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Chest circumference (CC), abdominal circumference (AC), and waist circumference (WC)

are regarded as important indicators for improving economic traits because they can

reflect the growth and physiological status in pigs. However, the genetic architecture

of CC, AC, and WC is still elusive. Here, we performed single-trait and multi-trait

genome-wide association studies (GWASs) for CC, AC, and WC in 2,206 American

origin Duroc (AOD) and 2,082 Canadian origin Duroc (COD) pigs. As a result, one novel

quantitative trait locus (QTL) on Sus scrofa chromosome (SSC) one was associated with

CC and AC in COD pigs, which spans 6.92Mb (from 170.06 to 176.98Mb). Moreover,

multi-trait GWAS identified 21 significant SNPs associated with the three conformation

traits, indicating the multi-trait GWAS is a powerful statistical approach that uncovers

pleiotropic locus. Finally, the three candidate genes (ITGA11, TLE3, and GALC) were

selected that may play a role in the conformation traits. Further bioinformatics analysis

indicated that the candidate genes for the three conformation traits mainly participated

in sphingolipid metabolism and lysosome pathways. For all we know, this study was the

first GWAS for WC in pigs. In general, our findings further reveal the genetic architecture

of CC, AC, and WC, which may offer a useful reference for improving the conformation

traits in pigs.

Keywords: single-trait GWAS, Duroc pigs, chest circumference, abdominal circumference, waist circumference,

multi-trait GWAS

INTRODUCTION

Due to conformation traits closely related to many economic traits in livestock, these traits are
considered as an important breeding selection criteria. For instance, Ohnishi and Satoh (1) reported
a positive genetic correlation between chest circumference (CC) and backfat thickness (0.6) in
Duroc pigs. Moreover, CC was also closely associated (r > 0.7) with body weight in pigs (2). Vargas
et al. (3) found a linear relationship between live weight and CC and abdominal circumference

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2021.807003
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2021.807003&domain=pdf&date_stamp=2022-01-28
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wzfemail@163.com
mailto:yangming@zhku.edu.cn
https://doi.org/10.3389/fvets.2021.807003
https://www.frontiersin.org/articles/10.3389/fvets.2021.807003/full


Zhou et al. GWAS for the Conformation Traits

(AC) in goats. Although there were almost no waist
circumference (WC) studies in livestock, theWC was reported to
predict non-abdominal, abdominal subcutaneous, and visceral
fat in humans (4). Thus, understanding the genetic architecture
of CC, AC, andWCwill help improve the economic traits related
to these conformation traits in livestock.

In recent years, with the rapid development of sequencing
technology and dense marker panels, genome-wide association
study (GWAS) has become a reliable approach that detects
genetic variants associated with the trait of interest. It has become
widely used in humans (5), plants (6), and animals (7). However,
all significant single nucleotide polymorphisms (SNPs) together
only explained a proportion of heritability in many GWAS
studies (8, 9). The main reason is that most complex traits are
affected by many small-effect SNPs, and the sample size is too
small to identify these small-effect SNPs (5, 7). In addition, these
small-effect SNPs collectively account for most of the heritability
of complex traits (10). Although that increasing sample size can
enhance statistical power in GWAS studies, it is too expensive.
Thus, most GWAS for the complex traits are conducted based on
the limited sample size of a single population, leading to limited
statistical power. When the sample size is insufficient, it is an
effective method to use a combination strategy to increase the
power to detect associations, such as single-trait and multi-trait
GWAS (11, 12). The clear advantage of multi-trait GWAS is that
it can detect interactions and pleiotropic loci, but the statistical
power of this analysis is affected by the correlation between traits
(13). In short, the multi-trait GWAS can complement the single-
trait GWAS results, and thereby the combination of both can
increase the statistical power of GWAS.

Few GWAS research on the conformation traits in pigs,
especially the CC, AC, and WC traits. To date, 2,492 quantitative
trait locus (QTLs) are associated with conformation traits,
including 21 and four QTLs are associated with CC and AC
in the pig QTL database (https://www.animalgenome.org/cgi-
bin/QTLdb/SS/index, February 04, 2021). Notably, no QTLs are
associated with WC in the pigQTLdb. Furthermore, only a small
part of these QTLs were detected by GWAS. Here, we conducted
single-trait andmulti-trait GWASs for CC, AC, andWC on 2,206
AODpigs and 2,082 CODpigs. This study aimed to identifymore
loci associated with CC, AC, andWC traits using single-trait and
multi-trait GWASs, further understand the genetic architecture
of the three traits in pigs.

