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Abstract
Background: Comparison of metabolic networks is typically performed based on the organisms'
enzyme contents. This approach disregards functional replacements as well as orthologies that are
misannotated. Direct comparison of the structure of metabolic networks can circumvent these
problems.

Results: Metabolic networks are naturally represented as directed hypergraphs in such a way that
metabolites are nodes and enzyme-catalyzed reactions form (hyper)edges. The familiar operations
from set algebra (union, intersection, and difference) form a natural basis for both the pairwise
comparison of networks and identification of distinct metabolic features of a set of algorithms. We
report here on an implementation of this approach and its application to the procaryotes.

Conclusion: We demonstrate that metabolic networks contain valuable phylogenetic information
by comparing phylogenies obtained from network comparisons with 16S RNA phylogenies. The
algebraic approach to metabolic networks is suitable to study metabolic innovations in two sets of
organisms, free living microbes and Pyrococci, as well as obligate intracellular pathogens.

Background
The metabolic networks of a wide variety of organisms, in
particular procaryotes, have been reconstructed by means
of a combination of genomic annotations with biochem-
ical and physiological data, see e.g. [1]. These networks are
compiled in databases, in particular in the KEGG resource
[2].

Large scale bacterial phylogenies that are based on single
genes are notoriously plagued by gene transfer, gene

duplication, gene deletion, and functional replacement of
genes. The same holds for various approaches towards uti-
lizing gene content for phylogenetic purposes, discussed
e.g. by [3-8]. A recent article by [9] addressed this issue by
considering the presence or absence of 64 individual sub-
pathways that were identified based on the COG division
[10] of the National Center for Biotechnology Informa-
tion. A related approach, based on comparison of individ-
ual pathways was discussed by [11-13] and [14]. The
pathways necessary for such approaches can be derived
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from a given metabolic network either "by hand" or using
automated procedures such as metabolic flux analysis, see
e.g. [15-19].

Instead of attempting to first reconstruct individual path-
ways, we take here a more global view by grounding our
analysis in the direct comparison of the metabolic net-
works. While the application of generic graph distances or
similarity measures (see e.g. [20]) is certainly appealing,
they cannot be used in a straightforward manner for met-
abolic networks. The reason is that chemical reaction net-
works do not have a simple representation as graphs, at
least not when metabolites are represented as nodes and
reactions as edges. Instead, a metabolic network is natu-
rally described by a directed hypergraph [21], or, equiva-
lently, by a directed bipartite graph, in which metabolites
and reactions (or, equivalently, the enzymes that catalyze
the reactions), are represented by two different types of
vertices. More global comparison of metabolic networks,
in terms of various network indices and networks motifs,
can be found in [22].

This contribution is organized as follows: In the next sec-
tion we summarize an algebraic approach to comparison
and manipulation of chemical reaction networks that is
motivated by set theory. We briefly describe the C library
that implements this approach. We then demonstrate that
the symmetric difference of two metabolic networks can
be used to derive a distance measure that is suitable for
reconstructing phylogenetic relationship from metabolic
network data. More interestingly, however, the same
approach can be used directly to extract those subnet-
works of the metabolism that are innovations in the par-
ticular subtree of the phylogeny. We illustrate our
approach using pathogenic procaryotes as an example.

The algebra of directed hypergraphs

A metabolic network is defined by its metabolites and the
system of reactions that inter-converts them. We denote
the set of metabolites by X. A chemical reaction E can be

described as a pair of multisets (E-, E+), where E- ⊆ X is the

set of educts in the reaction and E+ ⊆ X is the set of reac-
tion products. Slightly more generally, we can replace the
multisets by ordinary sets and instead define the multi-
plicities of product and educt metabolites by means of the

stoichiometric coefficients  and  of the products

and educts, respectively. A metabolic network is thus a
pair (X, ) where  is a set of reactions. Such a structure

is known as a directed hypergraph (X, ), see e.g. [21].
The stoichiometric matrix S of the network has the entries

where x ∈ X is a metabolite, and E is a reaction. For com-

pleteness, we remark that the set Ec = E+ ∩ E- are the cata-
lysts of the reaction E. Furthermore, a reaction is

autocatalytic if  -  ≠ 0 for some x ∈ Ec. By abuse

of notation we write E = E+ ∪ E- for the set of metabolites
involved in the reaction E. Furthermore, we write supp

