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Human learning is supported by multiple neural mechanisms that
maturate at different rates and interact in mostly cooperative but
also sometimes competitive ways. We tested the hypothesis that
mature cognitive mechanisms constrain implicit statistical learning
mechanisms that contribute to early language acquisition. Specifi-
cally, we tested the prediction that depleting cognitive control
mechanisms in adults enhances their implicit, auditory word-
segmentation abilities. Young adults were exposed to continuous
streams of syllables that repeated into hidden novel words while
watching a silent film. Afterward, learning was measured in a
forced-choice test that contrasted hidden words with nonwords.
The participants also had to indicate whether they explicitly recalled
the word or not in order to dissociate explicit versus implicit knowl-
edge. We additionally measured electroencephalography during
exposure to measure neural entrainment to the repeating words.
Engagement of the cognitive mechanisms was manipulated by
using two methods. In experiment 1 (n = 36), inhibitory theta-burst
stimulation (TBS) was applied to the left dorsolateral prefrontal cor-
tex or to a control region. In experiment 2 (n = 60), participants per-
formed a dual working-memory task that induced high or low
levels of cognitive fatigue. In both experiments, cognitive depletion
enhanced word recognition, especially when participants reported
low confidence in remembering the words (i.e., when their knowl-
edge was implicit). TBS additionally modulated neural entrainment
to the words and syllables. These findings suggest that cognitive
depletion improves the acquisition of linguistic knowledge in adults
by unlocking implicit statistical learning mechanisms and support
the hypothesis that adult language learning is antagonized by
higher cognitive mechanisms.

auditory statistical learning j implicit learning j electroencephalography j
cognitive load j transcranial magnetic stimulation

Human learning is thought to be supported by the interac-
tions between two basic memory systems of the brain,

namely declarative and nondeclarative memory (1). Declarative
memory is characterized by voluntary, explicit, attention-based
processes, such as recall and recognition of facts/events, and is
mediated by medial-temporal lobe and prefrontal cortex struc-
tures (2). Nondeclarative memory, also referred to as proce-
dural memory, on the other hand is part of implicit memory
and includes the acquisition of a heterogeneity of skills, habits,
and procedures. It is mediated by basal ganglia, cerebellar, and
neocortical structures, as well as parts of the prefrontal cortex
[e.g., Broca’s area (3–5)].

Accumulating evidence supports a competitive relationship
between these two memory systems during human skill learning.
Suppression of the declarative memory system by interventions
like repetitive transcranial magnetic stimulation (TMS), distrac-
tion tasks, alcohol consumption, hypnosis, intake of benzodiaze-
pines, or cognitive fatigue, can actually enhance performance in
implicit, perceptual-motor learning tasks such as the serial-
reaction time task (6–11) or intuitive reasoning tasks (12). These
findings suggest that higher-level cognitive functions associated

with declarative memory and supported by the prefrontal cortex
can interfere with behavior that is naturally driven by implicit
learning processes (13). However, it remains unresolved
whether competing memory systems also affect implicit statisti-
cal learning abilities that are critical for the early, rapid acquisi-
tion of language in infants (14). This is an important question,
as it could explain why infants and children pick up languages
with less effort than adults (cf “What don’t we know?”) (15).

Language acquisition involves many different memory and
learning processes that are dependent on both procedural and
declarative memory (2, 16). The first step for infants acquiring
language is to gain knowledge about the phonological structure
in one’s spoken language system, the probabilistic constraints
on how speech sounds combine (i.e., phonotactic learning), and
the segments of continuous speech (i.e., word forms) (17).
Word form learning takes place already in the first 12 months
of life and is an important precursor to vocabulary acquisition
(i.e., mapping form to meaning) and more complex language
acquisition (e.g., grammar) later in development (18). In the
present study, we focus on statistical learning mechanisms that
contribute to word segmentation and thus novel word form
learning in the early stages of language acquisition.

Statistical learning is generally known as the ability to pick
up on patterns in the environment through extraction of
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frequent regularities and distributional properties. The term
was first introduced in the field of cognitive psychology by the
work of Saffran, Aslin, and Newport (1996) (19), who demon-
strated that infants of only 8-mo-old can extract word bound-
aries and segment novel word forms from a continuous stream
of speech sounds with no other cue than the transitional proba-
bilities between syllables. Later, this learning was also demon-
strated in older children and adults (20, 21) and across different
domains (e.g., music and grammar) or modalities (e.g., audi-
tory, visual, and motor) (22, 23), indicating that statistical learn-
ing is a largely continuous and domain-general learning mecha-
nism for skill acquisition across the human life span.

In a typical statistical learning experiment, participants are
repeatedly exposed to patterned stimuli such as consonant
strings from an artificial grammar, or recurrent syllable triplets.
Learning is then typically assessed postexposure by using a two-
alternative forced-choice recognition task in which triplets from
the exposure stream are pitted against foils. Participants have
to indicate which of the two triplets sounded most familiar, and
above-chance accuracy is taken as indication of learning. Since
statistical learning occurs without any instruction or intention
to learn, it is often assumed to result in implicit memory repre-
sentations (24). This view is also supported by the evidence that
statistical learning occurs in infants and even in sleeping neo-
nates (25). However, in recent work, Batterink and colleagues
demonstrated that even without intention to learn, adults
acquire mainly explicit knowledge of the novel word forms dur-
ing statistical learning (26–29). This can be derived from the
observation that participants’ performance was above chance
when they were confident remembering the triplet but at
chance when they were unconfident. Knowledge is implicit
when participants lack awareness of what they have learned.
This means that if participants perform also above chance
when they are unconfident, knowledge is inferred to be implicit
(30). In contrast, if they perform at chance level when confi-
dence is low, no implicit knowledge is gained. Although statisti-
cal learning may produce additional implicit knowledge that
cannot be assessed by the recognition and memory judgement
tasks (e.g., ref. 28), Batterink’s earlier findings show that adults
store the acquired word knowledge mainly in the explicit mem-
ory system.

We and others have proposed that cognitive development
and maturation of the prefrontal areas negatively affect lan-
guage acquisition, such as word form or grammar learning
(31–35). For instance, we showed that children outperform
adults on the Hebb repetition learning paradigm (32, 33), a
memory paradigm in which participants are asked to immedi-
ately recall syllable sequences that consist of hidden repeated
word forms. Interestingly, in a follow-up study, we found that
cognitive depletion by TMS to the left dorsolateral prefrontal
cortex (DLPFC), an area closely related to declarative memory
and cognitive control, enhanced Hebb performance in adult
participants (34). This suggests that late-developing prefrontal
cognitive mechanisms can induce changes in efficiently acquir-
ing sequential language information from the environment, a
finding that is largely in line with previously reported evidence
in skill learning (13). Recently, we corroborated this idea fur-
ther by showing enhanced phonotactic constraint learning in
adults under cognitive fatigue (35). Based on these findings, we
hypothesize that the higher cognitive control system could
reduce access to implicit memory processes in adults, thereby
making them less efficient in language acquisition relative to
infants and children. This idea is in line with the well-known
less-is-more hypothesis that attributes developmental changes
in language acquisition, such as phonology and grammar, to
maturational changes in attention and memory capacities
(36–38). In our previous work, participants were explicitly
asked to memorize (34) or produce (35) syllable sequences and

thus exposure to the novel language was not passive, or “infant
like.” Moreover, we did not separate implicit and explicit mem-
ory representations. Thus it remains unresolved how higher-
order cognitive functions affect acquisition of implicit linguistic
knowledge during passive listening to continuous speech using
statistical learning mechanisms that support infant language
acquisition (23, 39).

