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Abstract: Metabolic dysfunction-associated fatty liver dis-
ease (MAFLD) has reached epidemic proportions globally in
parallel to the rising prevalence of obesity. Despite its signif-
icant burden, there is no approved pharmacotherapy specif-
ically tailored for this disease.Manypotential drug candidates
forMAFLD have encountered setbacks in clinical trials, due to
safety concerns or/and insufficient therapeutic efficacy.
Nonetheless, several investigational drugs that mimic the
actions of endogenousmetabolic hormones, including thyroid
hormone receptor β (THRβ) agonists, fibroblast growth factor
21 (FGF21) analogues, and glucagon-like peptide-1 receptor
agonists (GLP-1RAs), showed promising therapeutic efficacy
and excellent safety profiles. Among them, resmetirom, a
liver-targeted THRβ-selective agonist, has met the primary
outcomes in alleviation of metabolic dysfunction-associated
steatohepatitis (MASH), the advanced form of MAFLD, and
liver fibrosis in phase-3 clinical trials. These hormone-based
pharmacotherapies not only exhibit varied degrees of thera-
peutic efficacy in mitigating hepatic steatosis, inflammation
and fibrosis, but also improve metabolic profiles. Further-
more, these three hormonal agonists/analogues act in a
complementary manner to exert their pharmacological
effects, suggesting their combined therapies may yield

synergistic therapeutic benefits. Further in-depth studies
on the intricate interplay among these metabolic hormones
are imperative for the development of more efficacious
combination therapies, enabling precision management of
MAFLD and its associated comorbidities.
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The liver is a “metabolic powerhouse” that orchestrates a
captivating interplay among major organs through energy
and xenobiotic metabolism. Delicate disruptions in the bal-
ance of energymetabolism can set inmotion a domino effect,
ultimately culminating in the development of fatty liver
disease. Metabolic dysfunction-associated fatty liver disease
(MAFLD), a term recently introduced to replace non-
alcoholic fatty liver disease (NAFLD) [1], stands as the lead-
ing cause of chronic liver disorder, affecting approximately
one-third of the global population [2]. MAFLD is character-
ized by the presence of hepatic steatosis in conjunction with
type 2 diabetes mellitus (T2DM), overweight/obesity, or
metabolic dysregulation, and is therefore considered the
hepatic manifestation of the metabolic syndrome [3]. It is
important to note that there is currently no international
consensus on the terminology, and the terms MAFLD and
NAFLD are not interchangeable [4]. In this discussion, we
employ the term MAFLD to highlight its close association
with metabolic dysfunction.

MAFLD is a complex and progressive disease encom-
passing a histological spectrum ranging from simple steatosis
(SS) to metabolic dysfunction-associated steatohepatitis
(MASH) (the replacement term of non-alcoholic steatohe-
patitis [NASH]), the latter being the advanced form char-
acterized by hepatic steatosis, ballooning and lobular
inflammation with or without fibrosis. MASH poses a
significantly greater risk of progressing to fatal hepatic
complications such as cirrhosis, liver failure, and hepato-
cellular carcinoma, making it the second leading cause of
liver transplantation [5].

Despite the escalating global burden of MAFLD, there is
currently no pharmacotherapy specifically approved for this
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disease [6]. The cornerstone of MAFLD management con-
tinues to be lifestyle interventions, including dietary
modifications and regular exercise [7–9]. However, modest
weight loss only yields limited benefits in improving stea-
tohepatitis and liver fibrosis [10, 11], whereas exercise
alone does not significantly improve histologicalMASH [12].
Several commonly used anti-diabetic and lipid-lowering
drugs, such as metformin and dipeptidyl peptidase-4
inhibitors sitagliptin also exert no improvement in histo-
logical outcomes for NASH patients [13, 14], suggesting that
targeting metabolic risk factors alone is insufficient to halt
or reverse hepatic steatohepatitis and fibrosis. A large
number of pharmacological compounds targeting different
pathological pathways involved in MAFLD, such as Selon-
sertib, Cilofexor, Elafibranor, and Simtuzumab, have been
halted in phase-2 or -3 clinical trials due to the lack of ther-
apeutic efficacy, safety issues or drug-drug interactions [15].
For example, the FXR agonist obeticholic acid was expected
to be one of the first drugs for MASH but encountered a
setback in phase-3 trials due to limited efficacy and side
effects such as elevated low-density lipoprotein-cholesterol
(LDL-c) and cardiovascular risks [16]. There are huge unmet
medical needs for MAFLD management, with the global

market size projected to reach USD 54 billion by 2027,
growing at a compound annual growth rate of 58.6 % [17].

