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Abstract

Estimating the polygenicity (proportion of causally associated single nucleotide polymor-

phisms (SNPs)) and discoverability (effect size variance) of causal SNPs for human traits

is currently of considerable interest. SNP-heritability is proportional to the product of these

quantities. We present a basic model, using detailed linkage disequilibrium structure from a

reference panel of 11 million SNPs, to estimate these quantities from genome-wide associa-

tion studies (GWAS) summary statistics. We apply the model to diverse phenotypes and

validate the implementation with simulations. We find model polygenicities (as a fraction of

the reference panel) ranging from’ 2 × 10−5 to’ 4 × 10−3, with discoverabilities similarly

ranging over two orders of magnitude. A power analysis allows us to estimate the propor-

tions of phenotypic variance explained additively by causal SNPs reaching genome-wide

significance at current sample sizes, and map out sample sizes required to explain larger

portions of additive SNP heritability. The model also allows for estimating residual inflation

(or deflation from over-correcting of z-scores), and assessing compatibility of replication and

discovery GWAS summary statistics.

Author summary

There are�10 million common variants in the genome of humans with European ances-

try. For any particular phenotype a number of these variants will have some causal effect.
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It is of great interest to be able to quantify the number of these causal variants and the

strength of their effect on the phenotype.

Genome wide association studies (GWAS) produce very noisy summary statistics for

the association between subsets of common variants and phenotypes. For any phenotype,

these statistics collectively are difficult to interpret, but buried within them is the true

landscape of causal effects. In this work, we posit a probability distribution for the causal

effects, and assess its validity using simulations. Using a detailed reference panel of’11

million common variants – among which only a small fraction are likely to be causal, but

allowing for non-causal variants to show an association with the phenotype due to correla-

tion with causal variants—we implement an exact procedure for estimating the number of

causal variants and their mean strength of association with the phenotype. We find that,

across different phenotypes, both these quantities—whose product allows for lower

bound estimates of heritability—vary by orders of magnitude.

Introduction

The genetic components of complex human traits and diseases arise from hundreds to likely

many thousands of single nucleotide polymorphisms (SNPs) [1], most of which have weak

effects. As sample sizes increase, more of the associated SNPs are identifiable (they reach

genome-wide significance), though power for discovery varies widely across phenotypes. Of

particular interest are estimating the proportion of common SNPs from a reference panel

(polygenicity) involved in any particular phenotype; their effective strength of association (dis-

coverability, or causal effect size variance); the proportion of variation in susceptibility, or phe-

notypic variation, captured additively by all common causal SNPs (approximately, the narrow

sense heritability), and the fraction of that captured by genome-wide significant SNPs—all of

which are active areas of research [2–9]. The effects of population structure [10], combined

with high polygenicity and linkage disequilibrium (LD), leading to spurious degrees of SNP

association, or inflation, considerably complicate matters, and are also areas of much focus

[11–13]. Despite these challenges, there have been recent significant advances in the develop-

ment of mathematical models of polygenic architecture based on GWAS [14, 15]. One of the

advantages of these models is that they can be used for power estimation in human pheno-

types, enabling prediction of the capabilities of future GWAS.

Here, in a unified approach explicitly taking into account LD, we present a model relying

on genome-wide association studies (GWAS) summary statistics (z-scores for SNP associa-

tions with a phenotype [16]) to estimate polygenicity (π1, the proportion of causal variants in

the underlying reference panel of approximately 11 million SNPs from a sample size of 503)

and discoverability (s2
b
, the causal effect size variance), as well as elevation of z-scores due to

any residual inflation of the z-scores arising from variance distortion (s2
0
, which for example

can be induced by cryptic relatedness), which remains a concern in large-scale studies [10].

We estimate π1, s2
b
, and s2

0
, by postulating a z-score probability distribution function (pdf) that

explicitly depends on them, and fitting it to the actual distribution of GWAS z-scores.

Estimates of polygenicity and discoverability allow one to estimate compound quantities,

like narrow-sense heritability captured by the SNPs [17]; to predict the power of larger-scale

GWAS to discover genome-wide significant loci; and to understand why some phenotypes

have higher power for SNP discovery and proportion of heritability explained than other

phenotypes.
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In previous work [18] we presented a related model that treated the overall effects of LD on

z-scores in an approximate way. Here we take the details of LD explicitly into consideration,

resulting in a conceptually more basic model to predict the distribution of z-scores. We apply

the model to multiple phenotype datasets, in each case estimating the three model parameters

and auxiliary quantities, including the overall inflation factor λ, (traditionally referred to as

genomic control [19]) and narrow sense heritability, h2. We also perform extensive simula-

tions on genotypes with realistic LD structure in order to validate the interpretation of the

model parameters. A discussion of the relation of the present paper to other work is provided

in the first section of the S1 Appendix (pp. S2-S3).

Materials and methods

Overview

Our basic model is a simple postulate for the distribution of causal effects (denoted β below)

[20]. Our model assumes that only a fraction of all SNPs are in some sense causally related

to any given phenotype. We work with a reference panel of approximately 11 million SNPs

with 503 samples, and assume that all common causal SNPs (minor allele frequency (MAF)

> 0.002) are contained in it. Any given GWAS will have z-scores for a subset of these reference

SNPs (we use the term “typed” below to refer to GWAS SNPs with z-scores, whether they were

directly genotyped or their genotype was imputed). When a z-score partially involves a latent

causal component (i.e., not pure noise), we assume that it arises through LD with neighboring

causal SNPs, or that it itself is causal.

We construct a pdf for z-scores that directly follows from the underlying distribution of

effects. For any given typed SNP’s z-score, it is dependent on the other SNPs the focal SNP is

in LD with (SNPs that are “tagged” by the focal SNP), taking into account their LD with the

focal SNP and their heterozygosity (i.e., it depends not just on the focal typed SNP’s total LD

and heterozygosity, but also on the distribution of neighboring reference SNPs in LD with it

and their heterozygosities). We present two ways of constructing the model pdf for z-scores,

using multinomial expansion, and using convolution. The former is perhaps more intuitive,

but the latter is more numerically tractable, yielding an exact solution, and is used here to

obtain all reported results. The problem then is finding the three model parameters that give a

maximum likelihood best fit for the model’s prediction of the distribution of z-scores to the

actual distribution of z-scores. Because we are fitting three parameters typically using ≳106

data points, it is appropriate to incorporate some data reduction to facilitate the computations.

To that end, we bin the data (z-scores) into a 10 × 10 grid of heterozygosity-by-total LD (hav-

ing tested different grid sizes to ensure convergence of results). Also, when building the LD

and heterozygosity structures of reference SNPs, we fine-grained the LD range (0� r2� 1),

again ensuring that bins were small enough that results were well converged. To fit the model

to the data we bin the z-scores (within each heterozygosity/total LD window) and calculate the

multinomial probability for having the actual distribution of z-scores (numbers of z-scores in

the z-score bins) given the model pdf for the distribution of z-scores, and adjusting the model

parameters using a multidimensional unconstrained nonlinear minimization (Nelder-Mead),

so as to maximize the likelihood of the data, given the parameters.

A visual summary of the predicted and actual distribution of z-scores is obtained by making

quantile-quantile plots showing, for a wide range of significance thresholds going well beyond

genome-wide significance, the proportion (x-axis) of typed SNPs exceeding any given thresh-

old (y-axis) in the range. It is important also to assess the quantile-quantile sub-plots for SNPs

in the heterozygosity-by-total LD grid elements (see S1 Appendix).
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With the pdf in hand, various quantities can be calculated: the number of causal SNPs; the

expected genetic effect (denoted δ below, where δ2 is the non-centrality parameter of a Chi-

squared distribution) at the current sample size for a typed SNP given the SNP’s z-score and

its full LD and heterozygosity structure; the estimated SNP heritability, h2
SNP (excluding contri-

butions from rare reference SNPs, i.e., with MAF<0.2%); and the sample size required to

explain any percentage of that with genome-wide significant SNPs. The model can easily be

extended using a more complex distribution for the underlying β’s, with multiple-component

mixtures for small and large effects, and incorporating selection pressure through both hetero-

zygosity dependence on effect sizes and linkage disequilibrium dependence on the prior prob-

ability of a SNP’s being causal—issues we will address in future work.

The model: Probability distribution for z-scores

To establish notation, we consider a bi-allelic genetic variant, i, and let βi denote the effect size

of allele substitution of that variant on a given quantitative trait. We assume a simple additive

generative model (simple linear regression, ignoring covariates) relating genotype to pheno-

type [18, 21]. That is, assume a linear vector equation (no summation over repeated indices)

y ¼ gibi þ ei ð1Þ

for phenotype vector y over N samples (mean-centered and normalized to unit variance),

mean-centered genotype vector gi for the ith of n SNPs (vector over samples of the additively

coded number of reference alleles for the ith variant), true fixed effect βi (regression coefficient)

for the SNP, and residual vector ei containing the effects of all the other causal SNPs, the inde-

pendent random environmental component, and random error. Variants with non-zero fixed

effect βi are said to be “causal”. For SNP i, the estimated simple linear regression coefficient is

b̂i ¼ gTi y=ðg
T
i giÞ ¼ covðgi; yÞ=varðgiÞ; ð2Þ

where T denotes transpose and gTi gi=N ¼ varðgiÞ ¼ Hi is the SNP’s heterozygosity (frequency

of the heterozygous genotype): Hi = 2pi(1 − pi) where pi is the frequency of either of the SNP’s

alleles.

Consistent with the work of others [11, 15], we assume the causal SNPs are distributed

randomly throughout the genome (an assumption that can be relaxed when explicitly consid-

ering different SNP categories, but that in the main is consistent with the additive variation

explained by a given part of the genome being proportional to the length of DNA [22]). In a

Bayesian approach, we assume that the parameter β for a SNP has a distribution (in that spe-

cific sense, this is similar to a random effects model), representing subjective information on β,

not a distribution across tangible populations [23]. Specifically, we posit a normal distribution

for β with variance given by a constant, s2
b
:

b � N ð0; s2
b
Þ: ð3Þ

This is also how the β are distributed across the set of causal SNPs. Therefore, taking into

account all SNPs (the remaining ones are all null by definition), this is equivalent to the two-

component Gaussian mixture model we originally proposed [20]

b � p1N ð0; s2
b
Þ þ ð1 � p1ÞN ð0; 0Þ ð4Þ

where N ð0; 0Þ is the Dirac delta function, so that considering all SNPs, the net variance is

varðbÞ ¼ p1s
2
b
. If there is no LD (and assuming no source of spurious inflation), the associa-

tion z-score for a SNP with heterozygosity H can be decomposed into a fixed effect δ and a
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residual random environment and error term, � � N ð0; 1Þ, which is assumed to be indepen-

dent of δ [18]:

z ¼ dþ � ð5Þ

with

d ¼
ffiffiffiffiffiffiffiffi
NH
p

b ð6Þ

so that

varðzÞ ¼ varðdÞ þ varð�Þ

� s2 þ 1
ð7Þ

where

s2 ¼ s2
b
NH: ð8Þ

By construction, under null, i.e., when there is no genetic effect, δ = 0, so that var(�) = 1.