The aim of the current study was to directly address this
question using the auditory statistical learning paradigm. In
particular, we aimed to determine whether a temporary deple-
tion of the higher cognitive control system, using two different
interventions, can unlock adults’ implicit statistical learning
processes that serve infant word segmentation. To investigate
this, we exposed young adults to continuous streams of syllables
with, unknown to them, repeating three-syllable pseudowords,
while watching a silent film. In the first experiment, inhibitory
continuous theta-burst stimulation was used to induce a long-
lasting disruption in left DLPFC or a control site prior to expo-
sure, similar to the method used in Smalle et al., 2017 (34). In
the second experiment, participants first performed an effortful
dual working-memory task under high– or low–cognitive-load(
HCL and LCL, respectively) conditions, which induces cogni-
tive fatigue that hampers subsequent cognitive performance (7,
35, 40), or did not perform a cognitive load task prior to the
language exposure (control or no-load condition). Our primary
measure of statistical learning was the offline recognition of the
hidden words, which was assessed 15 min after exposure. This
was combined with a memory judgement procedure, which
measured how confident the participants were that they
remembered the hidden words. This task dissociates explicit
versus implicit memory representations (e.g., refs. 27–29, 41).
In both experiments, electroencephalography (EEG) was also
measured during the 20-min language exposure in order to
investigate an online perceptual component as second indepen-
dent measure of statistical learning. Research has shown that
the steady-state response of the brain shows a decrease at the
frequency of individual syllables and an increase at the rhythm
of three-syllable words while listening to continuous sound
streams that consist of repeating three-syllable structures. This
shift in neural entrainment indicates online statistical learning
of novel words as a function of auditory exposure (29). Overall,
we predicted that TMS-induced disruption of the DLPFC (in
experiment 1) and cognitive fatigue (in experiment 2) would
enhance statistical language learning and especially strengthen
implicit memory representations for the hidden novel words.

Results
The Effect of Cognitive Depletion on Recognition of the Hidden
Words.
Experiment 1. Participants performed above chance on the
forced-choice recognition task, indicating statistical learning,
in both groups (i.e., DLPFC: mean = 68.8, SE = 3.5, t17 = 5.4,
P < 0.001, d = 1.3; Vertex: mean = 57.3, SE = 3.4, t17 = 2.2,
P < 0.05, d = 0.5). TMS-induced disruption of the DLPFC
improved recognition accuracy of the hidden words [the effect
of TMS: β = 0.28, SE = 0.096, Z = 2.87; X2 (1) = 8.25, P =
0.004, d = 0.6, Fig. 1]. For the unconfident responses (64% of
all trials; 31% in TMS-disrupted group, 33% in control group),
accuracy was significantly above chance in the disrupted group
(mean = 63.9, SE = 3.7, t17 = 3.8, P < 0.001, d = 0.9) but not in
the control group (mean = 51.7, SE = 3.8, t < 1, P = 0.33, d =
0.1). The control and disrupted groups differed significantly
from each other [the main effect of TMS: β = 0.23, SE = 0.108,
Z = 2.16, X2 (1) = 4.68, P = 0.030, d = 0.5]. For the confident
responses (36% of all trials; 19% in TMS-disrupted group, 17%
in control group), all participants showed above-chance accu-
racy (DLPFC: mean = 75.9, SE = 6.0, t17 = 4.3, P < 0.001,
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d = 1.0; Vertex: mean = 66.3, SE = 7.8, t16 = 2.08, P < 0.05,
d = 0.5). There was no significant difference between groups
[the main effect of TMS: β = 0.35, SE = 0.214, Z = 1.62,
X2 (1) = 2.63, P = 0.11].
Experiment 2. Participants performed above chance on the
forced-choice recognition task, indicating statistical learning, in
all groups (high load: mean = 64.7, SE = 2.7, t19 = 5.4, P <
0.001, d = 1.2; low load: mean = 65.6, SE = 3.9, t19 =4.0, P <
0.001, d = 0.9; no load: mean = 55.3, SE = 2.7, t19 =1.9, P <
0.05, d = 0.4). Cognitive load improved recognition accuracy of
the hidden words [effect of cognitive load: high versus Control:
β = 0.42, SE = 0.19, Z = 2.23, P = 0.026, d = 0.4; low versus
Control: β = 0.46, SE = 0.19, Z = 2.47, P = 0.013, d = 0.5; X2

(2) = 7.50, P = 0.024, Fig. 1]. For the unconfident responses
(64% of all trials; 21% in high, 20% in low, and 24% in no-load
group), accuracy was above chance in the high–cognitive-load
group (mean = 61.8, SE = 3.8, t19 = 3.08, P < 0.01, d = 0.7)
and in the low–cognitive-load group (mean = 57.8, SE = 4.7, t19
= 1.64, P = 0.05, d = 0.4) but not in the no cognitive load group
(mean = 51.3, SE = 4.5, t < 1, P = 0.4, d = 0.07). The cognitive
load enhanced accuracy relative to the control group [high ver-
sus Control: β = 0.52, SE = 0.20, Z = 2.57, P = 0.01, d = 0.5;
low versus Control: β = 0.37, SE = 0.20, Z = 1. 81, P = 0.070, d
= 0.4; the main effect of cognitive load: X2 (2) = 7.16, P =
0.028]. For the confident responses (36% of all trials; 12% in
high, 14% in low, and 10% in no-load group), all groups
showed above-chance accuracy (high cognitive load: mean =
66.0, SE = 6.5, t19 = 2.5, P = 0.012, d = 0.6; low cognitive load:
mean = 75.1, SE = 6.3, t19 = 4.0, P < 0.001, d = 0.9; no cogni-
tive load: mean = 68.7, SE = 5.7, t19 = 3.3, P < 0.01, d = 0.7).
No significant differences were found between the groups [high
versus Control: β = �0.012, SE = 0.45, Z = �0.028, P = 0.98;
low versus Control: β = 0.43, SE = 0.46, Z = 0. 94, P = 0.35;
the main effect of cognitive load: X2 (2) = 1.24, P = 0.54].