Despite the numerous failures in the pharmaceutical
development of anti-MAFLD drugs, several metabolic
hormone-based pharmacotherapies have recently emerged
as promising candidates for efficacious treatment of this
disease in the late phases of clinical trials. Among them, one
chemical agonist for the thyroid hormone receptor β (THRβ)
has met the primary outcomes [resolution of MASH without
worsening of fibrosis and reduction of fibrosis by more than
one stage with no worsening of the MASH activity score
(NAS)], whilst the long-acting analogues of fibroblast growth
factor 21 (FGF21) and glucagon-like peptide-1 (GLP-1) have
entered phase-2 or -3 clinical trials (Figure 1).

THRβ agonists

Thyroid hormones (TH), including triiodothyronine (T3) and
thyroxine (T4), play fundamental roles in growth, develop-
ment and metabolism by binding to thyroid hormone re-
ceptors (THRs) to regulate target gene expression. THRs
consist of six alternatively-spiced isoforms (THRα1, THRα2,

Figure 1: The therapeutic landscape of THRβ agonists, long-acting FGF21 analogues, and GLP-1RAs for the treatment of MAFLD/MASH. Resmetirom
(MGL‐3196) is a liver-directed, THRβ-selective chemical agonist administered orally (once a day); ASC41 is a liver-targeted THRβ prodrug administered
once daily orally; VK2809 is a liver-targeted THRβ agonist administered orally (once a day); TERN-501 is a once-daily, orally administered THRβ agonist with
enhanced liver distribution. Efruxifermin is a Fc-conjugated FGF21 analogue that is administered subcutaneously every 2 weeks; pegozafermin is a
PEGylated FGF21 analogue that is administered subcutaneously every two weeks; BOS-580 is a Fc-conjugated FGF21 analogue that is administered
subcutaneously every 2 or 4 weeks. Semaglutide is a GLP-1RA administered subcutaneously once a day or once a week; pemvidutide is a peptide-based
GLP-1/glucagon dual receptor agonist designed to be administered once weekly subcutaneously. Tirezepatide is a glucose-dependent insulinotropic
polypeptide and glucagon-like peptide-1 dual receptor agonist that is administered once weekly subcutaneously.
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THRα3 and THRβ1, THRβ2, THRβ3) transcribed from two THR
genes – THRA and THRB. While THRα is primarily expressed
in the heart and bone, THRβ is the predominant isoform in
hepatocytes [18]. Due to the potent effects of THs in increasing
metabolic rates and improving lipid metabolism, THs have
been explored as potential pharmacotherapies for obesity
and dyslipidaemia in the past century [19, 20]. However,
owing to the widespread expression of THRs in nearly all
major tissues, systemic administration of pharmacological
doses of THs causes multiple deleterious effects, including
tachycardia, heart attack [21], muscle wasting [22], and oste-
oporosis [23]. Early attempts to use TH for weight reduction
even led to increased mortality [24]. Therefore, research
attempts have been made to selectively deliver THs or
specifically activate THRs in a specific target tissue to avoid
the various detrimental effects caused by systemic admin-
istration of THs [25].

Hepatocytes are the primary target cells for THs to exert
their regulatory effects on lipid metabolism, mainly through
the predominant isoform THRβ. In the liver, the THRβ
pathway governs essential processes such as de novo lipo-
genesis, fatty acid β-oxidation, mitophagy, and cholesterol
biosynthesis [26], leading to decreased LDL, apolipoprotein B
(Apo B), and lipoprotein a [Lp(a)] levels [27]. Mice with a
dominant negative mutation in the THRB gene exhibited
elevated serum-free fatty acids and triglycerides and hepatic
steatosis, which was associated with increased expression of
lipogenic enzymes and decreased β-oxidation activity [28].
Likewise, humans bearing loss-of-function mutations in the
THRB gene are at much higher risk for liver steatosis [29].
A meta-analysis of both cross-sectional and longitudinal
studies also identified hypothyroidism as an independent
risk factor forMAFLD [30]. Therefore, THRβ-specific agonists
are able to replicate the hepatic benefits of THs on MAFLD
and dyslipidaemia while avoiding unwanted systemic
actions associated with excess TH in the heart and bone,
which are largely mediated through THRα.

