. meliloti strains has also been proposed to affect the ability of
each strain to form a productive symbiosis on a particular M. trun-
catula ecotype (61). The loss of the succinyl groups of succinogly-
can results in an increase in viscosity and in polymer chain stiff-
ness, probably due to reduced charge density (62). It is also likely
that loss of negative charge would reduce the ability of succinogly-
can to interact with positively charged ions in the infection thread
matrix (28). Another possibility is that modifications to succi-
noglycan could alter its ability to quench reactive oxygen species
(ROS) in the infection thread (63). These factors might affect the
fluidity of the infection thread matrix, thereby affecting infection
thread progression (5, 64).

Recent studies on the EPS produced by the exoU mutant of
Mesorhizobium loti R7A also suggest that loss of negative charge
on symbiotically active rhizobial EPSs may be important for func-
tion (13, 16). The truncated, pentasaccharide EPS produced by the
exoU mutant lacks one neutral glucose sugar and two negatively
charged uronic acid sugars (glucuronic acid and riburonic acid)
(13, 16). This truncated M. loti exoU mutant-produced EPS pre-
vents infection thread formation on the host plant L. japonicus,
and this blockage is dependent upon the L. japonicus Epr3-
encoded receptor-like kinase (13, 16). It is not yet known if it is the
loss of negative charge from uronic acids or other structural fea-
tures of the truncated exoU mutant EPS that is critical for blocking
infection thread formation. It is possible that S. meliloti succi-
noglycan similarly interacts with an M. truncatula ortholog of
EPR3 and that loss of the negatively charged succinyl groups leads
to a blockage in infection thread formation.

An important difference between the roles of EPS in M. loti-
L. japonicus symbiosis and S. meliloti-M. truncatula symbiosis is
that an M. loti EPS-deficient exoB mutant can invade L. japonicus
roots and form a functional symbiosis, although it is less efficient,
inducing 30 to 50% the number of mature, extended infection
threads induced by the wild type at 10 to 14 days postinoculation
(13, 16). This contrasts with the requirement for succinoglycan in
infection thread formation on plant hosts by S. meliloti. A
succinoglycan-deficient S. meliloti exoY mutant forms no ex-
tended infection threads on the host alfalfa by 10 to 12 days post-
inoculation (10). This is consistent with earlier work showing that
EPS production by rhizobia is more critical for symbiosis on plant
hosts that form indeterminate nodules, such as alfalfa and
M. truncatula, than on those that form determinate nodules, such
as L. japonicus (65). In indeterminate nodules, infection threads
must be maintained throughout the life of the nodule to allow
bacteria to reach and invade not only cells of the nodule primor-
dium but also the newly divided plant cells behind the persistent
nodule meristem (7). The accumulation of aborted infections (10,
66), cytological evidence for plant defense responses (67), and
expression of plant defense genes (66) in roots inoculated with
succinoglycan-deficient strains of S. meliloti provide extensive ev-
idence for a role for succinoglycan in the intimate interaction
between bacteria and root cells during invasion. Whether all of
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these critical symbiotic interactions between succinoglycan and its
host are dependent upon an M. truncatula ortholog of L. japonicus
EPR3 receptor-like kinase remains to be determined.

MATERIALS AND METHODS
Bacterial strains and growth conditions. S. meliloti 1021 strains (see Ta-
ble S1 in the supplemental material) were grown at 30°C in LBMC me-
dium (68), GMS (glutamate mannitol salts medium) (41), M9 minimal
medium (8), or Jensen’s plant medium with glutamate and mannitol (27).
Bacterial plates contained 1.5% Bacto agar (BD, Franklin Lakes, NJ). Cal-
cofluor polysaccharide indicator plates contained 0.02% Calcofluor white
M2R (fluorescent brightener 28 [Sigma, St. Louis, MO]) (8). The antibi-
otic concentrations were 1 mg/ml or 500 �g/ml streptomycin, 200 �g/ml
neomycin, 25 �g/ml gentamicin, and 50 �g/ml spectinomycin.

Construction of plasmids and S. meliloti mutant strains. Restriction
enzymes and polymerases were obtained from New England Biolabs (Ip-
swich, MA). Primers were obtained from Eurofins MWG Operon (Hunts-
ville, AL). Transductions were performed using phage �M12 (69). All
strains, plasmids, and primers and the construction of strains are de-
scribed in Table S1 in the supplemental material.

Plant nodulation assays. Host plant Medicago truncatula cv. “Jema-
long A17” was prepared for inoculation with S. meliloti as previously
described (68). Seedlings were moved to individual Jensen’s medium mi-
crocosms and inoculated with S. meliloti of the appropriate strain as de-
scribed previously (68). Plants were grown in a Percival AR-36L incubator
(Perry, IA) at 21°C, with 60 to 70% relative humidity and 100 to 175 �mol
m�2 s�1 light for 7 weeks.