The Effect of Cognitive Depletion on Neural Entrainment during
Exposure.
Experiment 1. During exposure, neural entrainment to the
underlying word patterns was enhanced during structured expo-
sure relative to random exposure: intertrial coherence (ITC)
increased at the word frequency (P = 0.01, Cohen’s d = 1.1)
but decreased at the syllable frequency (P = 0.003, d = 1.4) rel-
ative to exposure to the random syllable stream [Frequency ×
Exposure: F (1, 31) = 16.4, P < 0.001, Fig. 2]. Disrupting the
left DLPFC with TMS increased the neural word-learning
index (WLI) [Exposure: F (1, 30) = 31.6, P < 0.001, TMS ×
Exposure: F (1, 30) = 5.6, P = 0.025, random: P = 0.6, d = 0.2,
structured: P = 0.004, d = 1.1, Fig. 3].
Experiment 2. During exposure, neural entrainment to the
underlying word patterns was enhanced during structured expo-
sure relative to random exposure: ITC increased at word fre-
quency (P < 0.001, d = 1.4) but decreased at syllable frequency
(P = 0.08, Cohen’s d = 0.5) relative to exposure to a random
syllable sequence [Frequency × Exposure: F (1, 57) = 19.3, P <
0.001, Fig. 2]. Cognitive load did not affect the neural WLI
[Exposure: F (1, 55) = 40.4, P < 0.001, Load × Exposure: F (2,
55) = 1.04, P = 0.36, Fig. 3].

Discussion
Overall, our findings provide evidence for a competitive inter-
action between higher cognitive control functions and implicit
statistical learning mechanisms that contribute to word segmen-
tation in the early stages of language acquisition. More specifi-
cally, we depleted the cognitive control mechanisms in young
adults by applying TMS to the left DLPFC (experiment 1) and
by inducing cognitive fatigue (experiment 2). These interventions
with long-lasting effects were applied prior to exposure to a con-
tinuous stream of speech sounds that consisted of trisyllabic word
patterns. There were no acoustic cues of the word boundaries in

Fig. 1. Behavioral results reflecting statistical word segmentation. The Upper panel shows total recognition accuracy (%) for the hidden words as a
function of the cognitive disruption in experiment 1 (Left) and experiment 2 (Right). The Lower panel shows recognition accuracy for the hidden
words when participants indicated low and high confidence in remembering the hidden word, referred to as unconfident versus confident responses,
respectively. Above-chance performance on confident responses reflects knowledge stored in explicit memory. Above-chance performance on unconfi-
dent responses reflects knowledge stored in implicit memory. Error bars denote SEMs. Asterisks denote significance for one-tailed t tests: *P < 0.05,
**P < 0.01, **P < 0.001. ns, nonsignificant.
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the streams. Both TMS-induced disruption of the left DLPFC
and cognitive fatigue enhanced recognition accuracy for the hid-
den words, indicating enhanced statistical learning. Intriguingly,

these cognitive manipulations specifically enhanced recognition
accuracy when the participants had low confidence in remember-
ing the hidden words, indicating enhanced implicit statistical

Fig. 2. EEG results reflecting online statistical learning: ITC (mean of six centrofrontal midline electrodes, FC1, FC2, F3, F4, FC5, and Fz) during exposure
to random and structured sequences in experiment 1 (TMS) and experiment 2 (Cognitive Load). Topographical plot shows distribution of ITC across the
scalp, as a function of exposure and frequency. ITC values were used to calculate the WLI (i.e., ITC word / ITC syllable) (Fig. 3).
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learning. In fact, the control adults showed chance-level accuracy
for the words stored in implicit memory, in agreement with ear-
lier studies in adults (27–29), whereas the cognitively depleted
adults showed above-chance–level recognition accuracy. The
results therefore suggest that cognitive depletion unlocks implicit
word-segmentation abilities in adults.

All groups showed above-chance recognition accuracy when
confidence in remembering the hidden words was high, indicat-
ing explicit statistical learning. Cognitive manipulations had no
effect on explicit statistical learning. This is important because
the cognitive manipulations could have reduced explicit or
declarative learning mechanisms. Our findings suggest that the
enhancement of implicit statistical learning did not occur at the
expense of explicit memory formation and thus does not
completely support the idea of a direct competition between
implicit and explicit learning. These observations are more in
line with the idea that implicit statistical learning remains avail-
able across development (39) but that the adult brain imposes a
“bottleneck,” which prioritizes access to the explicit memory sys-
tem (42). Disrupting the higher cognitive control mechanisms
abolishes this “bottleneck” and, as a consequence, improves
adults’ capacity to simultaneously store linguistic knowledge in
both implicit and explicit memory systems. This results in overall
enhanced word recognition in the disrupted adults. Further
research is needed to test this model and investigate how facili-
tating the higher-order cognitive system affects acquisition of
implicit versus explicit linguistic knowledge.

Our experimental paradigm included a break after the expo-
sure to allow participants to recover from the cognitive manipu-
lations before performing the memory tests in experiments 1
and 2. It is possible that this delay strengthened implicit mem-
ory consolidation rather than episodic recall so that participants
were less likely to explicitly remember the words from the
stream. In fact, in both experiments, participants were confi-
dent in only 36% of the total trials. The memory judgement
(i.e., the proportion of confident versus unconfident responses)
was however unaffected by TMS or cognitive fatigue. Cognitive
manipulations specifically affected accuracy of the unconfident
but not the confident responses after a 15-min delay. Further
research is needed to investigate whether this effect is depen-
dent on a short consolidation period and whether a longer con-
solidation period would further strengthen this effect.

We additionally measured neural entrainment during statis-
tical learning in order to investigate perceptual binding of
neighboring syllables into words during passive listening to the
structured syllable streams, as a second, independent marker
of learning. As expected based on recent findings by Batterink
and Paller (2017), neural entrainment decreased at the fre-
quency of syllables, while it increased at the level of the words
as a function of the structured exposure (29). This indicates
successful perceptual binding across all participants. Interest-
ingly, however, TMS-induced disruption of the left DLPFC

enhanced this perceptual binding (measured with a WLI),
whereas cognitive fatigue had no effect on it, although both
TMS and cognitive fatigue enhanced memory for the words as
measured in the postexposure recognition task. These findings
are in line with the view that a perceptual binding (also called,
“processing-based”) component of statistical learning (as mea-
sured here with online EEG) is dissociable from a memory
storage or retrieval component of statistical learning (as mea-
sured here with the offline recognition task) (26, 43, 44). This
is further supported by the absence of correlation between the
online and offline measures (SI Appendix). Exploratory oscilla-
tory power analyses (SI Appendix) showed that TMS-induced
disruption of the DLPFC marginally enhanced the overall
power of theta (4 to 8 Hz) and alpha oscillations (8 to 12 Hz)
and significantly enhanced alpha oscillations in the parietal-
occipital area specifically. Cognitive fatigue, in contrast,
decreased the overall power of delta (1 to 4 Hz) oscillations.
This suggests that the cognitive manipulations had different
neural consequences. Theta and lower alpha power are strong
in early childhood, and it decreases during cognitive develop-
ment (e.g., refs. 45, 46). Power of lower-frequency oscillations,
such as delta and theta, continue to decrease during adulthood
(47). Thus, the pattern of results invites a tentative interpreta-
tion that disruption of the left DLPFC made the young adults
to function in the same way as young children do and therefore
enhanced both perceptual binding and implicit memory com-
ponents of statistical learning. The cognitive fatigue manipula-
tion, however, possibly mimicked cognitive decline throughout
adulthood. Statistical language learning and implicit motor
learning have been shown to be well-preserved in older adults
(20, 48–51).