= ∪{E|E ∈ } for the set metabolites that actually take

part in the reactions. We call a network (X, ) clean if

X = supp  and define the clean up operator as  =

(supp , ). Furthermore, for a given set  of reactions
and set A metabolites we define

[A] = {E ∈  | (E+ ∪ E-) ⊆ A}  (2)

The restriction of a network (X, E) to a set A of metab-
olites is defined as the clean network

[A] = (A, [A]) .  (3)

For short we write  [ ] =  [supp ] for the restric-
tion with respect to a set of reactions. The number of reac-

tions in a network  will be denoted by || ||.

In order to compare networks in a systematic way, we
need to be able to determine the differences and the com-
monalities of two networks. Inspired by the usual algebra
of sets, which is based on the operations "union", "inter-
section", and "difference", we introduce analogous math-
ematical constructions for chemical reaction networks.
Fig. 1 illustrates the basic operations of this "network alge-
bra" which are formally defined below.

In the following let ' (X', ε') and '' (X'', ε'') be two

networks. Of course we have ' = ''iff X' = X'' and ε' =
ε''. The empty network will be denoted by ∅.

Union

The union  =  ∪  is defined as the network (X'

∪ X",  ∪ ). Note that  is clean if both  and

 are clean.

Intersection

The intersection  =  ∩  is defined as the clean
network

 = (X' ∩ X",  ∩ )   (4)
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Graphical representation of the basic binary operations of the network algebraFigure 1
Graphical representation of the basic binary operations of the network algebra. Diagrams (A) and (B) summarize the citric-acid 
cycle of P. horikoshii and H. pylori [31]. Hypergraphs can always be drawn as bipartite graphs with one class of vertices repre-
senting the hypergraph vertices (chemical species, ● ), while the other class of vertices encodes the hyperedges (chemical reac-
tions, ■ ). Each reaction is connected by (directed) arrows from its educts and to its products. For clarity of presentation we 
have omitted the direction of the arrows (most reactions are reversible) as well as small molecules such as CO2 and H2O here. 
Furthermore, two reactions are marked in color, namely the ones catalyzed by citrate synthase in red, and pyruvate dehydro-
genase in green. The results of the basic operations are as follows: (a) Intersection A ∩ B; (b) Union A ∪ B; (c) Symmetric Dif-
ference A � B; (d) Strict Symmetric Difference A  B; (e) Difference A \ B; (f) Difference B \ A.
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Note that (  ∩ ) [X' ∩ X"] =  ∩ .

Difference

The difference  = \  is defined as the clean net-
work

 = (supp( \ ), \ )   (5)

The difference network contains all reactions occurring in

 but not , and all metabolites occurring in the
remaining reactions.

The strict difference  = \\  is the clean network

 = (X'\X", ( \ ), [X'\X"])   (6)

The new network contains only those metabolites occur-

ring in  but not , and only those reactions from

 that can be performed with the remaining metabo-

lites. Thus, we have || \\ || ≤ || \ ||.

Symmetric difference

The symmetric difference  =  �  is defined as the

clean network  = (  ∪ )\(  ∩ ) .

Strict symmetric difference

The strict symmetric difference  =    is  =

(  ∪ )\\(  ∩ ) .

The Vienna Reaction Network Library Vienna-RNL imple-
ments these basic set-theoretic operations on chemical
reaction networks. It is available under the GNU Public
License from [32] and as additional file: 1. The library is
written in platform independent ANSI C and provides
basic data structures for chemical reactions and their net-
works, IO routines for reading and writing and various
formats, as well as set operations such as the union, inter-
section, or difference of two chemical reaction networks.
It is intended for the use in conjunction with the user's
own C programs or PERL scripts.