Sobetirome (GC-1), a first-generation synthetic THRβ
agonist, has progressed through preclinical studies and
phase-1 human clinical trials. Healthy participants who
received GC-1 for 2 weeks experienced a reduction of 41 % in
serum LDL-c levels [31]. However, due to the potential
hyperglycaemia and insulin resistance, its advancement in
clinical trials was limited to phase-1 [32]. Subsequently,
eprotirome (KB2115), another liver-selective THR agonist
with a modestly higher affinity for THRβ than for THRα, has
also been clinically evaluated for the treatment of dyslipi-
daemia. In 98 patients with primary hypercholesterolemia,
once-daily administration with eprotirome at the doses of
100 μg and 200 μg resulted in reductions in LDL-c by 23 and
31 %, respectively, compared to a 2 % reduction with the

placebo group [27]. However, despite its promising lipid-
lowering effects, clinical development of eprotirome was
halted due to cartilage damage observed in caninemodels. In
a phase-3 study involving patients with familial hypercho-
lesterolemia, treatment with eprotirome at 100 μg daily for
6 weeks resulted in significant increases in ALT and AST
levels by 189 and 114 %, respectively, indicating the potential
risk of liver injury [33].

Resmetirom (MGL 3196) is a liver directed, orally active
THR agonist that is about 28 times more selective for THRβ
vs. THRαwhen normalized for the selectivity of T3 [34]. In a
randomised, double-blind, placebo-controlled phase-2
study in biopsy-confirmed MASH patients, treatment with
resmetirom for 36 weeks led to significant reductions in
liver steatosis, liver enzymes, atherogenic lipids, markers
of inflammation and fibrosis and MASH score [35]. There-
fore, Madrigal Pharmaceuticals, Inc. has initiated four
parallel phase-3 clinical trials to evaluate the safety and
efficacy of resmetirom in treating MASH, including
MAESTRO-NAFLD-1, MAESTRO-NASH, MAESTRO-NAFLD-
OLE, and MAESTRO-NASH-OUTCOMES trials [36].

MAESTRO-NAFLD-1 is a phase-3 safety trial in about
1,000 patients with MAFLD/presumed MASH (based on
non-invasive measurement) treated with resmetirom at
80 mg, 100 mg, or placebo for 52 weeks. The findings from
this study demonstrated that resmetiromwas safe and well
tolerated, with no significant difference in treatment-
emergent adverse events (TEAEs) between the treatment
and placebo groups [37]. Significant improvements in lipid
profiles, hepatic steatosis and liver stiffness (as determined
by MRI-PDFF) were also observed in resmetirom-treated
patients. Importantly, the pivotal phase-3 MAESTRO-NASH
study including up to 2,000 biopsy-proven NASH with signif-
icant fibrosis (F2-F3) patients met its dual primary endpoints:
(1) MASH resolution with ≥2-point reduction in NAS and
no worsening of fibrosis (26% in 80mg group, 30% in
100mg group, compared to 10% in placebo group, p<0.0001);
(2) ≥1-stage improvement infibrosis (24% in 80mg group, 26%
in 100mg group, vs. 14 % in placebo group, p=0.0002 and
p<0.0001 respectively) [37]. Furthermore, once-daily resme-
tiromat 80and 100mg for 52weeks led to 8 and 10%ofpatients
achieving a 2-stage improvement in fibrosis respectively [37].
As the first investigational drug for MASH that has achieved
both fibrosis improvement and MASH resolution primary
endpoints in a phase-3 trial, the New Drug Application (NDA)
was accepted on Sep 13, 2023, under Priority Review status [38].
The Prescription Drug User Fee Act (PDUFA) data was also set
onMar 14, 2024, indicating that resmetiromhas the potential to
become the first FDA-approved therapy for MASH [38].