The current findings are largely in agreement with previous
studies showing that TMS-induced disruption of the DLPFC
and/or cognitive fatigue enhances sequence learning in the
motor system (6, 7) and the language system (34, 35). The pre-
sent study demonstrates the effects of cognitive depletion on
implicit versus explicit outcomes of statistical language learning
in the absence of explicit instructions (i.e., passive listening dur-
ing exposure) and replicating these effects by using two differ-
ent methods: TMS-induced disruption and cognitive fatigue. A
previous study found that only high cognitive load induced feel-
ings of cognitive fatigue and improved motor sequence learning
(7). We found that both low- and high-load tasks increased feel-
ings of cognitive fatigue in our participant sample, and conse-
quently, statistical language learning was enhanced in both
groups (relative to a control condition where no cognitive load
task was performed).

Statistical language learning relies on multiple brain regions
and pathways that work in parallel, such as hippocampus (44),
inferior frontal cortex (52), striatum (53), and auditory–motor
pathways (54). It remains, however, poorly understood how
these brain regions and pathways contribute to acquisition of

Fig. 3. EEG results reflecting online statistical learning: Changes in WLI as a function of exposure (Random versus Structured sequences) with and with-
out cognitive disruption (experiment 1: TMS; experiment 2: Cognitive load). Error bars denote SEMs.
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implicit versus explicit memory representations for linguistic
knowledge from structured sound sequences. Another impor-
tant goal for future research is to determine how the prefrontal
cognitive control mechanisms affect competition and coopera-
tion between various language-learning mechanisms.

This experimental study provides causal evidence for a
hypothesis that the cognitive control system constrains implicit
language-learning abilities in adults. Our findings show that
depletion of the mature cognitive system can enhance implicit,
statistical learning mechanisms that are used in early language
acquisition. This finding is an important step in science of
human language development, as it could help us to understand
maturational constraints and interindividual differences (e.g.,
language-related difficulties) in language learning. Importantly,
cognitive depletion could be a key for unlocking infant-like
implicit learning mechanisms and, as a result, enhance foreign
language learning in adults.

Materials and Methods
Participants. We decided to test 20 participants in each group based on the
large effect sizes in a previous study by Batterink and colleagues (28), who
used similar dependent measures, and in our previous study, in which we used
an identical TMS paradigm as in the current study (34). In our previous study,
we obtained a t test effect size d of 0.88 for the difference in Hebb learning
performance between a DLPFC-disrupted group (n = 14, mean correct recall
on the last block of Hebb trials = 89.3%, SD = 16.04%) and a control group
(n = 14, mean correct recall = 72.5%, SD = 21.9%). After postcollection exclu-
sion of four nonfluent English–speaking participants, we report the data of 36
participants in experiment 1 who were randomly assigned to either the left
DLPFC stimulation (n = 18, age = 25.3M ± 4.8SD, 9 females) or the control stim-
ulation to Vertex (n = 18, age = 23.4M ± 5.0SD, 12 females). In three partici-
pants (two in the TMS group and one in the control group), EEG was not
recorded due to technical failures. Data of these participants were however
still included for the behavioral analyses. In experiment 2, we report the data
of 60 participants who were randomly assigned to a high-load (n = 20, age =
22.7M ± 3.1SD, 12 females), low-load (n = 20, age = 21.8M ± 3.9SD, 16 females),
or no-load (i.e., control, n = 20, age = 18.8M ± 0.81SD, 16 females) condition.
We have no EEG recording from two participants (one in the control group
and one in the low load group) due to technical failure, but their behavioral
data were included in the analyses. All included participants were right-
handed and native (or nonnative but fluent) English speakers. None of the
participants had a history of language (learning) impairments or neurological
problems. Participants from all groups were matched on various cognitive
control abilities (Table 1). Experiments were undertaken with written
informed consent and blind to the purpose of the study. Participants received
financial compensation at the end of the experiment (£10/h). The study was
approved by the Research Ethics Committee of the School of Psychology at
the University of Nottingham (reference: F1003).

Experimental Design. During a pretest, individual cognitive control abilities
were assessed (Table 1). Participants in experiment 2 were additionally pre-
tested on their maximal processing speed capacity (i.e., the shortest processing
time interval to simultaneously perform two working memory tasks while
maintaining an accuracy of at least 85%). This assessment was necessary for
the experimental cognitive load manipulation in experiment 2 [Cognitive

Fatigue (Experiment 2)]. For both experiments, the main experiment took
place on a separate day, during which the participants in both experiments
were exposed to a 20-min auditory syllable stream while EEG was recorded.
After a 15-min break, the participants completed a postexposure recognition
test that examined implicit and explicit memory of the hidden words. The
main experimental design is presented in Fig. 4.

TMS (Experiment 1). TMS was delivered using a 70-mm–diameter figure-eight
coil attached to DuoMAG XT stimulator (by Deymed, Brainbox Ltd). We first
localized the left DLPFC in each participant using the BeamF3 algorithm (55,
56). We then identified the left motor cortex as the spot eliciting reliable
twitches in the resting contralateral hand. The active motor threshold (aMT)
was defined as the lowest intensity at which TMS elicited at least 5 out of 10
visible muscle twitches, while the subject sustained a light contraction of their
pinch. After defining the participant’s aMT, the coil was placed over the left
DLPFC or a control area (2 cm posterior to vertex), similar to our previous TMS
study (34). The control area was assumed not to play a role in statistical learn-
ing or cognitive control (57). The location of the coil (i.e., DLPFC or Vertex)
was decided randomly based on the number of participants entering the
experiment. The coil was placed tangentially to the scalp with the handle
pointing posterior at a 45° angle with respect to the anterior–posterior axis
for DLPFC and at 0° for the control site. The intensity of the stimulation was
set at 80% of each participant’s aMT [i.e., at 43.7% (SD = 6.3) for the DLPFC
group and at 49.3% (SD = 8.3) for the control group]. Similar to Smalle et al.,
2017 (34), a modified continuous theta-burst stimulation (cTBS) protocol was
used in which 600 pulses were delivered in a continuous train of 200 bursts.
Each burst consisted of three pulses at 30 Hz, repeated at 6 Hz. The total stim-
ulation duration was 30 s. This modified cTBS protocol is known to inhibit cor-
tical excitability for at least 30 min after stimulation over the primary motor
area (58). Importantly, cTBS to the DLPFC does not impair metacognition or
conscious perception processes (59).