The library contains IO-Routines for reading SBML [23],
an XML based dialect for the standardized representation
of systems biology models, writing of SBML is currently
being implemented. The capability of reading and writing
SBML will make the functionality of the Vienna Reaction
Network Library accessible to about 80 other software sys-
tems which support SBML [33].

Phylogenies from networks
Datasets were retrieved from the KEGG database on met-
abolic networks [2], which holds genomic and network
data of about 20 Archaea, 200 Bacteria and 20 Eucarya,
where in particular the data of many Eukaryotes are
incomplete. In a preparatory step we decomposed the
individual KEGG-pathways into their chemical reactions
and combined these to a complete network for each
organism.

The simplest approach to inferring phylogenetic relation-
ships from metabolic networks is to use a distance meas-
ure d on the set of reaction networks. We use here

Alternatively, the strict symmetric difference  

could be used to define a difference measure. Further-
more, other normalizations of the difference measure
could be used. By calculating tree distances between the
16S rRNA phylogenies and the network phylogenies,
using the treedist program from the phylip package [24],
we have observed, however, that equ.(7) performs best
with respect to reproducing trusted 16S RNA phylogenies.
Tree distances between the 16S rRNA phylogeny and the
network phylogeny calculated with the symmetric differ-
ence are 2 and 0.023, using symmetric difference and
branch score distance measure, respectively. Compared
with tree distances between the 16S rRNA phylogeny and
the network phylogeny utilizing the strict symmetric dif-
ference yields a much larger tree distance of 10 and 0.093,
respectively.

Distance-based network phylogenies are computed using
the Fitch algorithm [25] implemented in the phylip pack-
age as well as using the splits-decomposition algorithm
from the SplitsTree package [26].

An example comprising a selection of bacterial and
archaeal metabolic networks is shown in Fig. 2, see Table
1 for the list of species used. The phylogeny inferred from
the metabolic networks conforms almost perfectly with
the maximum parsimony tree computed from the 16S
rRNA sequences of the same organisms. The rRNA
sequences were aligned using clustalx. The minor discrep-
ancies are due to poorly resolved nodes as can be seen in
the split-decomposition network below. The congruence
of rRNA trees and network-based phylogenies demon-
strates that the structure of metabolic networks encodes
phylogenetic information. Metabolic networks thus con-
stitute a source of phylogenetic signal that is completely
independent of sequence information.
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Unrooted phylogeniesFigure 2
Unrooted phylogenies. (top) Maximum parsimony tree of 16S rRNA sequences. (center) Phy-logenetic tree calculated from 
metabolic network data using the Fitch algorithm for distance matrices. (bottom) Phylogenetic tree calculated from metabolic 
network data using Splits decomposition with the Fitch-Margoliash power 2 fit for distance matrices. Species abbreviations are 
collected in Table 1.
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The use of distance measures reduces the available infor-
mation on the network structure already in the first step.
We therefore complement distance based phylogenetic
analysis with parsimony methods using reaction content:
For a given set of organisms, we first calculated the union

 of their metabolic networks. For each organism we
then constructed a reaction profile reflecting presence or
absence of each reaction in  in the metabolic network
of the respective organism. This approach thus is reduced
to reconstructing phylogenies from character-tables that
represent the presence/absence of particular reactions in
the reaction network. It should be noted that this is simi-
lar, but not quite the same, as using the presence or
absence of orthologous enzymes (see e.g. [3-8]). The main
difference is that the network based approach tolerates
functional replacements that may occur, e.g., through hor-
izontal gene transfer [9].

Metabolic innovations

The algebraic approach to metabolic network evolution
can also be used in a straightforward way to trace the his-
tory of metabolic innovations. To this end, consider a
(trusted) unrooted phylogenetic tree T in which each leaf

of T is labeled with the metabolic network k of the cor-

responding taxon k. Each edge e of T defines a split, i.e., a

bipartition σe = {Ue, e} of the set of taxa. Here we regard

splits as directed. Note that mathematically we can define
innovations at each split in both directions. One of the

two subsets U or , however, contains the ancestral state,
hence only one direction makes biological sense: this is
the one where the ancestral state (root of the tree) is

located in the sub-set . This knowledge has to be pro-

vided externally.Consider an (arbitrary) directed split σ =







Û

Û

Û

Table 1: Metabolic networks used in this study.