If there is no source of variance distortion in the sample, but there is a source of bias in the

summary statistics for a subset of markers (e.g., the sample is composed of two or more sub-

populations with different allele frequencies for a subset of markers—pure population stratifi-

cation in the sample [24]), the marginal distribution of an individual’s genotype at any of those

markers will be inflated. The squared z-score for such a marker will then follow a non-central

Chi-square distribution (with one degree of freedom); the non-centrality parameter will con-

tain the causal genetic effect, if any, but biased up or down (confounding or loss of power,

depending on the relative sign of the genetic effect and the SNP-specific bias term). The effect

of bias shifts, arising for example due to stratification, is nontrivial, and currently not explicitly

in our model; it is usually accounted for using standard methods [25].

Variance distortion in the distribution of z-scores can arise from cryptic relatedness in the

sample (drawn from a population mixture with at least one subpopulation with identical-by-

descent marker alleles, but no population stratification) [19]. If zu denotes the uninflated z-

scores, then the inflated z-scores are

z ¼ s0zu; ð9Þ

where σ0� 1 characterizes the inflation. Thus, from Eq 7, in the presence of inflation in the

form of variance distortion

varðzÞ ¼ s2
0
ðs2 þ 1Þ

� ~s2 þ s2
0

� ~s2
b
NH þ s2

0

ð10Þ

where ~s2
b
� s2

0
s2
b
, so that varðdÞ ¼ ~s2 � ~s2

b
NH and � � N ð0; s2

0
Þ. In the presence of variance

distortion one is dealing with inflated random variables ~b � N ð0; ~s2
b
Þ, but we will drop the

tilde on the β’s in what follows.

Since variance distortion leads to scaled z-scores [19], then, allowing for this effect in some

of the extremely large data sets, we can assess the ability of the model to detect this inflation by

artificially inflating the z-scores (Eq 9), and checking that the inflated ŝ2
0

is estimated correctly

while the other parameter estimates remain unchanged.

Implicit in Eq 8 is approximating the denominator, 1 − q2, of the χ2 statistic non-centrality

parameter to be 1, where q2 is the proportion of phenotypic variance explained by the causal
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variant, i.e., q �
ffiffiffiffi
H
p

b. So a more correct δ is

d ¼
ffiffiffiffi
N
p

q=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � q2

p
: ð11Þ

Taylor expanding in q and then taking the variance gives

varðdÞ ¼ s2
b
NH½1þ ð15=4Þs4

b
H2 þ Oðs8

b
H4Þ�: ð12Þ

The additional terms will be vanishingly small and so do not contribute in a distributional

sense; (quasi-) Mendelian or outlier genetic effects represent an extreme scenario where the

model is not expected to be accurate, but SNPs for such traits are by definition easily detect-

able. So Eq 8 remains valid for the polygenicity of complex traits.

Now consider the effects of LD on z-scores. The simple linear regression coefficient esti-

mate for typed SNP i, b̂ i, and hence the GWAS z-score, implicitly incorporates contributions

due to LD with neighboring causal SNPs. (A typed SNP is a SNP with a z-score, imputed or

otherwise; generally these will compose a smaller set than that available in reference panels like

1000 Genomes used here for calculating the LD structure of typed SNPs.) In Eq 1, ei = ∑j6¼i gj
βj + ε, where gj is the genotype vector for SNP j, βj is its true regression coefficient, and ε is the

independent true environmental and error residual vector (over the N samples). Thus, explic-

itly including all causal true β’s, Eq 2 becomes

b̂i ¼

P
j g

T
i gjbj

NHi
þ
gTi ε
gTi gi

� b
0

i þ ε
0
i

ð13Þ

(the sum over j now includes SNP i itself). This is the simple linear regression expansion of

the estimated regression coefficient for SNP i in terms of the independent latent (true) causal

effects and the latent environmental (plus error) component; b
0

i is the effective simple linear

regression expression for the true genetic effect of SNP i, with contributions from neighboring

causal SNPs mediated by LD. Note that gTi gj=N is simply cov(gi, gj), the covariance between

genotypes for SNPs i and j. Since correlation is covariance normalized by the variances, b
0

i in

Eq 13 can be written as

b
0

i ¼
X

j

ffiffiffiffiffi
Hj

Hi

s

rijbj: ð14Þ

where rij is the correlation between genotypes at reference SNP j and typed SNP i. Then, from

Eq 5, the z-score for the typed SNP’s association with the phenotype is given by:

zi ¼
ffiffiffiffiffiffiffiffi
NHi
p

b
0

i þ �i

¼
ffiffiffiffi
N
p X

j

ffiffiffiffiffi
Hj

q
rijbj þ �i:

ð15Þ

We noted that in the absence of LD, the distribution of the residual in Eq 5 is assumed to be

univariate normal. But in the presence of LD (Eq 15) there are induced correlations. Letting �

denote the vector of residuals (with element �i for SNP i, i = 1. . .n), and M denote the (sparse)

n × n LD-r2 matrix, then, ignoring inflation, � � N ð0;MÞ [26]. Since the genotypes of two

unrelated individuals are marginally independent, this multivariate normal distribution for �

is contingent on the summary statistics for all SNPs being determined from the same set of

individuals, which generally is overwhelmingly, if not in fact entirely, the case (in the extreme,
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with an independent set of individuals for each SNP, M would be reduced to the identity

matrix). A limitation of the present work is that we do not consider this complexity. This may

account for the relatively minor misfit in the simulation results for cases of high polygenicity—

see below.

Thus, for example, if the SNP itself is not causal but is in LD with k causal SNPs that all

have heterozygosity H, and where its LD with each of these is the same, given by some value

r2 (0 < r2� 1), then ~s2 in Eq 10 will be given by

~s2 ¼ kr2~s2
b
NH: ð16Þ

For this idealized case, the marginal distribution, or pdf, of z-scores for a set of such associ-

ated SNPs is

f1ðz;N;H; sb; s0Þ ¼ �ðz; 0; kr2~s2
b
NH þ s2

0
Þ ð17Þ

where ϕ(�;μ, σ2) is the normal distribution with mean μ and variance σ2, and H is shorthand

for the LD and heterozygosity structure of such SNPs (in this case, denoting exactly k causal

SNPs with LD given by r2 and heterozygosity given byH). If a proportion α of all typed SNPs

are similarly associated with the phenotype while the remaining proportion are all null (not

causal and not in LD with causal SNPs), then the marginal distribution for all SNP z-scores is

the Gaussian mixture

f ðzÞ ¼ ð1 � aÞ�ðz; 0; s2
0
Þ þ af1ðzÞ; ð18Þ

dropping the parameters for convenience.

For real genotypes, however, the LD and heterozygosity structure is far more complicated,

and of course the causal SNPs are generally numerous and unknown. Thus, more generally,

for each typed SNP H will be a two-dimensional histogram over LD (r2) and heterozygosity

(H), each grid element giving the number of SNPs falling within the edges of that (r2,H) bin.

Alternatively, for each typed SNP it can be built as two one-dimensional histograms, one giv-

ing the LD structure (counts of neighboring SNPs in each LD r2 bin), and the other giving, for

each r2 bin, the mean heterozygosity for those neighboring SNPs, which will be accurate for

sufficiently fine binning—within a bin, the heterozygosities of the tagged referene SNPs wll be

in a vary narrow range. We use the latter in what follows. We present two consistent ways of

expressing the a posteriori pdf for z-scores, based on multinomial expansion and on convolu-

tion, that provide complementary views. The multinomial approach perhaps gives a more

intuitive feel for the problem, but the convolution approach is considerably more tractable

numerically and is used here to obtain all reporter results. All code used in the analyses, includ-

ing simulations, is publicly available on GitHub [27].

Model PDF: Multinomial expansion

As in our previous work, we incorporate the model parameter π1 for the fraction of all SNPs

that are causal [18]. Additionally, we calculate the actual LD and heterozygosity structure for

each SNP. That is, for each SNP we build a histogram of the numbers of other SNPs in LD

with it for w equally-spaced r2-windows between r2
min and 1 where r2

min ¼ 0:05 (approximately

the noise floor for correlation when LD is calculated from the 503 samples in 1000 Genomes),

and record the mean heterozygosity for each bin; as noted above, we use H as shorthand to

represent all this. We find that w’ 20 is sufficient for converged results. For any given SNP,

the set of SNPs thus determined to be in LD with it constitute its LD block, with their number

given by n (LD with self is always 1, so n is at least 1). The pdf for z-scores, given N;H, and

the three model parameters π1, σβ, σ0, will then be given by the sum of Gaussians that are
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generalizations of Eq 17 for different combinations of numbers of causal SNPs among the w
LD windows, each Gaussian scaled by the probability of the corresponding combination of

causal SNPs among the LD windows, i.e., by the appropriate multinomial distribution term.

For w r2-windows, we must consider the possibilities where the typed SNP is in LD with all

possible numbers of causal SNPs in each of these windows, or any combination thereof. There

are thus w + 1 categories of SNPs: null SNPs (which r2-windows they are in is irrelevant), and

causal SNPs, where it does matter which r2-windows they reside in. If window i has ni SNPs

(
Pw

i¼1
ni ¼ n) and mean heterozygosity Hi, and the overall fraction of SNPs that are causal

is π1, then the probability of having simultaneously k0 null SNPs, k1 causal SNPs in window

1, and so on through kw causal SNPs in window w, for a nominal total of K causal SNPs

(
Pw

i¼1
ki ¼ K and k0 = n − K), is given by the multinomial distribution, which we denote

M(k0, . . ., kw; n0, . . ., nw; π1). For an LD block of n SNPs, the prior probability, pi, for a SNP to

be causal and in window i is the product of the independent prior probabilities of a SNP being

causal and being in window i: pi = π1 ni/n. The prior probability of being null (regardless of r2-

window) is simply p0 = (1 − π1). The probability of a given breakdown k0, . . ., kw of the neigh-

boring SNPs into the w + 1 categories is then given by

Mðk0; . . . ; kw; n0; . . . ; nw; p1Þ ¼
n!

k0! . . . kw!
pk0

0 . . . pkww ð19Þ

and the corresponding Gaussian is

�ðz; 0; ðk1H1r2
1
þ . . .þ kwHwr2

wÞ~s
2
b
N þ s2

0
Þ: ð20Þ

For a SNP with LD and heterozygosity structure H, the pdf for its z-score, given N and the

model parameters, is then given by summing over all possible numbers of total causal SNPs in

LD with the SNP, and all possible distributions of those causal SNPs among the w r2-windows:

pdfðz;N;H; p1; sb; s0Þ ¼

XKmax

K¼0

X

k1 ;...;kw

n!

k0! . . . kw!
pk0

0 . . . pkww �

�ðz; 0; ðk1H1r2
1
þ . . .þ kwHwr2

wÞ~s
2
b
N þ s2

0
Þ;

ð21Þ

where Kmax is bounded above by n. Note again that H is shorthand for the heterozygosity and

linkage-disequilibrium structure of the SNP, giving the set {ni} (as well as {Hi}), and hence, for

a given π1, pi. Also there is the constraint
Pw

i¼1
ki ¼ K on the second summation, and, for all i,

max(ki) = max(K, ni), though generally Kmax� ni. The number of ways of dividing K causal

SNPs amongst w LD windows is given by the binomial coefficient a
b

� �
, where a� K + w − 1

and b� w − 1, so the number of terms in the second summation grows rapidly with K and w.

However, because π1 is small (often�10−3), the upper bound on the first summation over

total number of potential causal SNPs K in the LD block for the SNP can be limited to Kmax
< min(20, n), even for large blocks with n’ 103. That is,

XKmax

K¼0

X

k1 ;...;kw

Mðk0; . . . ; kw; n0; . . . ; nw; p1Þ ’ 1: ð22Þ

Still, the number of terms is large; e.g., for K = 10 and w = 10 there are 92,378 terms.