MATERIALS AND METHODS

Animals and Phenotypic Data
From 2013 to 2017, a total of 2,206 AOD pigs (Nmale = 718,
Nfemale = 1,488) and 2,082 COD pigs (Nmale = 1,010, Nfemale

= 1,072) were collected from the Guangdong Wens Foodstuff
Group Co., Ltd. (Guangdong, China). All the animals were reared
under the same feeding conditions. When the pigs reached the
live weight of 100 ± 15 kg and were fasted for 24 h, their CC,
AC, and WC were measured by a tape measure. The measuring
positions of CC, AC, and WC were shown in Figure 1. The CC,
AC, and WC were measured by circling the trailing edge of the

FIGURE 1 | The measuring parts of CC, AC, and WC in pigs. CC, chest

circumference; AC, abdominal circumference; WC, waist circumference.

scapula, the largest part of the abdomen, and the front edge
region of the hind leg in the pigs, respectively.

Genotyping and Quality Control
Ear tissue was collected from all animals, and genomic
DNA was extracted from ear tissue by the standard phenol-
chloroform method. DNA quality was assessed by ratios of
light absorption (A260/280 and A260/230) and electrophoresis.
Qualified DNA concentration was diluted to 50ng/µl. All animals
were genotyped with the GeneSeek Porcine 50K SNP chip
(Neogen, Lincoln, NE, United States) that contains 50,703
SNP across the whole genome. The quality control (QC) was
performed by PLINK v 1.9 (14). Briefly, individuals with call
rates more than 95% and SNPs with call rates more than 99%,
minor allele frequency more than 1%, and Hardy-Weinberg
P-value more than 10−6. Moreover, SNPs unmapped regions
and located on the sex chromosomes were filtered. Notably,
the two Duroc pig populations obey the same QC criteria.
After genotype QC, the qualified individuals and SNPs were
used for subsequent single-trait and multi-trait GWAS analyses
(Supplementary Table 1).

Population Structure Analysis
Due to population stratification that may cause false-positive
findings in GWAS, principal component analysis (PCA) and
quantile-quantile (Q-Q) plots were conducted for two Duroc
populations to assess and correct population structure. In this
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study, PCA and Q-Q plots were generated by software GCTA
v1.92.4beta (15) and R v3.6.1 software (16), respectively.

Single-Trait GWAS
GEMMA v0.98 software was used to conduct a univariate linear
mixed model (LMM) to detect the association between each SNP
and phenotype (17). The statistical model is described as follows:

y = Wα + Xβ + u+ε

where y denotes a vector of phenotypic values; W refers to the
incidence matrices of covariates (fixed effects), including the top
five eigenvectors of PCA, sex, and live weight; α is the vector
of corresponding coefficients with the intercept; X represents
the vector of SNP genotypes; β stands for the corresponding
effect size of the SNP; u is the vector of random effects with u
∼ MVNn(0, λ τ−1K); ε corresponds to the vector of random
residuals with ε ∼ MVNn(0, τ−1In); λ specifies the ratio
between two variance components; τ−1 signifies the variance of
the residual errors; K represents a genomic relatedness matrix
between individuals was estimated via GEMMA; I refers to an
n× n identity matrix, and n is the number of individuals; MVNn

is the n-dimensional multivariate normal distribution.
Furthermore, GCTA was used to estimate SNP-based

genetic correlations between the three traits and phenotypic
variance explained by the significant SNPs in the two Duroc
pig populations.

Multi-Trait GWAS
To test the multi-trait association between each SNP and the
three traits in this study, GEMMA v0.98 was used to implement
a multivariate linear mixed model (mvLMM). The mvLMM for
the approach used in this study was previously studies described
(18, 19). The LMM and mvLMM used the same covariates in this
study. Notably, single-trait GWAS and multi-trait GWAS of two
Duroc pig populations applied the same LMM and mvLMM in
this study, respectively. Moreover, in the single-trait GWAS and
multi-trait GWAS analysis, the genome-wide significant (0.05/N)
and suggestive (1/N) thresholds via Bonferroni correction, in
which N is the number of SNPs used in the analysis.