Cognitive Fatigue (Experiment 2). Cognitive fatigue was induced with the
TloadDback task (40). The script of the TloadDback task is freely available on
Open Science Framework (https://osf.io/ay6er). The task was run in Mat-
lab2016b/Psychtoolbox on a Dell laptop (refresh rate, 60 Hz). The letters were
centrally presented in Arial, font size 120, on a 15.6-inch screen. For each par-
ticipant, the shortest time needed for accurately processing two ongoing task
demands, namely n-back letter detection and parity number decision, was
defined during a pretest on a first assessment day (Experimental Design). Dur-
ing the TloadDback task, digits (1 to 4 and 6 to 9) and letters (A, C, T, L, N, E, U,
and P) were presented in alternation on the screen. Participants were
instructed to press the space bar with their left hand every time the displayed
letter was the same as the last-seen letter and to indicate with their right
hand whether the subsequently displayed digit was odd (pressing “1” on the
numeric keypad) or even (pressing “2”). Different levels of cognitive load
were created by presenting the two tasks at different paces based on our par-
ticipant’s pretested maximum processing speed capacities (no a priori group
differences; Table 1). This is defined as the fastest stimulus time duration (STD)
allowing an accuracy performance of at least 85%. Under HCL conditions, the
task was performed for 16 min at the subject’s max. STD while under LCL con-
ditions, the presentation rate was made one-third slower (i.e., STD = max.
STD + 1/2 max. STD). This results in different cognitive demands, with higher
sustained attentional-control requirements for the former condition (despite
the same level of task complexity), eventually leading to a higher state of
“cognitive depletion or mental fatigue” (7, 40). As expected, the LCL partici-
pants showed higher dual-task performance than the HCL participants, who
performed around the minimal 85% accuracy level defined during the pretest

Table 1. Participant characteristics: Pretested individual cognitive control abilities of the different groups

Control Depleted

Experiment 1 Vertex n = 18 DLPFC N = 18
Digit span (forward + backward) 18 (min = 11, max = 25) 19 (min = 11, max = 28)
WCST (N perseveration errors) 7 (min = 5, max = 17) 7 (min = 5, min = 11)

Experiment 2 No load (N = 20) LCL (N = 20) HCL (N = 20)
Digit span (forward + backward) 18 (10 to 22) 19 (12 to 24) 20 (12 to 29)
ECST (N perseveration errors) 8 (5 to 19) 8 (5 to 17) 7 (5 to 11)
STD (in seconds) 0.91 (0.46 to 1.3) 0.87 (0.50 to 1.4) 0.91 (0.46 to 1.3)

Values represent average scores with minimum to maximum in parentheses. WCST = Winsconsin Card Sorting Test for
cognitive reasoning; STD = (pre-tested) Stimulus Time Duration or maximal processing capacity (i.e., the shortest processing
time interval to simultaneously perform two working memory tasks while maintaining an accuracy of at least 85%). All
group comparisons are non-significant according to independent sample t-tests (Ps > 0.05).
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(i.e., 93.3M ± 4.3SD versus 81.5M ± 13.1SD, t38 = 23.1, P < 0.001, respectively).
Participants under the no-load condition immediately started with the main
experiment that is visualized in Fig. 4. A simple numeric self-report rating scale
assessing fatigue (1: I feel no mental fatigue to 10: I feel the worst possible
mental fatigue) was presented immediately before the TloadDback task and
immediately after (i.e., before exposure), as a quick manipulation check for
the induction of cognitive fatigue. Participants who performed no cognitive
load task reported lower subjective feelings of fatigue prior to exposure (i.e.,
4.2M ± 2.01SD) than participants who performed the cognitive load task (i.e.,
5.3M ± 1.9SD; P = 0.001). However, unexpectedly, there were no reliable
differences between the high- and low-load participants (i.e., 5.6M ± 2.1SD
versus 5.0M ± 2.3SD, P = 0.21). There were no differences in baseline subjective
reports for cognitive fatigue across all groups, tested at the start of the experi-
ment (i.e., all Ps > 0.23).

Exposure (Experiments 1 and 2). Twelve 12 unique syllables of a consonant–
vowel structure were selected and structured into four novel word forms (i.e.,
/tu:paIroU/, /goUlA:bu:/, /bi:dA:ku:/, and /pA:di:tA:/). The individual syllables
within each word form occurred at a first, second, and third position across
participants so that in each stimulation group, the subjects 1 to 7 were
exposed to the word forms as listed above, while subjects 8 to 14 received the
word forms /paIroUtu:/, /lA:bu:goU/, /dA:ku:bi:/, and /di:tA:pA:/, and subjects
15 to 21 the word forms /roUtu:paI/, /bu:goUlA:/, /ku:bi:dA:/, and /tA:pA:di:/. This
was done to minimize any stimulus-driven effects that could be caused by
position preferences for syllables within a word. Across all language lists, the
words were matched on average English phonotactic probability (Ps > 0.40).
The 12 syllables were recorded using an online artificial speech synthesizer of
a female British English voice. The audio files were edited to have a duration
of 250 ms and saved with a sampling rate of 44,100 Hz using Audac-
ity software.

Participants were informed that they would hear a continuous stream of
speech sounds and were asked to listen carefully to the sounds. No informa-
tion was given about the hidden structures, nor about a postexposure test on
segments of the heard syllable sequences, hence language exposure was
implicit. Exposure always started with a random stream, in which all 12 sylla-
bles were concatenated in a pseudorandom order without any higher-order
structure; the only constraint was that syllables did not repeat and that no
anagrams of the novel words appeared. In this stream, 900 syllables were pre-
sented (each syllable was repeated 75 times). After the random stream, the
20-min structured stream started, in which the speech sounds were grouped
into four repeating trisyllabic words (Fig. 4). Here, the transitional probability
between neighboring syllables within words was 100 and 33% between
words. For instance, for subjects 1 to 3, /tu:/ in the stream is always followed
by /paI/, while /roU/ could be equally followed by /goU/, /bi:/, or /pA:/.

In total, 1,200 repeating word forms (each word was repeated 300 times)
and 3,600 syllables (plus the syllables from the random block) were presented.
Stimulus onset asynchrony was 320 ms in experiment 1 and 310 ms in experi-
ment 2 (this 10-ms difference between the experiments was unintended). The
speech streamwas presented using Presentation software (version 18.0, Neuro-
behavioral Systems, Inc; www.neurobs.com). The syllables were presented at a
comfortable listening level for each participant through inserted earphones

attached to a Dell desktop computer. During exposure, participants watched
an episode of Planet Earth in silent mode (i.e., without subtitles or sound).
Every ∼5 min, a short break (10 s) was inserted, which reminded the partici-
pants to attend the sounds through a visual instruction on the screen.

EEG Recording and Analyses (Experiments 1 and 2). We recorded an EEG with
27 cap-mounted electrodes (Fp1, Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz,
C3, C4, T3, T4, CP1, CP2, CP5, CP6, Pz, P3, P4, T5, T6, O1, and O2) using a TMS-
compatible EEG system (TruScan Research by Deymed, Brainbox Ltd.). The
nose electrode was used as reference, and an electrode attached to the fore-
head was used as a ground during recordings. Horizontal and vertical electro-
occulograms (EOGs) were recorded bipolarly with electrodes placed at the
outer canthi of the eyes and above and below the right eye. Electrode imped-
ance was kept below 10 kΩ. Signals were filtered online with a 0.1- to 1,000
Hz band-pass filter and recorded at a sampling rate of 3,000 Hz.