For any given typed SNP (whose z-score we are trying to predict), it is important to empha-

size that the specific LD r2 and the heterozygosity of each underlying causal (reference) SNP

tagged by it need to be taken into account, at least in an approximate sense that can be controlled
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to allow for arbitrary finessing giving converged results. This is the purpose of our w = 20 LD-r2

windows, which inevitably leads to the multinomial expansion. Which window the causal SNP is

in matters, leading to w+ 1 SNP categories, as noted above. Setting w = 1 would result in only a

very rough approximation for the model pdf, reducing our multinomial to a binomial involving

just two categories of SNPs: null and causal, with all causal SNPs treated the same, regardless of

their LD with the tag SNP and their heterozygosity, as is done for the “M2” and “M3” models in

[14]. The effects of this are demonstrated in the S1 Appendix (pp. S2-S3, and p. 14).

Model PDF: Convolution

From Eq 15, there exists an efficient procedure that allows for accurate calculation of a z-

score’s a posteriori pdf (given the SNP’s heterozygosity and LD structure, and the phenotype’s

model parameters). Any GWAS z-score is a sum of unobserved random variables (LD-medi-

ated contributions from neighboring causal SNPs, and the additive environmental compo-

nent), and the pdf for such a composite random variable is given by the convolution of the

pdfs for the component random variables. Since convolution is associative, and the Fourier

transform of the convolution of two functions is just the product of the individual Fourier

transforms of the two functions, one can obtain the a posteriori pdf for z-scores as the inverse

Fourier transform of the product of the Fourier transforms of the individual random variable

components.

From Eq 15 z is a sum of correlation- and heterozygosity-weighted random variables {βj}
and the random variable �, where {βj} denotes the set of true causal parameters for each of the

SNPs in LD with the typed SNP whose z-score is under consideration. The Fourier transform

F(k) of a Gaussian f(x) = c × exp(−ax2) is FðkÞ ¼ c
ffiffiffiffiffiffiffiffi
p=a

p
� expð� p2k2=aÞ. From Eq 4, for each

SNP j in LD with the typed SNP (1� j� b, where b is the typed SNP’s block size),

ffiffiffiffiffiffiffiffi
NHj

p
rjbj � p1N ð0;NHjr2

j ~s
2
b
Þ þ ð1 � p1ÞN ð0; 0Þ: ð23Þ

The Fourier transform (with variable k—see below) of the first term on the right hand side

is

FðkÞ ¼ p1expð� 2p2k2NHjr2
j ~s

2
b
Þ; ð24Þ

while that of the second term is simply (1 − π1). Additionally, the environmental term is

� � N ð0; s2
0
Þ (ignoring LD-induced correlation, as noted earlier), and its Fourier transform

is expð� 2p2s2
0
k2Þ. For each typed SNP, one could construct the a posteriori pdf based on these

Fourier transforms. However, it is more practical to use a coarse-grained representation of the

data. Thus, in order to fit the model to a data set, we bin the typed SNPs whose z-scores com-

prise the data set into a two-dimensional heterozygosity/total LD grid (whose elements we

denote “H-L” bins), and fit the model with respect to this coarse grid instead of with respect to

every individual typed SNP z-score; in the section “Parameter Estimation” below we describe

using a 10 × 10 grid. Additionally, for each H-L bin the LD r2 and heterozygosity histogram

structure for each typed SNP is built, using wmax equally-spaced r2 bins for r2
min � r

2 � 1 (this

is a change in notation from the previous section: wmax here plays the role of w there; in what

follows, w will be used as a running index, 1� w� wmax); wmax = 20 is large enough to allow

for converged results; r2
min ¼ 0:05 is generally small enough to capture true causal associations

in weak LD while large enough to exclude spurious contributions to the pdf arising from esti-

mates of r2 that are non-zero due to noise. This points up a minor limitation of the model

stemming from the small reference sample size (NR = 503 for 1000 Genomes) from which H is

built. Larger NR would allow for more precision in handling very low LD (r2 < 0.05), but this
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is an issue only for situations with extremely large s2
b

(high heritability with low polygenicity)

that we do not encounter for the 16 phenotypes we analyze here. In any case, this can be cali-

brated for using simulations.

We emphasize again that setting wmax = 1 would result in only an approximation for the

model pdf (see “Relation to Other Work” in the S1 Appendix).

For any H-L bin with mean heterozygosity H and mean total LD L there will be an average

LD and heterozygosity structure with a mean breakdown for the typed SNPs having nw refer-

ence SNPs (not all of which necessarily are typed SNPs, i.e., have a z-score) with LD r2 in the

wth r2 bin whose average heterozygosity isHw. Thus, one can re-express z-scores for an H-L

bin as

z ¼
ffiffiffiffi
N
p Xwmax

w¼1

ffiffiffiffiffiffi
Hw

p
rw
Xnw

j¼0

bj

 !

þ � ð25Þ

where βj and � are unobserved random variables.

In the spirit of the discrete Fourier transform (DFT), discretize the set of possible z-scores

into the ordered set of n (equal to a power of 2) values z1, . . ., zn with equal spacing between

neighbors given by Δz (zn = −z1 − Δz, and zn/2+1 = 0). Taking z1 = −38 allows for the minimum

p-values of 5.8 × 10−316 (near the numerical limit); with n = 210, Δz = 0.0742. Given Δz, the

Nyquist critical frequency is fc ¼ 1

2Dz, so we consider the Fourier transform function for the

z-score pdf at n discrete values k1, . . ., kn, with equal spacing between neighbors given by

Δk, where k1 = −fc (kn = −k1 − Δk, and kn/2+ 1 = 0; the DFT pair Δz and Δk are related by

ΔzΔk = 1/n). Define

Aw � � 2p2NHwr2
w~s2

b
: ð26Þ

(see Eq 24). Then the product (over r2 bins) of Fourier transforms for the genetic contribu-

tion to z-scores, denoted Gj� G(kj), is

GðkjÞ ¼
Ywmax

w¼1

ðp1expðAwk
2

j Þ þ ð1 � p1ÞÞ
nw : ð27Þ

Recall that H denotes the LD and heterozygosity structure of a particular SNP (or represen-

tative SNP in an average sense for an H-L grid element), a shorthand for the set of values

{nw,Hw, Lw: w = 1, . . ., wmax} that characterize the SNP. Let M denote the set of model param-

eters. The Fourier transform of the environmental contribution, denoted Ej� E(kj), is

EðkjÞ ¼ expð� 2p2s2
0
k2
j Þ: ð28Þ

Let Fz = (G1 E1,. . .,GnEn) denote the vector of products of Fourier transform values, and let

F � 1
denote the inverse Fourier transform operator. Then for the SNP in question, the vector

of pdf values, pdfz, for the uniformly discretized possible z-score outcomes z1, . . ., zn described

above, i.e., pdfz = (f1,. . .,fn) where fi � pdfðzijH;M;NÞ, is

pdfz ¼ F � 1
½Fz�: ð29Þ

Thus, the ith element pdfz i ¼ fi is the a posteriori probability of obtaining a z-score value zi
for the SNP, given the SNP’s LD and heterozygosity structure, the model parameters, and the

sample size.
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Data preparation

For real phenotypes, we calculated SNP minor allele frequency (MAF) and LD between SNPs

using the 1000 Genomes phase 3 data set for 503 subjects/samples of European ancestry [28–

30]. In order to carry out realistic simulations (i.e., with realistic heterozygosity and LD struc-

tures for SNPs), we used HAPGEN2 [31–33] to generate genotypes; we calculated SNP MAF

and LD structure from 1000 simulated samples. We elected to use the same intersecting set of

SNPs for real data and simulation. For HAPGEN2, we eliminated SNPs with MAF<0.002; for

1000 Genomes, we eliminated SNPs for which the call rate (percentage of samples with useful

data) was less than 90%. This left nsnp = 11,015,833 SNPs. See S1 Appendix for further details.

We analyzed summary statistics for sixteen phenotypes (S1 DataSourceList.; in what follows,

where sample sizes varied by SNP, we quote the median value): (1) major depressive disorder

(Ncases = 59,851, Ncontrols = 113,154) [34]; (2) bipolar disorder (Ncases = 20,352,Ncontrols = 31,358)

[35]; (3) schizophrenia (Ncases = 35,476, Ncontrols = 46,839) [36]; (4) coronary artery disease

(Ncases = 60,801, Ncontrols = 123,504) [37]; (5) ulcerative colitis (Ncases = 12,366, Ncontrols = 34,915)

and (6) Crohn’s disease (Ncases = 12,194,Ncontrols = 34,915) [38]; (7) late onset Alzheimer’s dis-

ease (LOAD; Ncases = 17,008, Ncontrols = 37,154) [39] (in the S1 Appendix we present results for a

more recent GWAS with Ncases = 71,880 andNcontrols = 383,378 [40]); (8) amyotrophic lateral

sclerosis (ALS) (Ncases = 12,577,Ncontrols = 23,475) [41]; (9) number of years of formal education

(N = 293,723) [42]; (10) intelligence (N = 262,529) [43, 44]; (11) body mass index (N = 233,554)

[45]; (12) height (N = 251,747) [46]; (13) putamen volume (normalized by intracranial volume,

N = 11,598) [47]; (14) low- (N = 89,873) and (15) high-density lipoprotein (N = 94,295) [48];

and (16) total cholesterol (N = 94,579) [48]. Most participants were of European ancestry.

For height, we focused on the 2014 GWAS [46], not the more recent 2018 GWAS [49],

although we also report below model results for the latter. There are issues pertaining to popu-

lation structure in the various height GWAS [50, 51], and the 2018 GWAS is a combination of

GIANT and UKB GWAS, so some caution is warranted in interpreting results for these data.

For the ALS GWAS data, there is very little signal outside chromosome 9: the data QQ plot

essentially tracks the null distribution straight line. The QQ plot for chromosome 9, however,

shows a significant departure from the null distribution. Of 471,607 SNPs on chromosome 9 a

subset of 273,715 have z-scores, of which 107 are genome-wide significant, compared with 114

across the full genome. Therefore, we restrict ALS analysis to chromosome 9.

A limitation in the current work is that we have not taken account of imputation inaccu-

racy, where lower MAF SNPs are, through lower LD, less certain. Thus, the effects from lower

MAF causal variants will be noisier than for higher MAF variants.

Simulations

We generated genotypes for 105 unrelated simulated samples using HAPGEN2 [33]. For nar-

row-sense heritability h2 equal to 0.1, 0.4, and 0.7, we considered polygenicity π1 equal to 10−5,

10−4, 10−3, and 10−2. For each of these 12 combinations, we randomly selected ncausal = π1 ×
nsnp “causal” SNPs and assigned them β-values drawn from the standard normal distribution

(i.e., independent ofH), with all other SNPs having β = 0. We repeated this ten times, giving

ten independent instantiations of random vectors of β’s. Defining YG = Gβ, where G is the

genotype matrix and β here is the vector of true coefficients over all SNPs, the total phenotype

vector is constructed as Y = YG+ε, where the residual random vector ε for each instantiation is

drawn from a normal distribution such that h2 = var(YG)/var(Y). For each of the instantiations

this implicitly defines the “true” value s2
b
.