In addition to remestirom, there are three other selec-
tive THRβ agonists under phase-2 trials. MB07811 (VK2809) is
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a prodrug that is specifically taken up by the liver and acti-
vated by CYP3A, acting as a negatively charged TRβ
agonist [26, 39]. In the phase-2b VOYAGE Study, MB07811
achieved its primary endpoint of reducing liver fat content,
showing that 85 % of MASH patients with F2-F3 fibrosis
experienced a decrease of more than 30 % in liver fat after
treatment with MB07811 for 12 weeks [40]. Treatment with
ASC41, another prodrug of the THRβ agonist activated by
CYP3A, similarly led to approximately 93.3 % of biopsy-
confirmedMASHpatients achieving a 30 % reduction in liver
fat content, accompanied by a 37.8 and 41.5 % reduction in
ALT and AST levels, respectively [41]. TERN-501 is a THRβ
agonist that exhibits high metabolic stability with 23-fold
more selective for THRβ than for THRα activation [42]. Terns
Pharmaceuticals recently released the data from the phase-
2a DUET trial showing significant and dose-dependent
reductions in liver fat content (assessed by MRI-PDFF) and
inflammation (measured by iron-corrected T1 (cT1) map-
ping) after treatment with TERN-501 (6 mg) for 12 weeks [43].

In sum, these clinical trials consistently demonstrated
the safety and efficacy of liver-directed, THRβ-selective
agonists for MAFLD. However, the mechanism underlying
their therapeutic benefits requires further clarification. It

remains unclear whether the observed improvements in
MASH and fibrosis are secondary to the reductions in hepatic
steatosis andmetabolism, or via other unknownmediators. In
this connection, treatment of mice with T3 has been shown to
increase FGF21 in a PPARα-dependent manner, raising the
possibility that FGF21 may serve as a downstream effector of
THRβ agonists [44] (Figure 2).

The long-acting analogues of
fibroblast growth factor 21 (FGF21)

FGF21, a hepatokine predominantly secreted by the liver,
plays a pivotal role in regulating glucose, lipid metabolism
and insulin sensitivity [45]. Unlike classical FGFs which act in
an autocrine/paracrine manner, FGF21 possesses an endo-
crine function due to the absence of a heparin-binding
domain, allowing it to be released into the circulatory sys-
tem [46]. FGF21 exerts its pleiotropic effects by binding to the
receptor complex comprised of FGF receptors and the oblig-
atory coreceptor β-klotho (KLB), the latter of which exhibits a
highly restricted expression pattern and determines the

Figure 2: Mechanistic interplay among THRβ agonist, FGF21 analogues and GLP-1RA in ameliorating MAFLD, MASH and liver fibrosis. The therapeutic
benefits of FGF21 analogues may be attributed to its ability to promote adiponectin production in adipose tissue, which in turn acts on different types of
liver cells. However, whether the liver is the direct target of FGF21 requires further clarification. THRβ agonists induces the expression of genes involved in
fatty acid oxidation and mitochondrial metabolism as well as FGF21. The pharmacological effects of GLP-1RA on MAFLD may be secondary to the
improvements in body weight and metabolic profiles through its actions in the brain and gut. Furthermore, GLP-1RA also induces FGF21 production
through a “brain-liver” axis. FGF21, fibroblast growth factor 21; THRβ, thyroid hormone receptor β; CPT1α, carnitine palmitoyltransferase 1α; MCAD,
medium-chain acyl-CoA dehydrogenase; PDK4, pyruvate dehydrogenase kinase isoform 4; GLP-1RA, glucagon-like peptide 1 receptor agonist; dashed
lines and question marks indicate those mechanistic links which remain debatable. Created with BioRender.com.
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target selectivity of FGF21 [47]. The metabolic activity of FGF21
was first identified in 2005 by Kharitonenkov and col-
leagues [48] in a cell-based, high-throughput screening study as
a positive hit with glucose-lowering properties. This discovery
has ignited a great deal of interest in exploring the pharma-
cological effects of FGF21. Indeed, preclinical studies in both
rodents and monkeys have reproducibly observed the potent
benefits of FGF21 in ameliorating obesity and its related
metabolic complications, including hyperglycaemia, dyslipi-
daemia,MAFLD, atherosclerosis and cardiac disorders [49–53].