Haplotype Block Analysis and Conditional
Analysis
Haplotype block analysis was implemented for chromosomal
regions with multiple significant SNPs using PLINK v1.9 and
Haploview v4.2 (20). Moreover, we performed conditional
analysis to detect the independence of all significant signals in the
putative region. This analysis was conducted using the LMM by
GEMMA software and added the top SNP genotypes as covariates
into the LMM.

Estimation of Genetic Parameters and the
Explained Phenotypic Variance
Phenotypic Correlation
In this study, we calculated the phenotypic correlation (rp) of the
sample via Pearson’s correlation coefficient, and the formula for

calculating the Pearson’s correlation coefficient is given by (21).

rp =
6n

i=1

(

Xi − X
) (

Yi − Y
)

√

6n
i=1

(

Xi − X
) 2

√

∑n
i=1 (Yi − Y)

2

where X and Y refer to the two traits; rp is Pearson’s correlation
coefficient between the two traits; n represents the number
of samples; Xi and Yi are the phenotype values of X and Y
traits for the i-th individual, respectively; X and Y refer to
the average phenotype value of the X and Y traits across all
samples, respectively.

Genetic Correlation
GCTA software was used to estimate the genetic correlation
between two traits by performing a bivariate genome-based
restricted maximum likelihood (GREML) analysis. The formula
for calculating the genetic correlation coefficient is given by
(15, 22, 23).

rg =
σg1g2

σg1σg2

where rg is genetic correlation coefficient between two traits; the
subscripts “1” and “2” represent the two traits; σg1g2 refers to
the genetic covariance; σg represents square root of the genetic
variance for the trait (captured by all SNPs).

The Explained Phenotypic Variance by the Significant

SNP
The restricted maximum likelihood (REML) method was used
to estimate the phenotypic variance explained by the significant
SNPs for CC, AC, andCC traits by GCTA software. Themodel for
calculating the phenotypic variance explained by the significant
SNPs is given by

y = Xβ + g + ε with var(y) = Ag σ 2
g + I σ 2

ε

where y is to the vector of phenotype value; β represents a vector
of fixed effects, including the top five eigenvectors of PCA; X
refers to an incidence matrix for β ; g is the vector of the aggregate
effects of all the qualified SNPs for the pigs within one population;
I is the identity matrix; Ag represents the genetic relationship
matrix; σ 2

g corresponds to the additive genetic variance captured

by either the genome-wide SNPs or the selected SNPs, and σ 2
ε

refers to the residual variance. GCTA was used to estimate the
genomic heritability for the three conformation traits in the
bivariate REML model.

Pathway Analyses
Genes annotation was based on the physical location of
the significant SNPs in the Ensembl annotation of the Sus
scrofa 11.1 genome version (http://ensembl.org/Sus_scrofa/Info/
Index). To further identify potential candidate genes, KOBAS
3.0 (http://kobas.cbi.pku.edu.cn/kobas3) was used to perform
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) analyses (24).
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TABLE 1 | Phenotype and heritability statistics for CC, AC, and WC.

Populationa Traitsb Nc Mean (SD)d C.V. (%)e h2 (SE)f

AOD CC 2,206 106.73 ± 3.38 (cm) 3.17 0.12 ± 0.03

AC 116.53 ± 3.64 (cm) 3.13 0.12 ± 0.04

WC 104.50 ± 3.49 (cm) 3.33 0.11 ± 0.02

COD CC 2,082 108.23 ± 4.23 (cm) 3.91 0.12 ± 0.03

AC 115.77 ± 4.70 (cm) 4.06 0.15 ± 0.03

WC 105.11 ± 4.22 (cm) 4.01 0.14 ± 0.03

aAmerican origin Duroc pig population (AOD), Canadian origin Duroc pig

population (COD).
bChest circumference (CC), abdominal circumference (AC), and waist

circumference (WC).
cNumber (N).
dMean (standard deviation).
eCoefficient of variation (C.V.).
fHeritability (standard error).