The sample simple linear regression slope, b̂, and the Pearson correlation coefficient,

r̂ , are assumed to be t-distributed. These quantities have the same t-value:
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t ¼ b̂=seðb̂Þ ¼ r̂=seðr̂Þ ¼ r̂
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r̂2
p

, with corresponding p-value from Student’s t
cumulative distribution function (cdf) with N − 2 degrees of freedom: p = 2 × tcdf(−|t|, N − 2)

(see S1 Appendix). Since we are not here dealing with covariates, we calculated p from correla-

tion, which is slightly faster than from estimating the regression coefficient. The t-value can be

transformed to a z-value, giving the z-score for this p: z ¼ � F� 1ðp=2Þ � signðr̂Þ, where F is

the normal cdf (z and t have the same p-value).

Parameter estimation

We randomly pruned SNPs using the threshold r2 > 0.8 to identify “synonymous” SNPs, per-

forming ten such iterations. That is, for each of ten iterations, we randomly selected a SNP

(not necessarily the one with largest z-score) to represent each subset of synonymous SNPs. For

schizophrenia, for example, pruning resulted in approximately 1.3 million SNPs in each iteration.

The postulated pdf for a SNP’s z-score depends on the SNP’s LD and heterozygosity struc-

ture (histogram), H. Given the data–the set of z-scores for available SNPs, as well as their LD

and heterozygosity structure—and the H-dependent pdf for z-scores, the objective is to find the

model parameters that best predict the distribution of z-scores. We bin the SNPs with respect to

a grid of heterozygosity and total LD; for any given H-L bin there will be a range of z-scores

whose distribution the model it intended to predict. We find that a 10 × 10 grid of equally

spaced bins is adequate for converged results. (Using equally-spaced bins might seem inefficient

because of the resulting very uneven distribution of z-scores among grid elements—for exam-

ple, orders of magnitude more SNPs in grid elements with low total LD compared with high

total LD. However, the objective is to model the effects of H and L: using variable grid element

sizes so as to maximize balance of SNP counts among grid elements means that the true H- and

L-mediated effects of the SNPs in a narrow range of H and L get subsumed with the effects of

many more SNPs in a much wider range of H and L—a misspecification of the pdf leading to

some inaccuracy.) In lieu of or in addition to total LD (L) binning, one can bin SNPs with

respect to their total LD block size (total number of SNPs in LD, ranging from 1 to’1,500).

To find the model parameters that best fit the data, for a given H-L bin we binned the

selected SNPs z-scores into equally-spaced bins of width dz = 0.0742 (between zmin = −38 and

zmax = 38, allowing for p-values near the numerical limit of 10−316), and from Eq 29 calculated

the probability for z-scores to be in each of those z-score bins (the prior probability for “suc-

cess” in each z-score bin). Then, knowing the actual numbers of z-scores (numbers of “suc-

cesses”) in each z-score bin, we calculated the multinomial probability, pm, for this outcome.

The optimal model parameter values will be those that maximize the accrual of this probability

over all H-L bins. We constructed a cost function by calculating, for a given H-L bin, −ln(pm)

and averaging over prunings, and then accumulating this over all H-L bins. Model parameters

minimizing the cost were obtained from Nelder-Mead multidimensional unconstrained non-

linear minimization of the cost function, using the Matlab function fminsearch().

Posterior effect sizes

Model posterior effect sizes, given z (along with N, H, and the model parameters), were calcu-

lated using numerical integration over the random variable δ:

dexpected � EðdjzÞ ¼
Z

PðdjzÞddd

¼
1

PðzÞ

Z

PðzjdÞPðdÞddd:
ð30Þ
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Here, since zjd � N ðd; s2
0
Þ, the posterior probability of z given δ is simply

PðzjdÞ ¼ �ðz; d;s2
0
Þ: ð31Þ

P(z) is shorthand for pdfðzjN;H; p1; sb; s0Þ, given by Eq 29. P(δ) is calculated by a similar pro-

cedure that lead to Eq 29 but ignoring the environmental contributions {Ej}. Specifically, let

Fδ = (G1,. . .,Gn) denote the vector of products of Fourier transform values. Then, the vector

of pdf values for genetic effect bins (indexed by i; numerically, these will be the same as the z-

score bins) in the H-L bin, pdfδ = (f1,. . .,fn) where fi � pdfðdijHÞ, is

pdfd ¼ F � 1
½Fd�: ð32Þ

Similarly,

d
2

expected � Eðd
2
jzÞ ¼

Z

PðdjzÞd2dd

¼
1

PðzÞ

Z

PðzjdÞPðdÞd2dd;
ð33Þ

which is used in power calculations.

GWAS replication

A related matter has to do with whether z-scores for SNPs reaching genome-wide significance

in a discovery-sample are compatible with the SNPs’ z-scores in a replication-sample, particu-

larly if any of those replication-sample z-scores are far from reaching genome-wide signifi-

cance, or whether any apparent mismatch signifies some overlooked inconsistency. The model

pdf allows one to make a principled statistical assessment in such cases. We present the details

for this application, and results applied to studies of bipolar disorder, in the S1 Appendix (pp.

S7-S11).

GWAS power

Chip heritability, h2
SNP, is the proportion of phenotypic variance that in principle can be cap-

tured additively by the nsnp SNPs under study [17]. It is of interest to estimate the proportion

of h2
SNP that can be explained by SNPs reaching genome-wide significance, p�5 × 10−8 (i.e., for

which |z|>zt = 5.45), at a given sample size [52, 53]. In Eq 1, for SNP i with genotype vector gi
over N samples, let ygi � gibi. If the SNP’s heterozygosity isHi, then varðygiÞ ¼ b

2

i Hi. If we knew

the full set {βi} of true β-values, then, for z-scores from a particular sample size N, the propor-

tion of SNP heritability captured by genome-wide significant SNPs, A(N), would be given by

AðNÞ ¼
P

i:jzi j>zt
b

2

i Hi
P

all i b
2

i Hi

: ð34Þ

Now, from Eq 15, di ¼
ffiffiffiffi
N
p P

j

ffiffiffiffiffi
Hj

p
rijbj. If SNP i is causal and sufficiently isolated so that it

is not in LD with other causal SNPs, then di ¼
ffiffiffiffi
N
p ffiffiffiffiffi

Hi
p

bi, and varðygiÞ = d
2

i =N. When all causal

SNPs are similarly isolated, Eq 34 becomes

AðNÞ ¼
P

i:jzij>zt
d

2

i
P

all i d
2

i

: ð35Þ
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Of course, the true βi are not known and some causal SNPs will likely be in LD with others.

Furthermore, due to LD with causal SNPs, many SNPs will have a nonzero (latent or unob-

served) effect size, δ. Nevertheless, we can formulate an approximation to A(N) which, assum-

ing the pdf for z-scores (Eq 29) is reasonable, will be inaccurate to the degree that the average

LD structure of genome-wide significant SNPs differs from the overall average LD structure.

As before (see the subsection “Model PDF: Convolution”), consider a fixed set of n equally-

spaced nominal z-scores covering a wide range of possible values (changing from the summa-

tions in Eq 35 to the uniform summation spacing Δz now requires bringing the probability

density into the summations). For each z from the fixed set (and, as before, employing data

reduction by averaging so that H and L denote values for the 10 × 10 grid), use E(δ2|z, N,H, L)

given in Eq 33 to define

CðzjN;H; LÞ � Eðd2
jz;N;H; LÞPðzjN;H; LÞ ð36Þ

(emphasizing dependence on N, H, and L). Then, for any N, A(N) can be estimated by

AðNÞ ¼
P

H;L

P
z:jzj>zt

Cðz;N;H; LÞ
P

H;L

P
all z Cðz;N;H; LÞ

ð37Þ

where ∑H,L denotes sum over the H-L grid elements. The ratio in Eq 37 should be accurate if

the average effects of LD in the numerator and denominator cancel—which will always be true

as the ratio approaches 1 for large N. Plotting A(N) gives an indication of the power of future

GWAS to capture chip heritability.

Quantile-quantile plots and genomic control

One of the advantages of quantile-quantile (QQ) plots is that on a logarithmic scale they

emphasize behavior in the tails of a distribution, and provide a valuable visual aid in assessing

the independent effects of polygenicity, strength of association, and variance distortion—the

roles played by the three model parameters–as well as showing how well a model fits data. QQ

plots for the model were constructed using Eq 29, replacing the normal pdf with the normal

cdf, and replacing z with an equally-spaced vector~znom of length 10,000 covering a wide range

of nominal |z| values (0 through 38). SNPs were divided into a 10 × 10 grid of H × L bins, and

the cdf vector (with elements corresponding to the z-values in~znom) accumulated for each such

bin (using mean values of H and L for SNPs in a given bin).

For a given set of samples and SNPs, the genomic control factor, λ, for the z-scores is

defined as the median z2 divided by the median for the null distribution, 0.455 [19]. This can

also be calculated from the QQ plot. In the plots we present here, the abscissa gives the -log10

of the proportion, q, of SNPs whose z-scores exceed the two-tailed significance threshold p,

transformed in the ordinate as -log10(p). The median is at qmed = 0.5, or −log10 (qmed)’ 0.3; the

corresponding empirical and model p-value thresholds (pmed) for the z-scores—and equiva-

lently for the z-scores-squared—can be read off from the plots. The genomic inflation factor is

then given by

l ¼ ½F� 1ðpmed=2Þ�
2
=0:455:

Note that the values of λ reported here are for pruned SNP sets; these values will be lower

than for the total GWAS SNP sets.

Knowing the total number, ntot, of p-values involved in a QQ plot (number of GWAS z-

scores from pruned SNPs), any point (q, p) (log-transformed) on the plot gives the number,

np = qntot, of p-values that are as extreme as or more extreme than the chosen p-value. This
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can be thought of as np “successes” out of ntot independent trials (thus ignoring LD) from a

binomial distribution with prior probability q. To approximate the effects of LD, we estimate

the number of independent SNPs as ntot/f where f’ 10. The 95% binomial confidence interval

for q is calculated as the exact Clopper-Pearson 95% interval [54], which is similar to the nor-

mal approximation interval, q� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 � qÞ=ntot=f

p
.

Number of causal SNPs

The estimated number of causal SNPs is given by the polygenicity, π1, times the total number

of SNPs, nsnp: ncausal = π1 nsnp. nsnp is given by the total number of SNPs that went into building

the heterozygosity/LD structure, H in Eq 29, i.e., the approximately 11 million SNPs selected

from the 1000 Genomes Phase 3 reference panel, not the number of typed SNPs in the particu-

lar GWAS. The parameters estimated are to be seen in the context of the reference panel,

which we assume contains all common causal variants. Stable quantities (i.e., fairly indepen-

dent of the reference panel size. e.g., using the full panel or ignoring every second SNP), are

the estimated effect size variance and number of causal variants—which we demonstrate

below—and hence the heritability. Thus, the polygenicity will scale inversely with the reference

panel size. A reference panel with a substantially larger number of samples would allow for

inclusion of more SNPs (non-zero MAF), and thus the actual polygenicity estimated would

change slightly.

Narrow-sense chip heritability

Since we are treating the β coefficients as fixed effects in the simple linear regression GWAS

formalism, with the phenotype vector standardized with mean zero and unit variance, from Eq

1 the proportion of phenotypic variance explained by a particular causal SNP whose reference

panel genotype vector is g, q2=var(y;g), is given by q2 = β2 H. The proportion of phenotypic

variance explained additively by all causal SNPs is, by definition, the narrow sense chip herita-

bility, h2. Since E(β2)=s2
b

and ncausal = π1 nsnp, and taking the mean heterozygosity over causal

SNPs to be approximately equal to the mean over all SNPs, �H , the chip heritability can be esti-

mated as

h2 ¼ p1nsnp �Hs2
b
: ð38Þ

Mean heterozygosity from the’11 million SNPs is �H ¼ 0:2165.