Despite its pleiotropic pharmaceutical benefits for
metabolic diseases, native human FGF21 (hFGF21) is not
druggable due to its poor pharmacokinetic profile, a short-
acting half-life, and undesirable biopharmaceutical proper-
ties such as its propensity for aggregation in soluble for-
mulations and proteolytic cleavage [54]. To overcome these
shortcomings, a large number of hFGF21 analogues with
improved pharmacokinetic, pharmacodynamic and bio-
physical properties have been developed using various
biopharmaceutical engineering strategies, including PEGy-
lation with polyethylene glycol (PEG) and fusing hFGF21 to a
scaffold antibody or its fragment crystallizable (Fc) region
(reviewed by Jin et al. [55]). Dozens of clinical trials have
been registered to explore the therapeutic effects of hFGF21
analogues on obesity-related metabolic complications [55].
However, despite the potent anti-obese and anti-diabetic
effects observed in preclinical studies, most clinical trials
observed no or only mild effects of hFGF21 on the improve-
ment of obesity and hyperglycaemia in obese patients with
type 2 diabetes [56–60]. Interestingly, despite the failure to
meet the primary outcomes on glycaemic control andweight
loss, these clinical studies observed significant hepato-
protective effects of hFGF21 analogues, including reduction
of liver injury enzymes and PRO-C3 level (a marker of liver
fibrosis) [60]. Indeed, several preclinical studies in different
rodent models have consistently demonstrated the signifi-
cant pharmacological effects of FGF21 in ameliorating his-
tological scores of MASH and liver fibrosis as well as serum
markers offibrosis and inflammation [61]. Thesefindings led
to the refocus of hFGF21 analogues-based clinical trials on
the treatment of MAFLD as a primary endpoint.

Among a handful of hFGF21 analogues and mimetics
under clinical evaluation for the treatment of MAFLD, two
candidates have shown promising therapeutic potential in
phase-2b clinical trials. Pegozafermin (BIO-89), a glycol-
PEGylated FGF21with a half-life of 55–100 hwas evaluated in
the phase-2b ENLIVEN trial in liver biopsy-confirmed MASH
patients with stage 2–3 fibrosis [62]. The data from this trial
showed that subcutaneous administration of pegozafermin
(30 mg) for 24 weeks led to significant clinical improvement,
with 26 % of patients exhibiting fibrosis regression by >1

stage without worsening MASH and 23 % exhibiting MASH
resolution without worsening of fibrosis stage [62]. Further-
more, hepatic fat fraction (as determined by MRI-PDFF) was
also reduced by 48.2 %, accompanied by a significant eleva-
tion of high-density lipoprotein cholesterol by 13.4 % and an
obvious reduction of total triglycerides by 26.6 % [62].

Efruxifermin (EFX), a human IgG1 Fc-fused recombinant
FGF21 analogue with a half-life of 3–5 days, has also been
tested in several parallel phase-2 clinical trials in liver
biopsy-confirmed MASH patients. In the phase-2 BALANCED
trial, administration of 50 mg of EFX every two weeks
resulted in fibrosis regression by >1 stagewithout worsening
MASH in 62 %ofMASHpatientswith stage 1–3fibrosis and in
33 % of patients with stage 4 fibrosis, and also led to MASH
resolution without worsening of fibrosis in 54 and 25 % of
patients in the respective groups [63, 64]. This histological
improvement was associated with a significant reduction of
the enhanced liver fibrosis (ELF) score and PRO-C3.

In the phase-2b SYMMETRY study in 182 MASH patients
with compensated F4 cirrhosis, statistically significant NASH
resolution and reductions in non-invasive markers of liver
injury and fibrosis were observed after treatment with EFX
for 36 weeks [65]. Although the primary endpoint of at least a
one-stage improvement in liver fibrosis with no worsening
of MASHwas not met in this clinical trial, a positive outcome
was seen in a two-stage improvement in fibrosis (4 % in
treated patients vs. 0 in the placebo group) [65]. Likewise,
another phase-2b trial (HARMONY) in MASH patients with
F2 to F3 fibrosis achieved both primary endpoints after
24 weeks of EFX treatment, including MASH resolution
without worsening of fibrosis or composite improvement of
fibrosis and MASH resolution [66]. These encouraging
results led to the initiation of the phase-3 SYNCHRONY trial
to gain more definitive conclusions on the therapeutic effi-
cacy of EFX for MASH and liver fibrosis [67].