Detection of �-glucuronidase activity and imaging of roots and
nodules. �-Glucuronidase expression by bacteria was detected by staining
whole roots in X-Gluc buffer (1 mM 5-bromo-4-chloro-3-indolyl-�-D-
glucuronic acid, cyclohexylammonium salt; 0.02% SDS, 50 mM Na-
phosphate [pH 7]) (70) for 48 h. Whole roots were imaged on an AZ100
Multi-Zoom microscope equipped with a DS-Fi1, 5-megapixel color
camera (Nikon Instruments, Melville, NY).

Polysaccharide fractionation and quantification. To isolate LMW
polysaccharides, total culture supernatant from 5-day GMS cultures was
collected by centrifugation for 20 min at 11,000 � g in a Beckman Avanti
J-20XP centrifuge. Hexose-sugar-containing polysaccharide was quanti-
fied by anthrone-sulfuric acid assays as described previously (27). The
optical density at 620 nm (OD620) of sample anthrone assays was com-
pared to a 2-fold dilution series of glucose. Anthrone assays performed on
the appropriate medium served as the blank. Culture supernatant was
then vacuum filtered through a 0.2-�m-pore filter, followed by pressure
filtration through a 10-kDa filter in a stirred cell. After isolation of mate-
rial of �10 kDa, samples were freeze-dried and resuspended in deionized
water. Insoluble material was removed by centrifugation. Samples were
dialyzed first against deionized water and then against 0.125 M NaCl–
0.125 M Na-acetate, using a 0.5- to 0.1-kDa MMCO membrane (Spec-
trum Labs, Rancho Dominguez, CA).

Following dialysis, samples were fractionated further by size exclusion
chromatography performed on an AKTA Purifier (GE Healthcare). Wild-
type sample aliquots were normalized to 50 �g total protein and loaded in
0.85 ml onto a HiLoad 16/60 Superdex 75 size exclusion column (GE
Healthcare). The Superdex 75 column was run in 0.125 M NaCl– 0.125 M
Na acetate buffer at 0.5 ml/min. Fractions of 1.4 ml were collected with
0.25 column volume discarded prior to the start of fractionation. Vitamin
B12 (1.35 kDa) was included as a low-molecular-mass marker. The
hexose-sugar content of each fraction was measured by anthrone-sulfuric
acid assays.

To further resolve LMW peaks from the wild type, fractions 26 to 56 of
each of 6 Superdex 75 column runs of wild-type sample were concentrated
by freeze-drying and dialyzed against 0.125 M NaCl– 0.125 M Na acetate
using a 0.5- to 0.1-kDa MMCO membrane. The pooled fractions from
each Superdex 75 run were individually loaded in 1 ml onto a HiLoad
16/60 Superdex 30 size exclusion column (GE Healthcare). The Superdex

30 column was run in 0.125 M NaCl– 0.125 M Na acetate buffer at 0.5 ml/
min. Fractions of 1.2 ml were collected with 0.25 column volume dis-
carded prior to starting fractionation. The average total OD620 value mea-
sured by the anthrone-sulfuric acid assay for Superdex 30 fractions 10 to
65 from the wild type was 3.26. Sample from the exoY mutant and double
glycanase mutants 1325 and 1328 that had been size selected between 10
and 0.5 kDa (as described above) was diluted to 3.26 OD620 anthrone
assay units per ml. One-milliliter aliquots were run on the Superdex 30
column under the same conditions as the wild type.

Glycosyl composition analysis. Fractions 25 to 28 from all wild-type
samples run on the Superdex 30 column were pooled and dialyzed against
deionized water using a 1- to 0.5-kDa MMCO membrane and freeze-
dried. Fractions 29 to 34 and fractions 36 to 41 from all wild-type samples
were similarly pooled and dialyzed using a 0.5- to 0.1-kDa MMCO mem-
brane. The same fraction pools were prepared from the exoY mutant and
from double glycanase mutants 1325 and 1328. Glycosyl composition
analysis was performed by combined gas chromatography-mass spec-
trometry (GC/MS) of alditol acetates (AAs) as previously described (71) at
the University of Georgia Complex Carbohydrate Research Center. Com-
position analysis was performed using 300 to 500 �g of sample. As the
internal standard, 20 �g inositol was added to samples. Samples were
hydrolyzed in 2 M trifluoroacetic acid (TFA) for 2 h in a sealed tube at
121°C, reduced with NaBD4, and acetylated using acetic anhydride-TFA.
The resulting AAs were analyzed on an Agilent 7890A gas chromatograph
interfaced with a 5975C MSD in electron impact ionization mode. Sepa-
ration was performed on a 30-m Supelco SP-2331 bonded-phase fused
silica capillary column.
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