For all-or-none traits like disease status, the estimated h2 from Eq 38 for an ascertained

case-control study is on the observed scale and is a function of the prevalence in the adult pop-

ulation, K, and the proportion of cases in the study, P. The heritability on the underlying con-

tinuous liability scale [55], h2
l , is obtained by adjusting for ascertainment (multiplying by K(1 −

K)/(P(1 − P)), the ratio of phenotypic variances in the population and in the study) and rescal-

ing based on prevalence [6, 56]:

h2
l ¼ h

2
Kð1 � KÞ
Pð1 � PÞ

�
Kð1 � KÞ

a2
; ð39Þ

where a is the height of the standard normal pdf at the truncation point zK defined such that

the area under the curve in the region to the right of zK is K.

Confidence intervals

Confidence intervals for parameters were estimated using the inverse of the observed Fisher

information matrix (FIM). The full FIM was estimated for all three parameters used in the
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model. For the derived quantity h2, which depends on all parameters, the covariances among

the parameters, given by the off-diagonal elements of the inverse of the FIM, were incorpo-

rated. Numerical values are in S1 Appendix (p. S12).

Results

Simulations

Table 1 shows the simulation results, comparing true and estimated values for the model

parameters, heritability, and the number of causal SNPs, for twelve scenarios where π1 and s2
b

both range over three orders of magnitude, encompassing the range of values for the pheno-

types; in S1 Appendix (p. S15) are QQ plots for a randomly chosen (out of 10) β-vector and

phenotype instantiation for each of the twelve (π1, h2) scenarios. Most of the p̂1 estimates are

in very good agreement with the true values, though for the extreme scenario of high heritabil-

ity and low polygenicity it is overestimated by factors of two-to-three. The numbers of esti-

mated causal SNPs (out of’11 million) are in correspondingly good agreement with the true

values, ranging in increasing powers of 10 from 110 through 110,158. The estimated discover-

abilities (ŝ2
b
) are also in good agreement with the true values. In most cases, ŝ2

0
is close to 1,

indicating little or no global inflation, though it is elevated for high heritability with high poly-

genicity, suggesting it is capturing some ubiquitous effects.

In the S1 Appendix (pp. S5-S7) we examine the issue of model misspecification. Specifically,

we assign causal effects β drawn from a Gaussian whose variance is not simply a constant but

depends on heterozygosity, such that rarer causal SNPs will tend to have larger effects [15].

The results—see S1 Appendix (p. S5)–show that the model still makes reasonable estimates of

the underlying genetic architecture. Additionally, we tested the scenario where true causal

effects are distributed with respect to two Gaussians [14], a situation that allows for a small

number of the causal SNPs to have quite large effects—see S1 Appendix (p. S6). We find that

heritabilities are still reasonably estimated using our model. In all these scenarios the overall

data QQ plots were accurately reproduced by the model. As a counter example, we simulated

summary statistics where the prior probability of a reference SNP being causal decreased

linearly with total LD (see S1 Appendix (p. S7)). In this case, our single Gaussian fit (which

Table 1. Simulation results: Comparison of mean (std) true and estimated (^) model parameters and derived quantities. Results for each line, for specified heritability

h2 and fraction π1 of causal SNPs, are from 10 independent instantiations with random selection of the ncausal causal SNPs that are assigned a β-value from the standard

normal distribution. Defining Yg = Gβ, where G is the genotype matrix, the total phenotype vector is constructed as Y = Yg+ε, where the residual random vector ε for each

instantiation is drawn from a normal distribution such that var(Y) = var(Yg)/h2 for predefined h2. For each of the instantiations, i, this implicitly defines the true value s2
bi,

and s2
b

is their mean. An example QQ plot for each line entry is shown in in S1 Appendix (p. S15).

h2
ĥ2 π1 π̂1 σ2

β σ̂ 2
β σ̂ 2

0 ncausal n̂causal

0.1 0.12 (0.01) 1E-5 1.4E-5 (2E-6) 4.3E-3 (7E-4) 3.6E-3 (5E-4) 1.01 (0.002) 110 151 (20)

0.1 0.10 (0.01) 1E-4 1.0E-4 (2E-5) 4.2E-4 (2E-5) 4.1E-4 (5E-5) 1.01 (0.003) 1101 1130 (206)

0.1 0.09 (0.01) 1E-3 0.9E-3 (1E-4) 4.2E-5 (5E-7) 4.1E-5 (4E-6) 1.02 (0.003) 11015 10340 (1484)

0.1 0.09 (0.01) 1E-2 0.8E-2 (2E-3) 4.2E-6 (4E-8) 5.6E-6 (2E-6) 1.02 (0.002) 110158 83411 (25448)

0.4 0.52 (0.05) 1E-5 2.3E-5 (2E-6) 1.7E-2 (3E-3) 9.1E-3 (1E-3) 1.02 (0.002) 110 259 (20)

0.4 0.45 (0.02) 1E-4 1.2E-4 (8E-6) 1.7E-3 (7E-5) 1.5E-3 (9E-5) 1.04 (0.002) 1101 1310 (92)

0.4 0.39 (0.01) 1E-3 1.0E-3 (5E-5) 1.7E-4 (2E-6) 1.6E-4 (8E-6) 1.05 (0.003) 11015 10607 (578)

0.4 0.37 (0.01) 1E-2 0.9E-2 (1E-3) 1.7E-5 (2E-7) 1.7E-5 (2E-6) 1.06 (0.003) 110158 95135 (10851)

0.7 0.91 (0.09) 1E-5 2.9E-5 (2E-6) 3.0E-2 (5E-3) 1.3E-2 (2E-3) 1.02 (0.003) 110 324 (24)

0.7 0.82 (0.02) 1E-4 1.4E-4 (7E-6) 2.9E-3 (1E-4) 2.4E-3 (1E-4) 1.05 (0.002) 1101 1493 (79)

0.7 0.70 (0.01) 1E-3 1.0E-3 (4E-5) 2.9E-4 (4E-6) 2.8E-4 (1E-5) 1.08 (0.003) 11015 10866 (406)

0.7 0.66 (0.01) 1E-2 0.9E-2 (7E-4) 2.9E-5 (3E-7) 2.9E-5 (2E-6) 1.09 (0.003) 110158 95067 (8191)

https://doi.org/10.1371/journal.pgen.1008612.t001
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assumes no LD dependence on the prior probability of a reference SNP being causal) did not

produce model QQ plots that accurately tracked the data QQ plots (see S1 Appendix (p. S19)).

The model parameters and heritabilities were also poor. But this scenario is highly artificial; in

contrast, in situations where the data QQ plots were accurately reproduced by the model, the

estimated model parameters and heritability were plausible.

Phenotypes

Figs 1 and 2 show QQ plots for the pruned z-scores for eight qualitative and eight quantitative

phenotypes, along with model estimates (S1 Appendix (pp. S20-S38) show a 4 × 4 grid break-

down with respect to heterozygosity × total-LD of QQ plots for all phenotypes studied here;

the 4 × 4 grid is a subset of the 10 × 10 grid used in the calculations). In all cases, the model

fit (yellow) closely tracks the data (dark blue). For the sixteen phenotypes, estimates for the

model polygenicity parameter (fraction of reference panel, with’11 million SNPs, estimated

to have non-null effects) range over two orders of magnitude, from π1’ 2 × 10−5 to π1’

4 × 10−3. The estimated SNP discoverability parameter (variance of β, or expected β2, for causal

variants) also ranges over two orders of magnitude from s2
b
’ 7� 10� 6 to s2

b
’ 2� 10� 3 (in

units where the variance of the phenotype is normalized to 1).

We find that schizophrenia and bipolar disorder appear to be similarly highly polygenic,

with model polygenicities’ 2.84 × 10−3 and’ 2.70 × 10−3, respectively. The model

Fig 1. QQ plots of (pruned) z-scores for qualitative phenotypes (dark blue, 95% confidence interval in light blue) with model prediction (yellow): (A) major

depressive disorder; (B) bipolar disorder; (C) schizophrenia; (D) coronary artery disease (CAD); (E) ulcerative colitis (UC); (F) Crohn’s disease (CD); (G) late

onset Alzheimer’s disease (AD), excluding APOE (see also S1 Appendix (p. S17)); and (H) amyotrophic lateral sclerosis (ALS), restricted to chromosome 9 (see

also S1 Appendix (p. S18)). The dashed line is the expected QQ plot under null (no SNPs associated with the phenotype). p is a nominal p-value for z-scores, and q is the

proportion of z-scores with p-values exceeding that threshold. λ is the overall nominal genomic control factor for the pruned data (which is accurately predicted by the

model in all cases). The three estimated model parameters are: polygenicity, p̂1; discoverability, ŝ2
b

(corrected for inflation); and SNP association χ2-statistic inflation

factor, ŝ2
0
. ĥ2 is the estimated narrow-sense chip heritability, re-expressed as h2

l on the liability scale for these case-control conditions assuming a prevalence of: MDD

7.1% [57], BIP 0.5% [58], SCZ 1% [59], CAD 3% [60], UC 0.1% [61], CD 0.1% [61], AD 14% (for people aged 71 and older in the USA [62, 63]), and ALS 5 × 10−5 [64].

The estimated number of causal SNPs is given by n̂causal ¼ p̂1nsnp where nsnp = 11, 015, 833 is the total number of SNPs, whose LD structure and MAF underlie the model;

the GWAS z-scores are for subsets of these SNPs. Neff is the effective case-control sample size–see text. Reading the plots: on the vertical axis, choose a p-value threshold

(more extreme values are further from the origin), then the horizontal axis gives the proportion of SNPs exceeding that threshold (higher proportions are closer to the

origin). Numerical values for the model parameters are also given in Table 2. See also S1 Appendix (pp. S20-S28).

https://doi.org/10.1371/journal.pgen.1008612.g001
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polygenicity of major depressive disorder, however, is 40% higher, π1’ 4 × 10−3—the highest

value among the sixteen phenotypes. In contrast, the model polygenicities of late onset Alzhei-

mer’s disease and Crohn’s disease are almost thirty times smaller than that of schizophrenia.

In S1 Appendix (p. S17) we show results for Alzheimer’s disease exclusively for chromo-

some 19 (which contains APOE), and for all autosomal chromosomes excluding chromosome

19. We also show results with the same chromosomal breakdown for a recent GWAS involving

455,258 samples that included 24,087 clinically diagnosed LOAD cases and 47,793 AD-by-

proxy cases (individuals who were not clinically diagnosed with LOAD but for whom at least

one parent had LOAD) [65]. These GWAS give consistent estimates of polygenicity: π1�

1 × 10−4 excluding chromosome 19, and π1� 6 × 10−5 for chromosome 19 exclusively.

Of the quantitative traits, educational attainment has the highest model polygenicity, π1 =

3.2 × 10−3, similar to intelligence, π1 = 2.2 × 10−3. Approximately two orders of magnitude

lower in polygenicity are the endophenotypes putamen volume and low- and high-density

lipoproteins.