RESULTS

Phenotype Statistics and Correlation
Among the Traits
The statistical distribution and heritability of the traits measured
in this study are presented in Table 1. In the AOD and COD pigs,
the genomic heritabilities of the CC, AC, andWC traits were low,
ranging from 0.11 to 0.15 (Table 1). Moreover, the coefficients of
variation for CC, AC, andWC in the AOD and COD populations
ranged from 3.13% to 3.33% and 3.91% to 4.06%, respectively
(Table 1). The results showed that the phenotypic variations of
the three traits in the COD population were higher than in the
AOD population. Further demonstrated that the uniformities of
these three conformation traits in AOD pigs were higher than
that of COD pigs. Interestingly, our previous study showed that
compared to the COD population, the coefficient of variation for
the lean meat percentage (LMP) and average daily gain (ADG)
was smaller in the AOD population (25). In addition, compared
to the COD population, the mean of LMP and ADG were higher
in the AOD population. Admittedly, the conformation traits
can reflect the growth and physiological status of pigs. Thus,
we considered that the uniformities of these three conformation
traits in AOD pigs were higher, which might be because AOD
pigs have a higher selection intensity for production traits
than COD pigs. Moreover, genetic and phenotypic correlation
coefficients among CC, AC, and WC traits were showed in
Figure 2. High genetic correlation (r > 0.79) and phenotypic
correlation coefficients (r > 0.77) were identified between all
traits in the two Duroc pig populations. Given the high genetic
correlation and phenotypic correlation coefficients between CC,
AC, and WC traits, these traits may be improved together in
pig breeding.

Population Stratification Assessment
As is known, population stratification can cause false-positive
findings in GWAS analysis (26). Thus, PCA was conducted for
experimental populations before GWAS analysis to detect the
potential population stratification. The PCA plot was presented
in our previous paper (25). The PCA plot showed that AOD
and COD pigs were classified clearly into two clusters, indicating

that these two populations have different genetic backgrounds.
Thus, the two Duroc pig populations were analyzed separately.
Moreover, Q-Q plots were also conducted for CC, AC, and WC
in two Duroc populations to assess population stratification. The
P-values of Q-Q plots indicated that no overall systematic biases
were observed, and the genomic inflation factor (λ) at each
trait amounted to 0.977 to 1.04, indicating that there was no
population stratification (Supplementary Figure 1).

Single-Trait GWAS
In this study, the AOD and COD pigs have different genetic
backgrounds detected by PCA. Thus, the single-trait GWAS was
implemented for the three conformation traits in the two Duroc
populations, respectively. The single-trait GWAS results of the
three conformation traits were presented in Figure 3 andTable 2.
For the AOD pigs, single-trait GWAS identified one, two, and
two SNPs were associated with CC, AC, and WC, respectively
(Table 2). Among these significant SNPs, one genome-wide (P
< 1.40 × 10−6) SNP was associated with AC and WC (Table 2).
The remaining three SNPs reached suggestive significant levels
(P < 2.80× 10−5) (Table 2). For COD pigs, 23 and 22 suggestive
SNPs were detected to be associated with CC andAC, respectively
(Figure 3 and Table 2). However, no significant SNPs were
identified to be associated with WC in COD pigs (Figure 3F).
Notably, 19 pleiotropic SNPs were identified in this study. In
these pleiotropic SNPs, one SNP on Sus scrofa chromosome (SSC)
six was associated with AC and WC in the AOD pigs, and 18
SNPs were associated with CC and AC in the COD pigs (Figure 3
and Table 2). Interestingly, no common significant SNPs among
the two Duroc pig populations were identified in this study,
indicating the complex genetic architecture of CC, AC, and WC
traits in pigs (Table 2 and Figure 4).

Haplotype Block Analysis
In this study, multiple SNPs were in close proximity to each
other and were detected to be associated with the same traits.
Notably, 18 SNPs on SSC1 were identified to be associated
with the CC and AC traits in the COD pigs and were situated
in a haplotype block between 170.06 and 176.98Mb (6.92Mb)
(Table 2 and Figure 5). These results are not surprising because
of the high genetic correlation (r = 0.884) and phenotypic
correlation coefficients (r = 0.852) between CC and AC in the
COD pigs (Figure 2). In the QTL region, the ALGA0006973 and
MARC0080275 were the most significant SNP for CC and AC,
respectively. The top SNPs ALGA0006973 and MARC0080275
for this QTL region explained 0.34% and 0.42% of the phenotypic
variance for CC and AC, respectively (Table 2). To examine
whether linkage disequilibrium (LD) caused the associations, we
conducted conditional analyses for the CC and AC. Then, the
top SNP ALGA0006973 for CC and the top SNP MARC0080275
for AC were fitted into the LMM as a covariate to conduct
conditional GWAS, respectively. For the CC trait, many SNPs
in high LD with the top SNP were significant in the single-
trait GWAS (Figure 6A), but the P-values of these significant
SNPs decreased below the minimum threshold line after the top
SNP ALGA0006973 was included as a fixed effect in the model
(Figure 6B). The same pattern was observed for the top SNP
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FIGURE 2 | (A,B) Phenotypic (above diagonal) and genetic (below diagonal) correlations between the chest, abdominal, and waist circumferences traits in the two