The EEG data analyses were performed using EEGLAB, which is an open-
source toolbox operated in the MATLAB environment (60). The continuous
raw data files were rereferenced to the algebraic mean of the left and right
mastoid electrodes, down-sampled to 500 Hz, and filtered at 30-Hz low-pass
filter. Bad channels were identified and interpolated when necessary. Mean
number of interpolated channels per participant was 0.18 in experiment 1,
while therewere no interpolated channels in experiment 2. Periods of EEG sig-
nal containing strong muscle artifacts, electrode drifts, or technical artifacts
were removed from further analysis. In experiment 1 (TMS), one participant
(from the control group) was rejected due to very noisy EEG activities, while
no extra participant was excluded in experiment 2. Independent component
analysis was used for linear decomposition of the continuous data to remove
the contributions of artifact sources (slow drifts, eye blink/movement, and
muscle artifacts) on the scalp sensors. The data were segmented into 5,000-ms
epochs (�2,000 to 3,000 ms relative to the onset of each word in word condi-
tion or every third syllable in the random condition). Amplitude changes
exceeding ±70 μV (including the EOG channels) were removed from further
analysis (less than 20% of the trials). Selective response averaging was con-
ducted separately for each block.

We quantified neural entrainment at the syllabic and word frequencies by
measuring ITC within each condition (word versus syllable/random versus
structured). ITC is known as phase-locking value and is a measure of event-
related phase locking. The higher the ITC value is, the higher phase coinci-
dence across epochs is. That is, the ITC values range from 0 to 1, from purely
non–phase-locked activity to strictly phase-locked activity. ITC was calculated
from 0.5 to 5 Hz in 0.1-Hz steps using a continuousMorlet wavelet transforma-
tion, in which the number of cycles is increased linearly with frequency from
one cycle length to obtain better frequency resolution at higher frequencies.
This approach can optimize the trade-off between temporal resolution at
lower frequencies and frequency resolution at high frequencies (60). Then,
ITC values in each epochwere averaged.

The word presentation frequency was 1.0 and 1.1 Hz and the syllable pre-
sentation frequency was 3.1 and 3.2 Hz in experiments 1 and 2, respectively. If
participants become more sensitive to the underlying word structure in the
continuous speech stream, we should observe a higher ITC at the word fre-
quency but a lower ITC at the syllable frequency during exposure to the

Exposure (EEG)

betarogodikugo ...

10-s break

tupirogolabubedaku paditagolabubedaku tupiropaditagolabu
...

paditatupirobedaku

random (5 min) structured streams (4 x 5 min)

Recogni�on task and memory judgement

tupiro godatuor
(word) (non-word)

Remember/Familiar/Guess?

Experiment 1: 
TMS over DLPFC or Control site

15-min break

Experiment 2: 
High, Low or No Cogni�ve load task

Fig. 4. Main procedure in experiments 1 and 2: In experiment 1, participants received cTBS either over DLPFC or vertex prior to exposure. In experiment
2, participants performed a dual working-memory task under HCL or LCL conditions or did not perform a task prior to exposure. Exposure started with a
random stream for 5 min, after which a structured stream was presented for 20 min. A short break (10 s) was inserted every ∼5 min. EEG was recorded
throughout. Participants watched a silent nature documentary during the exposure. After a 15-min break, participants completed a postexposure recogni-
tion test that examined implicit and explicit memory of the hidden words through memory judgement. During the exposure and the break, participants
were not aware that the behavioral test would include segments of the syllable sequences.
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structured sequence relative to exposure to the random sequence. In other
words, if participants learn the novel words, they would show a preferential
shift in the entrainment of neural oscillations to underlying words, relative to
individual syllables. This can also be indexed by a simple formula, also referred
to as the WLI (WLI = ITC word frequency / ITC syllable frequency) (29). The WLI was
computed across six centrofrontal midline electrodes where ITC at the word
and syllable frequencies showed the strongest values (i.e., FC1, FC2, F3, F4,
FC5, and Fz; supplementary documentation on ITC across electrodes is avail-
able in our open science repository, https://osf.io/dequ9/).

Forced-Choice Recognition Task (Experiments 1 and 2). After a break of ∼15
min, during which participants could remove the EEG cap and wash their hair,
participants completed the two-alternative forced-choice recognition task. For
each trial, a fixation cross appeared while the auditory presentation of a target
three-syllable string (hidden word) and a foil three-syllable string (nonword)
were presented, separated by an interstimulus interval of 1,500 ms. The non-
word foils were created from the same list of 12 unique syllables that were
structured into word forms. The only restriction was that the syllables within
the foils never followed each other in the speech stream, not even across word
boundaries. All words and nonword foils were matched on average English
phonotactic probability (Ps > 0.70). The task was 1) to indicate which of
the two strings sounded more familiar and 2) to judge on their recall decision
(“I recalled from exposure” versus “It sounds familiar, but I have no clear mem-
ory” or “I guessed”). Strings that were “recalled” are referred to as confident
responses, and the strings that were “familiar without memory” or “guessed”
are referred to as unconfident responses. The next trial started 1,500 ms after
the participant entered his or her response. The syllable strings were presented
at the same rate as during the exposure. Each of the four targets and four foils
were paired exhaustively to a total of 16 trials. In one-half of the trials, a target
was followed by a foil, while in the other one-half, a foil was followed by a tar-
get. The order of presentation was counterbalanced across participants.

Statistical Analyses (Experiments 1 and 2). To investigate the effect of cogni-
tive depletion on language learning, linear mixed effect analyses were per-
formed on the EEG data (i.e., ITC values and WLI indexes), and hierarchical

logistic regression analyses were performed on the behavioral data (i.e., rec-
ognition accuracy). These analyses were performed using the lme4 package
(61) and the afex package (62) in R (R Development Core Team, 2011). We
always strived for models including maximal random effects structure justified
by the design (61, 62). In case of convergences issues (e.g., singular fits), we
refitted the maximal model by first removing correlations among random
slopes, after which the highest-order random slopes with the least estimated
variance were removed (62). The P values were derived using Kenward–Roger
approximations for degrees of freedom with the ANOVA function in the afex
package (63). Effects coding was used for all fixed factors, except for the
Group factor in experiment 2, where dummy coding was used with no cogni-
tive load as reference level. Bonferroni correction was used for all planned
tests. Cohen’s d effect sizes on the model’s estimates are calculated with the
eff_size function from the emmeans package (64). To allow across-study com-
parison and facilitate secondary analyses (e.g., power calculations and meta-
analyses), we also provide t test effect sizes in SI Appendix. We additionally
performed one-sample t tests to test for above-chance performance for the
unconfident and confident responses in the recognition task. One control par-
ticipant in experiment 1 reported low confidence in all trials and so did not
have confident responses. The stimulus materials and data files, including
scripts for analysis, are available on an open science repository: https://osf.io/
dequ9/).