The model effective SNP discoverability for schizophrenia is ŝ2
b
¼ 5:51� 10� 5, similar to

that for bipolar disorder. Major depressive disorder, which has the highest polygenicity, has

the lowest SNP discoverability, approximately one-eighth that of schizophrenia; it is this low

value, combined with high polygenicity that leads to the weak signal in Fig 1 (A) even though

the sample size is relatively large. In contrast, SNP discoverability for Alzheimer’s disease is

almost four times that of schizophrenia. The inflammatory bowel diseases, however, have

much higher SNP discoverabilities, 16 and 31 times that of schizophrenia respectively for

ulcerative colitis and Crohn’s disease—the latter having the second highest value of the sixteen

phenotypes: ŝ2
b
¼ 1:7� 10� 3.

Additionally, for Alzheimer’s disease we show in the S1 Appendix (p. S17) that the discover-

ability is two orders of magnitude greater for chromosome 19 than for the remainder of the

autosome. Note that since two-thirds of the 2018 “cases” are AD-by-proxy, the discoverabilities

Fig 2. this area for notes QQ plots of (pruned) z-scores and model fits for quantitative phenotypes: (A) educational attainment; (B) intelligence; (C) body mass

index (BMI); (D) height; (E) putamen volume; (F) low-density lipoprotein (LDL); (G) high-density lipoprotein (HDL); and (H) total cholesterol (TC). N is the

sample size. See Fig 1 for further description. Numerical values for the model parameters are also given in Table 2. See also S1 Appendix (pp. S29-S38).

https://doi.org/10.1371/journal.pgen.1008612.g002
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for the 2018 data are, as expected, reduced relative to the values for the 2013 data (approxi-

mately 3.5 times smaller).

The narrow sense SNP heritability from the ascertained case-control schizophrenia GWAS

is estimated as h2 = 0.37. Taking adult population prevalence of schizophrenia to be K = 0.01

[66, 67] (but see also [68], for K = 0.005), and given that there are 51,900 cases and 71,675 con-

trols in the study, so that the proportion of cases in the study is P = 0.42, the heritability on the

liability scale for schizophrenia from Eq 39 is ĥ2
l ¼ 0:21. For bipolar disorder, with K = 0.005

[58], 20,352 cases and 31,358 controls, ĥ2
l ¼ 0:16. Major depressive disorder appears to have a

much lower model-estimated SNP heritability than schizophrenia: ĥ2
l = 0.07. The model esti-

mate of SNP heritability for height is 17%, lower than the oft-reported value’50% (see Dis-

cussion). However, despite the huge differences in sample size, we find the same value, 17%,

for the 2010 GWAS (N = 133,735 [69]), and 19% for the 2018 GWAS (N = 707,868 [46, 49])—

see Table 2.

Fig 3 shows the sample size required so that a given proportion of chip heritability is cap-

tured by genome-wide significant SNPs for the phenotypes (assuming equal numbers of cases

and controls for the qualitative phenotypes: Neff = 4/(1/Ncases + 1/Ncontrols), so that when Ncases
= Ncontrols, Neff = Ncases + Ncontrols = N, the total sample size, allowing for a straightforward com-

parison with quantitative traits). At current sample sizes, only 4% of narrow-sense chip

heritability is captured for schizophrenia and only 1% for bipolar disorder; using current

methodologies, a sample size of Neff� 1 million would be required to capture the preponder-

ance of SNP heritability for these phenotypes. Major depressive disorder GWAS currently

is greatly under-powered, as shown in Fig 3(A). For education, we predict that 3.5% of

Table 2. Summary of model results for phenotypes shown in Figs 1 and 2. The subscript in h2
ðlÞ indicates that for the qualitative phenotypes (the first eight) the reported

SNP heritability is on the liability scale. MDD: Major Depressive Disorder; CAD: coronary artery disease; AD: Alzheimer’s Disease (excluding APOE locus; �for the full

autosomal reference panel, i.e., including APOE, h2
l ¼ 0:15 for AD—see S1 Appendix (p. S17)); BMI: body mass index; †ALS: amyotrophic lateral sclerosis, restricted to

chromosome 9; LDL: low-density lipoproteins; HDL: high-density lipoproteins. $In addition to the 2014 height GWAS (N = 251,747 [46]), we include here model results

for the 2010 (N = 133,735 [69]) and 2018 (N = 707,868 [49]) height GWAS; there is remarkable consistency for the 2010 and 2014 GWAS despite very large differences in

the sample sizes—see S1 Appendix (p. S17). Confidence intervals are in S1 Appendix (p. S12).

Phenotype π1 σ2
β σ2

0 ncausal h2
ðlÞ

MDD 4.01E-3 7.20E-6 1.06 4.4E4 0.07

Bipolar Disorder 2.70E-3 5.25E-5 1.05 3.0E4 0.16

Schizophrenia 2.84E-3 5.51E-5 1.14 3.1E4 0.21

CAD 1.14E-4 1.47E-4 0.97 1.3E3 0.03

Ulcerative Colitis 1.26E-4 8.82E-4 1.14 1.4E3 0.11

Crohn’s Disease 9.56E-5 1.70E-3 1.17 1.1E3 0.18

AD (no APOE)� 1.11E-4 2.22E-4 1.05 1.2E3 0.08

ALS† 1.43E-5 3.04E-3 1.02 7 0.00

Education 3.20E-3 1.57E-5 1.00 3.5E4 0.12

Intelligence 2.20E-3 2.32E-5 1.28 2.4E4 0.13

BMI 6.44E-4 4.28E-5 0.88 7.5E3 0.07

Height (2010)$ 4.32E-4 1.66E-4 0.94 4.8E3 0.17

Height (2014) 5.66E-4 1.23E-4 1.66 6.2E3 0.17

Height (2018)$ 8.56E-4 9.46E-5 2.50 9.4E3 0.19

Putamen Volume 4.94E-5 9.72E-4 1.00 540 0.11

LDL 3.58E-5 6.61E-4 0.96 390 0.06

HDL 2.37E-5 1.25E-3 0.97 260 0.07

TC 4.26E-5 8.99E-4 0.96 469 0.09

https://doi.org/10.1371/journal.pgen.1008612.t002
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phenotypic variance would be explained at N = 1.1 million, in good agreement with the value

found from direct computation of 3.2% [70]. For other phenotypes, the proportions of total

SNP heritability captured at the available sample sizes are given in Fig 3.

The sample size for ALS was quite low, and we restricted the analysis to chromosome 9,

which had most of the genome-wide significant typed SNPs; we estimate that there are’7

causal SNPs with high discoverability on chromosome 9 [71, 72], with very high discoverabil-

ity, s2
b
’ 0.003. In contrast, for AD restricted to chromosome 19, there were an estimated 14

causal SNPs with discoverability s2
b
’ 0.02 (see the S1 Appendix (p. S17)).

In this study, we assume that population stratification in the raw data has been corrected

for in the publicly-available summary statistics. However, given that some of the sample sizes

are extremely large, we allow for the possibility of residual cryptic relatedness. This would

result in a scaling of the z-scores, Eq 9 [19]. Thus, to test the modeling of inflation due to cryp-

tic relatedness, we scaled the simulation z-scores as described earlier (z = σ0 zu with σ0 > 1,

where zu are the original z-scores, i.e., not artificially inflated) and reran the model. E.g., for

education and schizophrenia we inflated the z-scores by a factor of 1.2. For schizophrenia

we found s2
0
¼ 1:366, which is almost exactly as predicted (1.14 × 1.2 = 1.368), while the

polygenicity and discoverability parameters are essentially unchanged: π1 = 2.81 × 10−3, and

s2
b
¼ 5:56� 10� 5. For education we found s2

0
¼ 1:206, which again is almost exactly as pre-

dicted (1.0 × 1.2 = 1.2), while the polygenicity and discoverability parameters are again essen-

tially unchanged: π1 = 3.19 × 10−3, and s2
b
¼ 1:57� 10� 5.

A comparison of our results with those of [14] and [15] is in the S1 Appendix (p. S13). Criti-

cal methodological differences with model M2 in [14] are that we use a full reference panel of

11 million SNPs from 1000 Genomes Phase 3, we allow for the possibility of inflation in the

data, and we provide an exact solution, based on Fourier Transforms, for the z-score pdf

Fig 3. Proportion of narrow-sense chip heritability, A(N) (Eq 37), captured by genome-wide significant SNPs as a

function of sample size, N, for phenotypes shown in Figs 1 and Fig 2. Values for current sample sizes are shown in

parentheses. Left-to-right curve order is determined by decreasing s2
b
. The prediction for education at sample size

N = 1.1 million is A(N) = 0.27, so that the proportion of phenotypic variance explained is predicted to be 3.5%, in good

agreement with 3.2% reported in [70]. (The curve for AD excludes the APOE locus. For HDL, see S1 Appendix (p. S9)

for additional notes).

https://doi.org/10.1371/journal.pgen.1008612.g003
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arising from the posited distribution of causal effects, resulting in better fits of the model and

the data QQ plots—as can be seen by comparing our QQ plots with those reported in S1

Appendix (p. S13). Although our estimated number of causal are often within a factor of two

of those from the nominally equivalent model M2 of Zhang et al, there is no clear pattern to

the mismatch.

GWAS replication

In the S1 Appendix (pp. S7-S11) we provide an extensive example of testing the compatibility

of summary statistics from two large bipolar disorder GWASs. Because z-scores are so noisy, it

is possible for a typed SNP with a highly significant p-values in one GWAS to completely fail

to reach significance in a subsequent GWAS, and for these outcomes to be statistically consis-

tent. SNP heterozygosity and total LD, as well as sample sizes, are relevant in making such

assessments.

Dependence on reference panel

Given a liberal MAF threshold of 0.002, our reference panel should contain the vast majority

of common SNPs for European ancestry. However, it does not include other structural vari-

ants (such as small insertions/deletions, or haplotype blocks) which may also be causal for phe-

notypes. To validate our parameter estimates for an incomplete reference, we reran our model

on real phenotypes using the culled reference where we exclude every other SNP. The result is

that all estimated parameters are as before except that p̂1 doubles, leaving the estimatde num-

ber of causal SNPs and heritability as before. For example, for schizophrenia we get π1 =

5.3 × 10−3 and s2
b
¼ 5:8� 10� 5 for the reduced reference panel, versus π1 = 2.8 × 10−3 and

s2
b
¼ 5:5� 10� 5 for the full panel, with heritability remaining essentially the same (37% on the

observed scale).

Discussion

Here we present a unified method based on GWAS summary statistics, incorporating detailed

LD structure from an underlying reference panel of SNPs with MAF>0.002, for estimating:

phenotypic polygenicity, π1, expressed as the fraction of the reference panel SNPs that have a

non-null true β value, i.e., are “causal”; and SNP discoverability or mean strength of associa-

tion (the variance of the underlying causal effects), s2
b
. In addition the model can be used to

estimate residual inflation of the association statistics due to variance distortion induced by

cryptic relatedness, s2
0
. The model assumes that there is very little, if any, inflation in the

GWAS summary statistics due to population stratification (bias shift in z-scores due to ethnic

variation).

We apply the model to sixteen diverse phenotypes, eight qualitative and eight quantitative.

From the estimated model parameters we also estimate the number of causal common-SNPs

in the underlying reference panel, ncausal, and the narrow-sense common-SNP heritability, h2

(for qualitative phenotypes, we re-express this as the proportion of population variance in dis-

ease liability, h2
l , under a liability threshold model, adjusted for ascertainment); in the event

rare SNPs (i.e., not in the reference panel) are causal, h2 will be an underestimate of the true

SNP heritability. In addition, we estimate the proportion of SNP heritability captured by

genome-wide significant SNPs at current sample sizes, and predict future sample sizes needed

to explain the preponderance of SNP heritability.