Duroc pig populations. In the plots, the below diagonal values show genetic correlations (standard error) between all the traits. All of the phenotypic correlation

coefficients are significant with P < 0.05. CC, chest circumference; AC, abdominal circumference; WC, Waist circumference.

FIGURE 3 | (A–F) Manhattan plots of single-trait GWAS for chest, abdominal, and waist circumferences in the two Duroc pig populations. In the Manhattan plots, the

negative log10 P-values of the quantified SNPs were plotted against their genomic positions. Different blue colors denote various chromosomes. The solid and

dashed lines represent the 5% genome-wide and chromosome-wide (suggestive) Bonferroni-corrected thresholds, respectively.

MARC0080275 for the AC trait (Figures 6C,D). These results
indicated that the QTL on SSC1 might have pleiotropic effects on
CC and AC in COD pigs, which spans 6.92Mb (from 170.06 to
176.98 Mb).

Multi-Trait GWAS Results
In this study, we performed multi-triat GWASs for the
CC, AC, and WC traits in the two Duroc pig populations,
respectively. A total of 21 significant SNPs have pleiotropic
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TABLE 2 | Significant SNPs and candidate genes for CC, AC, and WC in the single-trait GWAS.

Traita(population) SNPb SSCc Locationd (bp) EPVe(%) P-valuef Distanceg(bp) Candidate gene