Data Availability. Anonymized data files and scripts for analysis have been
deposited to an external source (https://osf.io/dequ9/) (65).

ACKNOWLEDGMENTS. We thank Cristina Pancotto, Afrina Sallehuddin, and
Ayaka Tsuchiya for help with data collection. E.H.M.S. was funded by a grant
from the Research Foundation – Flanders (Grant No. 1211421N). T.D. was
funded by a travel grant from the Suntory Foundation. The research costs
were covered by startup funds from the School of Psychology (University
of Nottingham) and the TMS and EEG equipment by a Medical Research
Council fellowship (G1000566) to R.M. R.M. was also supported by Profi5
(Mind and Matter) funding from the Academy of Finland to the University of
Helsinki.

1. R. A. Poldrack et al., Interactive memory systems in the human brain. Nature 414,
546–550 (2001).

2. M. T. Ullman, Contributions of memory circuits to language: The declarative/proce-
dural model. Cognition 92, 231–270 (2004).

3. M. H. de Vries et al., Electrical stimulation of Broca’s area enhances implicit learning
of an artificial grammar. J. Cogn. Neurosci. 22, 2427–2436 (2010).

4. J. Udd�en et al., The inferior frontal cortex in artificial syntax processing: An rTMS
study. Brain Res. 1224, 69–78 (2008).

5. M. T. Ullman, Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex
42, 480–485 (2006).

6. G. G. Ambrus et al., When less is more: Enhanced statistical learning of non-
adjacent dependencies after disruption of bilateral DLPFC. J. Mem. Lang. 114,
104144 (2020).

7. G. Borrag�an, H. Slama, A. Destrebecqz, P. Peigneux, Cognitive fatigue facilitates pro-
cedural sequence learning. Front. Hum. Neurosci. 10, 86 (2016).

8. K. Foerde, B. J. Knowlton, R. A. Poldrack, Modulation of competing memory systems
by distraction. Proc. Natl. Acad. Sci. U.S.A. 103, 11778–11783 (2006).

9. J. M. Galea, N. B. Albert, T. Ditye, R. C. Miall, Disruption of the dorsolateral prefrontal
cortex facilitates the consolidation of procedural skills. J. Cogn. Neurosci. 22,
1158–1164 (2010).

10. D. Nemeth, K. Janacsek, B. Polner, Z. A. Kovacs, Boosting human learning by hypno-
sis. Cereb. Cortex 23, 801–805 (2013).

11. M. Virag et al., Competition between frontal lobe functions and implicit sequence
learning: Evidence from the long-term effects of alcohol. Exp. Brain Res. 233,
2081–2089 (2015).

12. M. J. Frank, R. C. O’Reilly, T. Curran, When memory fails, intuition reigns: Midazolam
enhances implicit inference in humans. Psychol. Sci. 17, 700–707 (2006).

13. S. L. Thompson-Schill, M. Ramscar, E. G. Chrysikou, Cognition without control: When
a little frontal lobe goes a longway. Curr. Dir. Psychol. Sci. 18, 259–263 (2009).

14. A. R. Romberg, J. R. Saffran, Statistical learning and language acquisition. Wiley
Interdiscip. Rev. Cogn. Sci. 1, 906–914 (2010).

15. D. Kennedy, C. Norman,What don’t we know? Science 309, 75 (2005).
16. M. T. Ullman, “The declarative/procedural model: A neurobiological model of lan-

guage learning, knowledge and use” in The Neurobiology of Language, G. Hickok,
S. A. Small, Eds. (Elsevier, 2016), pp. 953–968.

17. K. Graf Estes, J. L. Evans, M. W. Alibali, J. R. Saffran, Can infants map meaning to
newly segmented words? Statistical segmentation and word learning. Psychol. Sci.
18, 254–260 (2007).

18. M. G. Gaskell, A. W. Ellis, Word learning and lexical development across the lifespan.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3607–3615 (2009).

19. J. R. Saffran, R. N. Aslin, E. L. Newport, Statistical learning by 8-month-old infants. Sci-
ence 274, 1926–1928 (1996).

20. S. D. Palmer, J. Hutson, S. L. Mattys, Statistical learning for speech segmentation: Age-
related changes andunderlyingmechanisms. Psychol. Aging 33, 1035–1044 (2018).

21. J. R. Saffran, E. L. Newport, R. N. Aslin, R. A. Tunick, S. Barrueco, Incidental language
learning: Listening (and learning) out of the corner of your ear. Psychol. Sci. 8,
101–105 (1997).

22. R. Frost, B. C. Armstrong, M. H. Christiansen, Statistical learning research: A critical
review and possible new directions. Psychol. Bull. 145, 1128–1153 (2019).

23. C.M. Conway, Howdoes the brain learn environmental structure? Ten core principles
for understanding the neurocognitive mechanisms of statistical learning. Neurosci.
Biobehav. Rev. 112, 279–299 (2020).

24. P. Perruchet, S. Pacton, Implicit learning and statistical learning: One phenomenon,
two approaches. Trends Cogn. Sci. 10, 233–238 (2006).

25. T. Teinonen, V. Fellman, R.N€a€at€anen, P.Alku,M.Huotilainen, Statistical language learn-
ing in neonates revealedby event-relatedbrain potentials.BMCNeurosci. 10, 21 (2009).

26. L. J. Batterink, K. A. Paller, P. J. Reber, Understanding the neural bases of implicit and
statistical learning. Top. Cogn. Sci. 11, 482–503 (2019).

27. L. J. Batterink, P. J. Reber, H. J. Neville, K. A. Paller, Implicit and explicit contributions
to statistical learning. J. Mem. Lang. 83, 62–78 (2015).

28. L. J. Batterink, P. J. Reber, K. A. Paller, Functional differences between statistical
learningwith andwithout explicit training. Learn.Mem. 22, 544–556 (2015).

29. L. J. Batterink, K. A. Paller, Online neural monitoring of statistical learning. Cortex
90, 31–45 (2017).

30. Z. Dienes, D. Berry, Implicit learning: Below the subjective threshold. Psychon. Bull.
Rev. 4, 3–23 (1997).

31. A. S. Finn, T. Lee, A. Kraus, C. L. Hudson Kam, When it hurts (and helps) to try: The
role of effort in language learning. PLoS One 9, e101806 (2014).

32. E. H. Smalle et al., Can chunk size differences explain developmental changes in lexi-
cal learning? Front. Psychol. 6, 1925 (2016).

33. E. H. M. Smalle, M. P. A. Page, W. Duyck, M. Edwards, A. Szmalec, Children retain
implicitly learned phonological sequences better than adults: A longitudinal study.
Dev. Sci. 21, e12634 (2018).