We find that schizophrenia is highly polygenic, with π1 = 2.8 × 10−3. This leads to an esti-

mate of ncausal’ 31, 000, which is in reasonable agreement with a recent estimate that the
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number of causal SNPs is>20,000 [73]. The SNP associations, however, are characterized by

a narrow distribution, s2
b
¼ 6:27� 10� 5, indicating that most associations are of weak effect,

i.e., have low discoverability. Bipolar disorder has similar parameters. The smaller sample size

for bipolar disorder has led to fewer SNP discoveries compared with schizophrenia. However,

from Fig 3, sample sizes for bipolar disorder are approaching a range where rapid increase in

discoveries becomes possible. For educational attainment [42, 74, 75], the polygenicity is some-

what greater, π1 = 3.2 × 10−3, leading to an estimate of ncausal’35, 000, half a recent estimate,

’ 70, 000, for the number of loci contributing to heritability [74]. The variance of the distribu-

tion for causal effect sizes is a quarter that of schizophrenia, indicating lower discoverability.

Intelligence, a related phenotype [43, 76], has a larger discoverability than education while hav-

ing lower polygenicity (� 10, 000 fewer causal SNPs).

In marked contrast are the lipoproteins and putamen volume which have very low polyge-

nicity: π1 < 5 × 10−5, so that only 250 to 550 SNPs (out of’11 million) are estimated to be

causal. However, causal SNPs for putamen volume and HDL appear to be characterized by rel-

atively high discoverability, respectively 17-times and 23-times larger than for schizophrenia

(see S1 Appendix (p. S9) for additional notes on HDL, and [77] for a relevant comparison with

our work).

The QQ plots (which are sample size dependent) reflect these differences in genetic architec-

ture. For example, the early departure of the schizophrenia QQ plot from the null line indicates

its high polygenicity, while the steep rise for putamen volume after its departure corresponds to

its high SNP discoverability.

For Alzheimer’s disease, our estimate of the liability-scale SNP heritability for the full 2013

dataset [39] is 15% for prevalence of 14% for those aged 71 older, half from APOE, while the

recent “M2” and “M3” models of Zhang et al [14] gave values of 7% and 10% respectively–see

S1 Appendix (p. S13). A recent report from two methods, LD Score Regression (LDSC) and

SumHer [77], estimated SNP heritability of 3% for LDSC and 12% for SumHer (assuming

prevalence of 7.5%). A raw genotype-based analysis (GCTA), including genes that contain rare

variants that affect risk for AD, reported SNP heritability of 53% [7, 78]; an earlier related

study that did not include rare variants and had only a quarter of the common variants esti-

mated SNP heritability of 33% for prevalence of 13% [79]. GCTA calculations of heritability

are within the domain of the so-called infinitesimal model where all markers are assumed to

be causal. Our model suggests, however, that phenotypes are characterized by polygenicities

less than 5 × 10−3; for AD the polygenicity is’ 10−4. Nevertheless, the GCTA approach yields

a heritability estimate closer to the twin-based (broad sense) value, estimated to be in the range

60-80% [80]. The methodology appears to be robust to many assumptions about the distribu-

tion of effect sizes [81, 82]; the SNP heritability estimate is unbiased, though it has larger stan-

dard error than methods that allow for only sparse causal effects [69, 83]. For the 2013 data

analyzed here [39], a summary-statistics-based method applied to a subset of 54,162 of the

74,046 samples gave SNP heritability of almost 7% on the observed scale [12, 84]; our estimate

is 12% on the observed scale—see S1 Appendix (p. S17).

Onset and clinical progression of sporadic Alzheimer’s disease is strongly age-related [85,

86], with prevalence in differential age groups increasing at least up through the early 90s [62].

Thus, it would be more accurate to assess heritability (and its components, polygenicity and

discoverability) with respect to, say, five-year age groups beginning with age 65 years, and

using a consistent control group of nonagenarians and centenarians. By the same token, com-

parisons among current and past AD GWAS are complicated because of potential differences

in the age distributions of the respective case and the control cohorts. Additionally, the degree

to which rare variants are included will affect heritability estimates. The summary-statistic-
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based estimates of polygenicity that we report here are, however, likely to be robust for com-

mon SNPs: π1’ 1.1 × 10−4, with only a few causal SNPs on chromosome 19.

Our point estimate for the liability-scale SNP heritability of schizophrenia is h2
l ¼ 0:21

(assuming a population risk of 0.01), and that 4% of this (i.e., 1% of overall disease liability) is

explainable based on common SNPs reaching genome-wide significance at the current sample

size. This h2
l estimate is in reasonable agreement with a recent result, h2

l ¼ 0:27 [73, 87], also

calculated from the PGC2 data set but using raw genotype data for 472,178 markers for a sub-

set of 22,177 schizophrenia cases and 27,629 controls of European ancestry; and with an earlier

result of h2
l ¼ 0:23 from PGC1 raw genotype data for 915,354 markers for 9,087 schizophrenia

cases and 12,171 controls [7, 88]. The recent “M2” (single non-null Gaussian) model estimate

is h2
l ¼ 0:29 [14] (see S1 Appendix (p. S13)). No QQ plot was available for the M2 model fit to

schizophrenia data, but such plots (truncated on the y-axis at −log10(p) = 10) for many other

phenotypes were reported [14]. We note that for multiple phenotypes (height, LDL cholesterol,

total cholesterol, years of schooling, Crohn’s disease, coronary artery disease, and ulcerative

colitis) our single causal Gaussian model appears to provide a better fit to the data than M2:

many of the M2 plots show a very early and often dramatic deviation between prediction and

data, as compared with our model QQ plots which are also built from a single causal Gaussian,

suggesting an upward bias in polygenicity and/or variance of effect sizes, and hence heritability

as measured by the M2 model for these phenotypes. The LDSC liability-scale (1% prevalence)

SNP heritability for schizophrenia has been reported as h2
l ¼ 0:555 [12] and more recently as

0.19 [77], the latter in very good agreement with our estimate; on the observed scale it has been

reported as 45% [12, 84], in contrast to our corresponding value of 37%. Our estimate of 1% of

overall variation on the liability scale for schizophrenia explainable by genome-wide significant

loci compares reasonably with the proportion of variance on the liability scale explained by

Risk Profile Scores (RPS) reported as 1.1% using the “MGS” sample as target (the median for

all 40 leave-one-out target samples analyzed is 1.19%—see Extended Data Figure 5 and Supple-

mentary Tables 5 and 6 in [36]; this was incorrectly reported as 3.4% in the main paper). These

results show that current sample sizes need to increase substantially in order for RPSs to have

predictive utility, as the vast majority of associated SNPs remain undiscovered. Our power esti-

mates indicate that�500,000 cases and an equal number of controls would be needed to iden-

tify these SNPs (note that there is a total of approximately 3 million cases in the US alone).

A subtle but important issue is downward bias of large-sample maximum-likelihood esti-

mates of SNP heritability, due to over-ascertainment of cases in case-control studies [87]; it

has been examined in the context of restricted maximum likelihood (REML) in GCTA, which

assumes a polygenicity of 1, i.e., every SNP is causal. For schizophrenia, this has been assessed

in the context of BOLT-REML, which assumes a mixture distribution of small (‘spike’) and

large (‘slab’) effects [73]: from 22,177 cases and 27,629 controls, the observed-scale heritability

is reported as h2 = 0.415, equivalent to h2
l ¼ 0:23 on the liability scale, assuming 1% disease

prevalence. However, using “phenotype correlation-genetic correlation” (PCGC) regression, a

moments-based approach requiring raw-genotype data which produces unbiased estimates for

case-control studies of disease traits [87], the unbiased liability-scale heritability is reported as

h2
g ¼ 0:27, indicating that the likelihood-maximization estimate is biased down by 15% of the

unbiased value (the degree of underestimation decreases for smaller sample sizes). Our esti-

mate for the liability-scale heritability of schizophrenia, from a larger sample than in [73], is

h2
l ¼ 0:21. This at least would be consistent with downward bias operating in point-normal

causal distributions, in a manner similar to that in GCTA and BOLT-REML. This would then

translate into either an underestimate of the number of causal SNPs, or more likely an under-

estimate of the variance of the distribution of causal effects.
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For educational attainment, we estimate SNP heritability h2 = 0.12, in good agreement with

the estimate of 11.5% given in [42]. As with schizophrenia, this is substantially less than the

estimate of heritability from twin and family studies of’40% of the variance in educational

attainment explained by genetic factors [74, 89].

For putamen volume, we estimate the SNP heritability h2 = 0.11, in reasonable agreement

with an earlier estimate of 0.1 for the same overall data set [4, 47]. For LDL and HDL, we esti-

mate h2 = 0.06 and h2 = 0.07 respectively, in good agreement with the LDSC estimates h2 =

0.08 and h2 = 0.07 [77], and the M2 model of [14]—see S1 Appendix (p. S13).

For height (N = 251,747 [46]) we find that its model polygenicity is π1 = 5.66 × 10−4, a quar-

ter that of intelligence, while its discoverability is five times that of intelligence, leading to a

SNP heritability of 17%. The number of causal SNPs (out of a total of approximately 11 mil-

lion) is approximately 6k; although this is about one twentieth the estimate reported in [90], it

remains large and allows for height to be interpreted as “omnigenic”. For the 2010 GWAS

(N = 133,735 [69]) and 2018 GWAS (N = 707,868 [49]), we estimate SNP heritability of 17%

and 19% respectively (see Table 2, and S1 Appendix (p. S17)). These heritabilities are in con-

siderable disagreement with the SNP heritability estimate of’50% [46] (average of estimates

from five cohorts ranging in size from N = 1,145 to N = 5,668, with’1 million SNPs). For the

2010 GWAS, the M2 model [14] gives h2 = 0.30 (see S1 Appendix (p. S13)); the upward devia-

tion of the model QQ plot in [14] suggests that this value might be inflated. For the 2014

GWAS, the M3 model estimate is h2 = 33% [14]; the Regression with Summary Statistics (RSS)

model estimate is h2 = 52% (with’11, 000 causal SNPs) [91], which, not taking any inflation

into account, is definitely a model overestimate; and in [77] the LDSC estimate is reported as

h2 = 20% while the SumHer estimate is h2 = 46% (in general across traits, the SumHer herita-

bility estimates tend to be two-to-five times larger than the LDSC estimates). The M2, M3, and

RSS models use a reference panel of’1 million common SNPs, in contrast with the’11 mil-

lion SNPs used in our analysis. Also, it should be noted that the M2, M3, and RSS model esti-

mates did not take the possibility of inflation into account. For the 2014 height GWAS, that

inflation is reported as the LDSC intercept is 2.09 in [77], indicating considerable inflation; for

the 2018 dataset we find s2
0

= 2.5, while the LD score regression intercept is 2.1116 (se 0.0458).

Given the various estimates of inflation and the controversy over population structure in the

height data [50, 51], it is not clear what results are definitely incorrect.

Our power analysis for height (2014) shows that 37% of the narrow-sense heritability arising

from common SNPs is explained by genome-wide significant SNPs (p� 5 × 10−8), i.e., 6.3% of

total phenotypic variance, which is substantially less than the 16% direct estimate from signifi-

cant SNPs [46]. It is not clear why these large discrepancies exist. One relevant factor, however,

is that we estimate a considerable confounding (s2
0

= 1.66) in the height 2014 dataset. Our h2

estimates are adjusted for the potential confounding measured by s2
0
, and thus they represent

what is likely a lower bound of the actual SNP-heritability, leading to a more conservative esti-

mate than what has previously been reported. We note that after adjustment, our h2 estimates

are consistent across all three datasets (height 2010, 2014 and 2018), which otherwise would

range by more than 2.5-fold. Another factor might be the relative dearth of typed SNPs with low

heterozygosity and low total LD (see top left segment in S1 Appendix (p. S29), n = 780): there

might be many causal variants with weak effect that are only weakly tagged. Nevertheless, given

the discrepancies noted above, caution is warranted in interpreting our model results for height.