CC (AOD) ASGA0059219 13 156576634 0.46 2.57 × 10−5 64,649 ZPLD1

AC (AOD) Affx-114594216 6 168268278 0.28 1.18 × 10−12 13,851 ENSSSCG00000039458

WU_10.2_12_6509723 12 6520803 0.45 4.49 × 10−6 −4,504 ENSSSCG00000037541

WC (AOD) ASGA0104919 5 168268278 0.91 7.84 × 10−6 248,426 TBC1D22A

Affx-114594216 6 168268278 0.31 2.26 × 10−11 64,649 ZPLD1

CC (COD) ALGA0006817 1 166363826 0.02 1.75 × 10−6 −52,854 ITGA11

ALGA0006891 1 167622960 0.22 5.90 × 10−6 158,549 TLE3

ALGA0006895 1 167690373 0.22 5.90 × 10−6 118,136 TLE3

ALGA0006973 1 170618790 0.34 6.76 × 10−6 −479,665 ENSSSCG00000041595

WU_10.2_1_189388692 1 170473535 0.33 7.75 × 10−6 −334,410 ENSSSCG00000041595

ALGA0006975 1 170605277 0.33 7.75 × 10−6 −466,152 ENSSSCG00000041595

ALGA0006977 1 170675822 0.33 7.75 × 10−6 −536,697 ENSSSCG00000041595

ALGA0006982 1 170979266 0.33 7.75 × 10−6 −840,141 ENSSSCG00000041595

MARC0033388 1 171017646 0.33 7.75 × 10−6 −878,521 ENSSSCG00000041595

ALGA0006991 1 171052112 0.33 7.75 × 10−6 854,086 LRFN5

ALGA0006996 1 171120240 0.33 7.75 × 10−6 785,958 LRFN5

DRGA0001638 1 171166693 0.33 7.75 × 10−6 739,505 LRFN5

DRGA0001642 1 171311843 0.33 7.75 × 10−6 594,355 LRFN5

ALGA0007002 1 171545925 0.33 7.75 × 10−6 360,273 LRFN5

Affx-114729299 1 171652441 0.33 7.75 × 10−6 253757 LRFN5

MARC0033468 1 172184742 0.33 7.75 × 10−6 −6,792 LRFN5

MARC0002276 1 172219301 0.33 7.75 × 10−6 −41,351 LRFN5

MARC0080275 1 172136167 0.32 8.87 × 10−6 within LRFN5

ASGA0005303 1 172156509 0.32 8.87 × 10−6 within LRFN5

WU_10.2_1_192315864 1 172806698 0.33 1.16 × 10−5 −628,748 LRFN5

ALGA0007021 1 172988615 0.33 1.16 × 10−5 −810,665 LRFN5

MARC0053979 1 166608531 0.27 1.45 × 10−5 −146 CORO2B

ASGA0005260 1 168817608 0.24 2.76 × 10−5 −17,083 ENSSSCG00000045715

AC (COD) MARC0054010 1 178298953 0.30 1.28 × 10−5 −705,276 MDGA2

DRGA0001741 1 178372667 0.31 1.59 × 10−5 −778,990 MDGA2

MARC0080275 1 172136167 0.42 2.17 × 10−5 within LRFN5

ASGA0005303 1 172156509 0.42 2.17 × 10−5 within LRFN5

WU_10.2_1_189388692 1 170473535 0.42 2.30 × 10−5 −334,410 ENSSSCG00000041595

ALGA0006975 1 170605277 0.42 2.30 × 10−5 −466,152 ENSSSCG00000041595

ALGA0006977 1 170675822 0.42 2.30 × 10−5 −536,697 ENSSSCG00000041595

ALGA0006982 1 170979266 0.42 2.30 × 10−5 −840,141 ENSSSCG00000041595

MARC0033388 1 171017646 0.42 2.30 × 10−5 −878,521 ENSSSCG00000041595

ALGA0006991 1 171052112 0.42 2.30 × 10−5 854,086 LRFN5

ALGA0006996 1 171120240 0.42 2.30 × 10−5 785,958 LRFN5

DRGA0001638 1 171166693 0.42 2.30 × 10−5 739,505 LRFN5

DRGA0001642 1 171311843 0.42 2.30 × 10−5 594,355 LRFN5

ALGA0007002 1 171545925 0.42 2.30 × 10−5 360,273 LRFN5

Affx-114729299 1 171652441 0.42 2.30 × 10−5 253,757 LRFN5

MARC0033468 1 172184742 0.42 2.30 × 10−5 −6,792 LRFN5

MARC0002276 1 172219301 0.42 2.30 × 10−5 −41,351 LRFN5

WU_10.2_1_192315864 1 172806698 0.43 2.43 × 10−5 −628,748 LRFN5

ALGA0007021 1 172988615 0.43 2.43 × 10−5 −810,665 LRFN5

WU_10.2_1_199274501 1 178975482 0.25 2.51 × 10−5 272,265 ENSSSCG00000046948

WU_10.2_1_199687896 1 179301234 0.26 2.61 × 10−5 −47,692 ENSSSCG00000046948

ALGA0006973 1 170618790 0.42 2.61 × 10−5 −479,665 ENSSSCG00000041595

aCC (AOD), Chest circumference (American origin Duroc); AC (AOD), abdominal circumference (American origin Duroc); WC (AOD), waist circumference (American origin Duroc); CC

(COD), Chest circumference (Canadian origin Duroc); AC (COD), abdominal circumference (Canadian origin Duroc).
bSNP ID in boldface represents the SNP had pleiotropic effects on the conformation traits.
cSSC, Sus scrofa chromosome.
dSNP positions in Ensembl.
eEPV, Explained phenotypic variance.
fP-value in boldface: genome-wide significant; P-value not in boldface: suggestive significant.
g+/: the SNP located upstream/downstream of the nearest gene.
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FIGURE 4 | Venn plot of the significant SNPs detected by single-trait GWAS. The Venn plot was generated by software TBtools (27). AOD, American origin Duroc;

COD, Canadian origin Duroc.

effects on CC, AC, and WC by multi-trait GWAS detected.
For the AOD pigs, multi-trait GWAS detected two SNPs were
associated with the correlated traits, of which one SNP reached
genome-wide significant levels (Supplementary Table 2

and Supplementary Figure 2). Furthermore, compared
to single-trait GWAS, multi-trait GWAS detected one
additional SNP in the AOD pigs (Supplementary Table 2

and Supplementary Figure 3A). For the COD pigs, multi-trait
GWAS identified 19 suggestive SNPs associated with these
correlated traits, of which three SNPs were undetected in
the three single-traits GWASs (Supplementary Table 2 and
Supplementary Figure 3B). These results showed that multi-
trait GWAS detected additional pleiotropic SNPs and confirmed
most of the significant SNPs in the single-trait GWAS, suggesting
it can increase statistical power and complement single-trait
GWAS results.