34. E. H. M. Smalle, M. Panouilleres, A. Szmalec, R. M€ott€onen, Language learning in the
adult brain: Disrupting the dorsolateral prefrontal cortex facilitates word-form
learning. Sci. Rep. 7, 13966 (2017).

35. E. H. M. Smalle, M. Muylle, W. Duyck, A. Szmalec, Less is more: Depleting cognitive
resources enhances language learning abilities in adults. J. Exp. Psychol. Gen., 10.
1037/xge0001058 (2021).

36. E. L. Newport,Maturational constraints on language learning.Cogn. Sci. 14, 11–28 (1990).
37. J. L. Elman, Learning and development in neural networks: The importance of start-

ing small. Cognition 48, 71–99 (1993).
38. E. L. Newport, D. Bavelier, H. J. Neville, “Critical thinking about critical periods: Per-

spectives on a critical period for language acquisition” in Language, Brain, and

8 of 9 j PNAS Smalle et al.
https://doi.org/10.1073/pnas.2026011119 Unlocking adults’ implicit statistical learning by cognitive depletion

https://osf.io/dequ9/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2026011119/-/DCSupplemental
https://osf.io/dequ9/
https://osf.io/dequ9/
https://osf.io/dequ9/
https://doi.org/10.1037/xge0001058
https://doi.org/10.1037/xge0001058


Cognitive Development: Essays in Honor of Jacques Mehler, E. Dupoux, Ed. (The MIT
Press, 2001), pp. 481–502.

39. E. D. Thiessen, S. Girard, L. C. Erickson, Statistical learning and the critical period:
How a continuous learningmechanism can give rise to discontinuous learning.Wiley
Interdiscip. Rev. Cogn. Sci. 7, 276–288 (2016).

40. G. Borrag�an, H. Slama, M. Bartolomei, P. Peigneux, Cognitive fatigue: A time-based
resource-sharing account. Cortex 89, 71–84 (2017).

41. J. Bertels, A. Franco, A. Destrebecqz, How implicit is visual statistical learning? J. Exp.
Psychol. Learn.Mem. Cogn. 38, 1425–1431 (2012).

42. J. Breton, E. M. Robertson, Flipping the switch: Mechanisms that regulate memory
consolidation. Trends Cogn. Sci. 18, 629–634 (2014).

43. M. H. Christiansen, Implicit statistical learning: A tale of two literatures. Top. Cogn.
Sci. 11, 468–481 (2019).

44. S. Henin et al., Learning hierarchical sequence representations across human cortex
and hippocampus. Sci. Adv. 7, eabc4530 (2021).

45. C. Benninger, P. Matthis, D. Scheffner, EEG development of healthy boys and girls.
Results of a longitudinal study. Electroencephalogr. Clin. Neurophysiol. 57, 1–12
(1984).

46. P. J. Marshall, Y. Bar-Haim, N. A. Fox, Development of the EEG from 5 months to 4
years of age. Clin. Neurophysiol. 113, 1199–1208 (2002).

47. A. Hashemi et al., Characterizing population EEG dynamics throughout adulthood.
eNeuro 3, 1–13 (2016).

48. J. H. Howard Jr., D. V. Howard, Aging mind and brain: Is implicit learning spared in
healthy aging? Front. Psychol. 4, 817 (2013).

49. D. Juhasz, D. Nemeth, K. Janacsek, Is there more room to improve? The lifespan tra-
jectory of procedural learning and its relationship to the between- and within-group
differences in average response times. PLoS One 14, e0215116 (2019).

50. M. Verneau, J. van der Kamp, G. J. Savelsbergh, M. P. de Looze, Age and time effects
on implicit and explicit learning. Exp. Aging Res. 40, 477–511 (2014).

51. M. Muylle, E. H. Smalle, R. Hartsuiker, Rapid phonotactic constraint learning in age-
ing: Evidence from speech errors. Lang. Cogn. Neurosci., 10.1080/23273798.2021.
1897149 (2021).

52. K.McNealy, J. C. Mazziotta,M. Dapretto, Cracking the language code: Neural mecha-
nisms underlying speech parsing. J. Neurosci. 26, 7629–7639 (2006).

53. R. De Diego-Balaguer et al., Striatal degeneration impairs language learning: Evi-
dence fromHuntington’s disease. Brain 131, 2870–2881 (2008).

54. M. F. Assaneo et al., Spontaneous synchronization to speech reveals neural mecha-
nisms facilitating language learning.Nat. Neurosci. 22, 627–632 (2019).

55. W. Beam, J. J. Borckardt, S. T. Reeves, M. S. George, An efficient and accurate new
method for locating the F3 position for prefrontal TMS applications. Brain Stimul. 2,
50–54 (2009).

56. A. Mir-Moghtadaei et al., Concordance between BeamF3 and MRI-neuronavigated
target sites for repetitive transcranial magnetic stimulation of the left dorsolateral
prefrontal cortex. Brain Stimul. 8, 965–973 (2015).

57. J. Jung, A. Bungert, R. Bowtell, S. R. Jackson, Vertex stimulation as a control site for
transcranial magnetic stimulation: A concurrent TMS/fMRI study. Brain Stimul. 9,
58–64 (2016).

58. M. R. Goldsworthy, J. B. Pitcher, M. C. Ridding, A comparison of two different contin-
uous theta burst stimulation paradigms applied to the human primary motor cortex.
Clin. Neurophysiol. 123, 2256–2263 (2012).

59. D. Bor, D. J. Schwartzman, A. B. Barrett, A. K. Seth, Theta-burst transcranial magnetic
stimulation to the prefrontal or parietal cortex does not impair metacognitive visual
awareness. PLoSOne 12, e0171793 (2017).

60. A. Delorme, S. Makeig, EEGLAB: An open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. J. Neurosci. Methods 134,
9–21 (2004).

61. D. Bates, R. Kliegl, S. Vasishth, H. Baayen, Parsimonious mixed models. arXiv
[Preprint] (2015). https://arxiv.org/abs/1506.04967 (Accessed 16 June 2015).

62. H. Singmann, D. Kellen, “An introduction to mixed models for experimental psy-
chology” in NewMethods in Cognitive Psychology, D. H. Spieler, E. Schumacher, Eds.
(Psychology Press, 2019), pp. 4–31.

63. H. Singmann et al., Afex: Analysis of factorial experiments. R package version 0.13-
145 (2015).

64. R. V. Lenth et al., Estimatedmarginal means, aka least-squaresmeans. R package ver-
sion 1.6.2-1 (2021).

65. E. H. M. Smalle, R. M€ott€onen, Disruption of the cognitive system facilitates statistical
language learning. Open Science Framework. https://osf.io/dequ9/. Deposited 14
August 2019. PS

YC
H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

Smalle et al.
Unlocking adults’ implicit statistical learning by cognitive depletion

PNAS j 9 of 9
https://doi.org/10.1073/pnas.2026011119

https://doi.org/10.1080/23273798.2021.1897149
https://doi.org/10.1080/23273798.2021.1897149
https://arxiv.org/abs/1506.04967
https://osf.io/dequ9/

	TF1