Domain Species KEGG Id Genomic Sequence

Bacteria Proteobacteria Gamma Escherichia coli K-12 MG1655 eco U00096
Buchnera aphidicola buc BA_000003
Salmonella typhi CT18 sty NC_003198
Yersinia pestis CO92 ype NC_003143
Vibrio cholorae vch NC_002505
Pseudomonas aeruginosa pae NC_002516

Rickettsiales Rickettsia prowazekii rpr NC_000963
Wolbachia endosymbiont wol NC_002978

Firmicutes Mollicutes Mycoplasmae genitalium mge L43967
Mycoplasmae pneumoniae mpn NC_000912
Ureaplasmae urealyticum uur NC_002162

Spirochaetes Borrelia burgdorferi bbu AE000783
Treponema pallidum tpa NC_000919
Treponema denticola tde NC_002967

Actinobacteria Mycobacterium leprae mle NC_002677
Bifidobacterium longum blo NC_004307
Corynebacterium diphtheriae cdi NC_002935

Hyperthermophilic bacteria Aquifex aeolicus aae AE000657
Thermotoga maritima tma AE000512

Archaea Euryarchaeota Methanocaldococcus jannaschii mja NC_000909
Methanothermobacter thermoautotrophicus mth NC_000916
Archaeoglobus fulgidus afu NC_000917
Pyrococcus horikoshii pho BA000001
Pyrococcus abyssi pab NC_000865
Pyrococcus furiosus pfu NC_003413

Crenarchaeota Aeropyrum pernix ape BA000002
Pyrobaculum aerophilum pai NC_003364
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(U, ) on the given set of taxa, i.e., a pair of sets of taxa

(U, ) such that U  θ,  θ, and U ∩  = θ. We define
the differential metabolic network

The network (σ) describes the metabolic innovations in

U relative to the "background" .

As discussed in the previous section, network phylogenies
are rather sensitive with respect to life-style and environ-
mental constraints. The organisms whose metabolic net-
works have been utilized to compute the 16s rRNA tree
shown in Fig. 2 are able to freely live in the environment
with a reasonably large capacity for adaptation.

As a first example we analyzed the unique metabolic net-
work from the Pyrococcus genus. Figure 3 shows the net-
work phylogeny from Fig. 2 with the Pyrococcus spp. clade
highlighted. The resulting differential network indicates
reactions present in Pyrococcus spp. but absent in all other
organisms of the phylogeny (Figure 3). For example, reac-
tion R01087 is catalyzed by Maleate cis-trans-isomerase
which is utilized in maleate assimilating and high-temper-
ature bacteria. A second sub-network involving both ADP-
forming acetate and propanoate CoA ligases is potentially
used in the organisms to convert between acetate and pro-
panoate and their corresponding CoA forms.

As a second example we analyzed our set of reference
organism (Figure 2) with obligatory intracellular patho-
gens. Figure 4 shows the phylogeny with the selected path-
ogens (dashed oval). Interestingly, Mollicutes, such as
Mycoplasmae and Spirochaetes, such as Treponema are
grouped together. They all possess a minimal gene-set,
and thus a highly optimized and host-dependent meta-
bolic network. Surprisingly, this set of organisms has spe-
cific reactions that are absent in the remaining organisms
of the phylogeny. Figure 5 shows the corresponding dif-
ferential network which consists of five sub-network. The
two largest networks involve sugar-conversions and parts
of glycolysis. Smaller networks correspond to formylation
of tetrahydrofolate as well as cholin and carnitine path-
ways.