Candidate Genes and Functional
Annotation
Amounted to eight candidate genes located within or near the
significant SNPs that were associated with the three conformation
traits (Table 2 and Supplementary Table 2). To further explore
the eight candidate genes involved in pathways and biological
processes, these candidate genes were used to conduct KEGG
pathways and GO analysis. The KEGG pathways and GO analysis
indicated that the candidate genes for the three conformation
traits mainly participated in sphingolipid metabolism and
lysosome pathways (Supplementary Table 3).

DISCUSSION

Comparing Single-Trait GWAS With
Multi-Trait GWAS
Given that the two Duroc pig populations have different genetic
backgrounds, the single-trait GWASs were performed for the CC,

AC, andWC traits in the two Duroc populations, respectively. In
addition, we found that high phenotype and genetic correlation
exist between CC, AC, andWC in the two Duroc pig populations
(Figure 2). Multi-trait GWAS is usually used to detect QTLs that
were associated with multiple traits. The higher the genetic and
phenotypic correlation between traits, the higher the statistical
power of the multi-trait GWAS (28). Thus, to improve the
power of GWAS detection, we conducted multi-trait GWAS for
these three correlated traits in the two Duroc pig populations,
respectively. The single-trait GWAS detected 31 SNPs were
associated with the conformation traits, of which 19 SNPs
may have pleiotropic effects on the conformation traits. The
multi-trait GWAS identified 21 SNPs that were associated with
the three conformation traits (Table 2). Compared to single-
trait GWAS, multi-trait GWAS detected four additional SNPs
(Supplementary Figure 3 and Supplementary Table 2). Many
previous studies demonstrated that the combination strategy of
single-trait and multi-trait GWAS could improve the power of
GWAS. Chhetri et al. (29) conducted single-trait and multi-
trait GWASs for morphological and physiological traits in
Populus trichocarpa trees. A total of four and 20 gene models
were identified by the single-trait and multi-trait GWASs,
respectively. Yan et al. (19) performed single-trait and multi-
trait GWASs for hematological traits in the White Duroc ×

Erhualian F2 resource population. The results showed that
compared to single-trait GWAS, multi-trait GWAS detected a
total of 16 newly significant loci for the hematological traits.
These results showed that multi-trait GWAS could complement
the single-trait GWAS results to increase the statistical power
of GWAS.

Interestingly, no common significant SNPs among the two
Duroc pig populations were identified in this study, indicating
the complex genetic architecture of CC, AC, and WC traits in
pigs (Figure 4 and Supplementary Table 2). Our results were
consistent with many previous studies. For example, Tang et al.
(30) conducted three GWASs for teat number in the Erhualian,
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FIGURE 5 | Haplotype blocks on SSC1 for chest and Abdominal circumference in the COD pigs. Haplotype blocks are marked with triangles. Values in boxes are the

linkage disequilibrium (r2) between the SNP pairs. The haplotype blocks are colored in accordance with the standard Haploview color scheme: LOD > 2 and D’ = 1,

red; LOD < 2 and D’ = 1, blue; LOD < 2 and D’ < 1, white (LOD is the log of the likelihood odds ratio, a measure of confidence in the value of D’).

Sutai, and F2 (White Duroc × Erhualian) pigs, and none of the
loci was shared by the three pig populations or two of these
populations. Bergfelder et al. (31) performed GWAS for the
number of piglets born alive on the Large White and Landrace
pigs, and no common significant SNP or QTL region between
LargeWhite and Landrace breed were detected. These differences
in GWAS results may be caused by differences in the minor allele
frequency of SNP in different breeds or populations belonging to
the same breed, which further reflected the genetic backgrounds
that could greatly affect the single-marker associations.