Conclusion

The common-SNP causal effects model we have presented is based on GWAS summary

statistics and detailed LD structure of an underlying reference panel, and assumes a Gaussian
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distribution of effect sizes at a fraction of SNPs randomly distributed across the autosomal

genome. While not incorporating the effects of rare SNPs, we have shown that it captures the

broad genetic architecture of diverse complex traits, where polygenicities and the variance of

the effect sizes range over orders of magnitude.

The current model (essentially Eq 4) and its implementation (essentially Eq 29) are basic

elements for building a more refined model of SNP effects using summary statistics. Higher

accuracy in characterizing causal alleles in turn will enable greater power for SNP discovery

and phenotypic prediction.

Supporting information

S1 Appendix. Appendix. Additional text, tables, and figures.

(PDF)

S1 DataSourceList. Data source list.

(XLSX)

Acknowledgments

We thank the consortia for making available their GWAS summary statistics, and the many

people who provided DNA samples.

Author Contributions

Conceptualization: Dominic Holland, Anders M. Dale.

Data curation: Oleksandr Frei.

Formal analysis: Dominic Holland.

Funding acquisition: Ole A. Andreassen, Anders M. Dale.

Investigation: Dominic Holland, Oleksandr Frei, Ole A. Andreassen, Anders M. Dale.

Methodology: Dominic Holland, Anders M. Dale.

Software: Dominic Holland.

Validation: Dominic Holland.

Writing – original draft: Dominic Holland.

Writing – review & editing: Dominic Holland, Oleksandr Frei, Rahul Desikan, Chun-Chieh

Fan, Alexey A. Shadrin, Olav B. Smeland, V. S. Sundar, Paul Thompson, Ole A.

Andreassen.

References
1. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. The American Journal

of Human Genetics. 2012; 90(1):7–24. https://doi.org/10.1016/j.ajhg.2011.11.029 PMID: 22243964

2. Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R, Voight BF, et al. Bayesian inference analy-

ses of the polygenic architecture of rheumatoid arthritis. Nature genetics. 2012; 44(5):483–489. https://

doi.org/10.1038/ng.2232 PMID: 22446960

3. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, et al. Genetic variance estimation with

imputed variants finds negligible missing heritability for human height and body mass index. Nature

genetics. 2015;. https://doi.org/10.1038/ng.3390

4. So HC, Li M, Sham PC. Uncovering the total heritability explained by all true susceptibility variants in a

genome-wide association study. Genetic epidemiology. 2011; 35(6):447–456. https://doi.org/10.1002/

gepi.20593 PMID: 21618601

PLOS GENETICS Beyond SNP heritability

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008612 May 19, 2020 25 / 30

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008612.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008612.s002
https://doi.org/10.1016/j.ajhg.2011.11.029
http://www.ncbi.nlm.nih.gov/pubmed/22243964
https://doi.org/10.1038/ng.2232
https://doi.org/10.1038/ng.2232
http://www.ncbi.nlm.nih.gov/pubmed/22446960
https://doi.org/10.1038/ng.3390
https://doi.org/10.1002/gepi.20593
https://doi.org/10.1002/gepi.20593
http://www.ncbi.nlm.nih.gov/pubmed/21618601
https://doi.org/10.1371/journal.pgen.1008612


5. Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability estimation from genome-wide

SNPs. The American Journal of Human Genetics. 2012; 91(6):1011–1021. https://doi.org/10.1016/j.

ajhg.2012.10.010 PMID: 23217325

6. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-

wide association studies. The American Journal of Human Genetics. 2011; 88(3):294–305. https://doi.

org/10.1016/j.ajhg.2011.02.002 PMID: 21376301

7. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. The

American Journal of Human Genetics. 2011; 88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011

PMID: 21167468

8. Kumar SK, Feldman MW, Rehkopf DH, Tuljapurkar S. Limitations of GCTA as a solution to the missing

heritability problem. Proceedings of the National Academy of Sciences. 2016; 113(1):E61–E70. https://

doi.org/10.1073/pnas.1520109113

9. Palla L, Dudbridge F. A Fast Method that Uses Polygenic Scores to Estimate the Variance Explained by

Genome-wide Marker Panels and the Proportion of Variants Affecting a Trait. The American Journal of

Human Genetics. 2015; 97(2):250–259. https://doi.org/10.1016/j.ajhg.2015.06.005 PMID: 26189816

10. Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population stratification in genome-

wide association studies. Nature Reviews Genetics. 2010; 11(7):459–463. https://doi.org/10.1038/

nrg2813 PMID: 20548291

11. Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation factors under

polygenic inheritance. European Journal of Human Genetics. 2011; 19(7):807–812. https://doi.org/10.

1038/ejhg.2011.39 PMID: 21407268

12. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression dis-

tinguishes confounding from polygenicity in genome-wide association studies. Nature genetics. 2015;

47(3):291–295. https://doi.org/10.1038/ng.3211 PMID: 25642630

13. Kang HM, Sul JH, Zaitlen NA, Kong Sy, Freimer NB, Sabatti C, et al. Variance component model to

account for sample structure in genome-wide association studies. Nature genetics. 2010; 42(4):348–

354. https://doi.org/10.1038/ng.548 PMID: 20208533

14. Zhang Y, Qi G, Park JH, Chatterjee N. Estimation of complex effect-size distributions using summary-

level statistics from genome-wide association studies across 32 complex traits. Nature genetics. 2018;

50(9):1318. https://doi.org/10.1038/s41588-018-0193-x PMID: 30104760

15. Zeng J, Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, Yengo L, et al. Signatures of negative selec-

tion in the genetic architecture of human complex traits. Nature genetics. 2018; 50(5):746. https://doi.

org/10.1038/s41588-018-0101-4 PMID: 29662166

16. Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association statistics.

Nature Reviews Genetics. 2016;. https://doi.org/10.1038/nrg.2016.142 PMID: 27840428

17. Witte JS, Visscher PM, Wray NR. The contribution of genetic variants to disease depends on the ruler.

Nature Reviews Genetics. 2014; 15(11):765–776. https://doi.org/10.1038/nrg3786 PMID: 25223781

18. Holland D, Wang Y, Thompson WK, Schork A, Chen CH, Lo MT, et al. Estimating Effect Sizes and

Expected Replication Probabilities from GWAS Summary Statistics. Front Genet. 2016; 7:15. https://

doi.org/10.3389/fgene.2016.00015 PMID: 26909100

19. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999 Dec; 55(4):997–1004.

https://doi.org/10.1111/j.0006-341x.1999.00997.x PMID: 11315092

20. Holland D, Fan CC, Frei O, Shadrin AA, Smeland OB, Sundar VS, et al. Estimating degree of polygeni-

city, causal effect size variance, and confounding bias in GWAS summary statistics. bioRxiv. 2017;

Available from: https://www.biorxiv.org/content/early/2017/05/24/133132.

21. Thompson WK, Wang Y, Schork A, Zuber V, Andreassen OA, Dale AM, et al. An empirical Bayes

method for estimating the distribution of effects in genome-wide association studies. PLoS Genetics.

2015;[in press].

22. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, et al. Genome parti-

tioning of genetic variation for complex traits using common SNPs. Nature genetics. 2011; 43(6):519–

525. https://doi.org/10.1038/ng.823 PMID: 21552263

23. Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. Chapman

and Hall/CRC; 2013.

24. Laird NM, Lange C. The fundamentals of modern statistical genetics. Springer Science & Business

Media; 2010.

25. Wu C, DeWan A, Hoh J, Wang Z. A comparison of association methods correcting for population stratifi-

cation in case–control studies. Annals of human genetics. 2011; 75(3):418–427. https://doi.org/10.

1111/j.1469-1809.2010.00639.x PMID: 21281271

PLOS GENETICS Beyond SNP heritability

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008612 May 19, 2020 26 / 30

https://doi.org/10.1016/j.ajhg.2012.10.010
https://doi.org/10.1016/j.ajhg.2012.10.010
http://www.ncbi.nlm.nih.gov/pubmed/23217325
https://doi.org/10.1016/j.ajhg.2011.02.002
https://doi.org/10.1016/j.ajhg.2011.02.002
http://www.ncbi.nlm.nih.gov/pubmed/21376301
https://doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
https://doi.org/10.1073/pnas.1520109113
https://doi.org/10.1073/pnas.1520109113
https://doi.org/10.1016/j.ajhg.2015.06.005
http://www.ncbi.nlm.nih.gov/pubmed/26189816
https://doi.org/10.1038/nrg2813
https://doi.org/10.1038/nrg2813
http://www.ncbi.nlm.nih.gov/pubmed/20548291
https://doi.org/10.1038/ejhg.2011.39
https://doi.org/10.1038/ejhg.2011.39
http://www.ncbi.nlm.nih.gov/pubmed/21407268
https://doi.org/10.1038/ng.3211
http://www.ncbi.nlm.nih.gov/pubmed/25642630
https://doi.org/10.1038/ng.548
http://www.ncbi.nlm.nih.gov/pubmed/20208533
https://doi.org/10.1038/s41588-018-0193-x
http://www.ncbi.nlm.nih.gov/pubmed/30104760
https://doi.org/10.1038/s41588-018-0101-4
https://doi.org/10.1038/s41588-018-0101-4
http://www.ncbi.nlm.nih.gov/pubmed/29662166
https://doi.org/10.1038/nrg.2016.142
http://www.ncbi.nlm.nih.gov/pubmed/27840428
https://doi.org/10.1038/nrg3786
http://www.ncbi.nlm.nih.gov/pubmed/25223781
https://doi.org/10.3389/fgene.2016.00015
https://doi.org/10.3389/fgene.2016.00015
http://www.ncbi.nlm.nih.gov/pubmed/26909100
https://doi.org/10.1111/j.0006-341x.1999.00997.x
http://www.ncbi.nlm.nih.gov/pubmed/11315092
https://www.biorxiv.org/content/early/2017/05/24/133132
https://doi.org/10.1038/ng.823
http://www.ncbi.nlm.nih.gov/pubmed/21552263
https://doi.org/10.1111/j.1469-1809.2010.00639.x
https://doi.org/10.1111/j.1469-1809.2010.00639.x
http://www.ncbi.nlm.nih.gov/pubmed/21281271
https://doi.org/10.1371/journal.pgen.1008612


26. Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E. Identifying causal variants at loci with multiple

signals of association. Genetics. 2014; 198(2):497–508. https://doi.org/10.1534/genetics.114.167908

PMID: 25104515

27. Holland D. GWAS-Causal-Effects-Model; 2019. https://github.com/dominicholland/GWAS-Causal-

Effects-Model.

28. Consortium GP, et al. A global reference for human genetic variation. Nature. 2015; 526(7571):68–74.

https://doi.org/10.1038/nature15393

29. Consortium GP, et al. An integrated map of genetic variation from 1,092 human genomes. Nature.

2012; 491(7422):56–65. https://doi.org/10.1038/nature11632

30. Sveinbjornsson G, Albrechtsen A, Zink F, Gudjonsson SA, Oddson A, Másson G, et al. Weighting
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