Discussion
The Vienna Reaction Network Library introduced above
treats chemical reaction networks, and metabolic net-
works in particular, as directed hypergraphs. A framework
borrowed from set algebra provides natural definitions of

unions, intersections, and differences that can be used to
compare the metabolic networks of different organisms.
We have demonstrated that metabolic networks convey
phylogenetic information and can indeed be used to infer
phylogenetic relationships of free-living organisms in a
way that is similar to gene-content based approaches. In
contrast to the latter, however, metabolic network based
phylogenies are less sensitive to the effects of functional
replacement, e.g., through horizontal gene transfer.

Differences of metabolic networks among subtrees of a
trusted phylogeny, or more generally, along any split of
interest in a set of organisms can be computed directly,
making it easy to study metabolic innovations in particu-
lar clades. A first application of our network phylogeny
analysis involved three members of the Pyrococcus spp.
clade. The metabolic reactions resulting from the split
between the Pyrococci and the remaining organisms
involve the maleate cis-trans-isomerase reaction, ADP-
forming acetate and propanoate CoA ligase reactions as
well as beta-D-Glucose:NAD(P)+ 1-oxoreductase.

Our second example considers a class of intra-cellular
pathogens that includes Mycoplasmae, Ureaplasmae, and
Spirochete. Their restricted repertoire of metabolic reac-
tions reflect the specialized life-style. Many metabolic
pathways are not required in such a rich environment and
have been lost in the course of evolution. On the other
hand, constructing a network phylogeny including these
microbes, we observe metabolic reactions assembling an
unconnected network that is present in this set of intracel-
lular pathogens and absent in the remaining organisms.
Such reactions include phosphorilization and conver-
sions of sugars and derivates, deaminating lyase reactions,
and reactions involving carnitine, choline and tetrahydro-
folate.

At present, metabolic network data are compiled by a
multitude of methods, and at least in part are constructed
by genomic similarity with other organisms. Strictly
speaking, therefore, we cannot view metabolic network
data such as those complied in the KEGG database as
independent from genomic data. With the recent
advances of experimental techniques in metabolomics
(see e.g. [27-29]), however, the situation is rapidly
improving.

Conclusion
Our comparative approach to metabolic network analysis,
which focuses on individual reactions rather than on
aggregate features such as pathways, simplifies the identi-
fication of metabolic innovations and, in particular, facil-
itates the recognition of organisms as potential biological
threat agents based on their metabolic repertoire. Further-
more, the ability to easily identify differences in metabolic
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(top) The Pyrococcus spp. clade has been selected (dashed oval) for differential network analysisFigure 3
(top) The Pyrococcus spp. clade has been selected (dashed oval) for differential network analysis. (bottom) Differential metabolic 
network. Numbers in the ovals refer to reaction ids in the KEGG database.
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capacity between pathogens should be useful for devising
a refined classification of pathogenicity based on meta-
bolic capabilities.

In this contribution we have restricted ourselves to
unweighted networks. Distance measures between net-
works, however, could be refined by attaching weights to
both vertices and (hyper-)edges without requiring signifi-
cant algorithmic changes. These could reflect, e.g., how
essential a reaction or a metabolite is for each organism.
With the increasing amount and accuracy of available data
it might also be feasible to devise a stochastic model of the
evolution of metabolic networks, which could then be

turned into a scoring scheme for a generalized version of
(local) graph alignment along the lines of [30].

Authors' contributions
The idea on a metabolic network algebra has been con-
ceived by ILH and PFS during a visit at the Santa Fe Insti-
tute. The implementation was substantially improved by
CF. CVF developed the distance measurements and appli-
cations to microbial metabolic networks. All authors col-
laborated closely in writing the manuscript.

Unrooted network phylogeny using PHYLIP with the Fitch-Margoliash algorithmFigure 4
Unrooted network phylogeny using PHYLIP with the Fitch-Margoliash algorithm. A set of obligatory intracellular pathogens has 
been selected (dashed oval) for differential network analysis (see text).
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Additional material
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Differential network corresponding the split shown in Figure 4Figure 5
Differential network corresponding the split shown in Figure 4. These reactions are specializations of the intracellular parasites.
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