Comparison With Previously Mapped QTL
in Pigs
In the study, we performed single-trait and multi-trait GWASs
for CC, AC, and WC in 2,206 AOD and 2,082 COD pigs. A
total of 35 significant SNPs on SSC1, SSC4, SSC5, SSC6, SSC7,
SSC12, and SSC13 were identified in this study. According to the
significant SNP andQTL positions in this study, evaluate whether
these SNPs andQTLs are located in the previously reported QTLs
from the pigQTLdb. However, none of the significant SNPs in
this study are observed to be included in any previously reported

QTLs that are associated with CC, AC, and WC in pigs. This
difference might be due to the difference in the genotypes and
the breeds used in this study or few studies for CC, AC, and WC
in pigs. In brief, in this study, a total of 35 significant SNPs were
newly detected to be associated with CC, AC, and WC in pigs,
whichmay be useful formarker-assisted selection in pig breeding.

Candidate Genes and Functional
Annotation
According to the results of the bioinformatics analysis and
functions of candidate genes, three genes (Integrin Subunit
Alpha 11 [ITGA11], TLE Family Member 3, Transcriptional
Corepressor [TLE3], and Galactosylceramidase [GALC])
associated with the conformation traits were selected candidates.
The ITGA11 gene is near SNP ALGA0006817, and the SNP was
identified to be associated with CC. Popova et al. (32) found
that ITGA11 knockout mice display a smaller skeletal system
than wild-type mice. Moreover, the ITGA11 gene was reported
to be involved in maintaining adult skeletal bone mass (33).
This indicated that ITGA11 might be an essential regulator
of skeletal bone mass, so it should be considered a strong
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FIGURE 6 | Regional association plots of the top SNP ALGA0006973 and MARC0080275 were associated with the chest and abdominal circumferences at SSC1,

respectively. In the plots, the red and blue represent the 5% genome-wide and chromosome-wide (suggestive) Bonferroni-corrected thresholds, respectively. The

significant SNP are indicated by big blue triangles. SNPs are denoted by colored diamonds depending on the target SNP with which they were in strongest LD. The

plots indicate the association results for CC on the COD pigs (A) before and (B) after conditional analysis on ALGA0006973. The plots indicate the association results

for AC on the COD pigs (C) before and (D) after conditional analysis on MARC0080275.

candidate gene for CC. Two identified SNPs (ALGA0006891 and
ALGA0006895) on SSC1 were associated with CC, and the SNPs
are located nearest the TLE3 gene. The TLE3 was identified as a
dual function modulator of adipogenesis that augments PPARγ

action and inhibits Wnt signaling, and PPARγ andWnt signaling
are central positive and negative regulators of adipogenesis,
respectively (34). Three significant SNPs (MARC0087724,
WU_10.2_7_116331723, and H3GA0022932) on SSC7 are
located nearest or within the GALC gene. These SNPs were
detected to be associated with the CC, AC, and WC traits. The
GALC gene encodes a lysosomal protein (35). Many studies
found that lysosomes participated in regulating lipid metabolism
(36, 37). Interestingly, the bioinformatics analysis showed that
the GALC is mainly involved in sphingolipid metabolism and
lysosome pathways (Supplementary Table 3). The lysosomes
were reported to be involved in the degradation of sphingolipids
(38). Sphingolipid production can lead to lipid accumulation
disorders (39). These results suggested that the TLE3 and GALC
genes may play an important role in lipid metabolism. As we all
know, fat is the main factor affecting body size, so the TLE3 and

GALC genes should be regarded as strong candidate genes for
the conformation traits.

CONCLUSION

This study conducted single-trait and multi-trait GWASs for CC,
AC, and WC in 2,206 AOD and 2,082 COD pigs. As a result, we
detected a total of 35 newly significant SNPs for CC, AC, andWC
on SSC1, SSC4, SSC5, SSC6, SSC7, SSC12, and SSC13. Among
these SNPs, single-trait GWAS detected 18 significant SNPs on
SSC1 were associated with CC and AC in COD pigs. These 18
SNPs were situated in a QTL region with a 6.92Mb interval (from
170.06 to 176.98Mb). Moreover, 21 newly pleiotropic SNPs were
identified to be associated with the three conformation traits by
multi-trait GWAS, suggesting themulti-trait GWAS is a powerful
statistical method to identify pleiotropic locus. According to the
bioinformatics analysis and the functions of candidate genes,
three genes (ITGA11, TLE3, and GALC) may affect skeletal bone
mass and lipid metabolism. Finally, three genes were selected as
strong candidate genes that may affect the conformation traits.
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Our findings further reveal the genetic architecture of CC, WC,
and AC, which may provide new insights for improving the
conformation traits in pigs.
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