Although the therapeutic benefits of hFGF21 analogues
for MASH and liver fibrosis have been demonstrated in the
aforementioned clinical studies, the precise mechanisms of
action remain poorly understood.Whether the liver is a direct
target tissue of FGF21 is still a matter of debate [45]. While the
co-receptor KLB is highly expressed in the liver, its main re-
ceptor FGFR1 is hardly detectable [46]. Mice with hepatocyte-
specific ablation of KLB and wildtype littermates exhibit
comparable responses to FGF21 in lowering hepatic fat con-
tents, blood glucose and insulin, implying an indirect effect of
FGF21 on hepatoprotection [68]. In this regard, adiponectin,
an adipokine with insulin-sensitising, anti-inflammatory,
hepato-protective properties, is likely to serve as anobligatory
downstream effector of FGF21 [69] (Figure 2).

Adipose tissues, which express both FGFR1 and KLB in
high abundance in both rodents and humans, are the main
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action sites of FGF21 [70]. Treatment of obese/diabetic mice
with recombinant FGF21 led to a robust increase in adipose
production of adiponectin, whereas adiponectin-deficient
mice were refractory to several therapeutic benefits
of FGF21, including alleviation of fatty liver [49, 69]. In
congruent with these animal studies, almost all the recent
clinical trials have consistently observed an obvious eleva-
tion in circulating adiponectin closely associated with im-
provements in clinical outcomes in response to treatment
with various hFGF21 analogues or mimetics [47, 55–60,-
62–67]. Unlike FGF21, the adiponectin receptors (adipoR1
and adipoR2) are ubiquitously expressed, including various
types of liver cells such as hepatocytes, macrophages and
hepatic stellate cells (HSCs) [71]. Adiponectin exerts its
steatotic actions on hepatocytes to reduce lipid accumulation
by promoting fatty acid oxidation [72] and mitochondrial
function [73], anti-inflammatory effects on macrophages by
suppressing pro-inflammatory cytokine production [74], and
anti-fibrotic activity on HSCs through inhibition of the pro-
fibrotic gene expression [75]. Apart from adiponectin, FGF21
may exert its therapeutic effects against MASH and fibrosis
through other unidentified factors secreted from adipose
tissue and the brain, the latter of which is also an important
target of FGF21 [76].

In short, FGF21 holds great potential as a therapeutic
target for MAFLD. However, the precise mechanisms
underlying FGF21’s beneficial effects on MASH and liver
fibrosis, as well as its intricate interplay with other factors,
necessitate further investigation. Further in-depth studies
are warranted to dissect the precise mechanism whereby
FGF21 coordinates the intricate interorgan communications
in maintaining metabolic homeostasis, which will in turn
facilitate the development of more potent FGF21-based
pharmacotherapies against MAFLD.

Glucagon-like peptide-1 receptor
agonists (GLP-1RAs)

GLP-1, a peptide hormone secreted from the enteroendocrine
cells (EECs) in response to ingestion of nutrients, exerts its
multiplemetabolic effects through the seven transmembrane
G protein-coupled GLP-1 receptors (GLP-1Rs) [77]. In addition
to its potent effects on the enhancement of glucose-dependent
insulin secretion, GLP-1 induces satiety and suppresses
gastrointestinal motility, thereby reducing food intake and
body weight [78, 79]. These findings promoted the develop-
ment ofGLP-1 as ananti-diabetic and anti-obesemedication in
the past three decades. However, native GLP-1 is not suitable
as a therapeutic agent due to its extremely short half-life

(2–5min) and rapid proteolytic cleavage/inactivation by
dipeptidyl peptidase-4 (DDP-4) [80]. The discovery of Exendin-
4 from the venom of Helodermatidae lizards (Gila monster),
which mimics the actions of GLP-1 but is resistant to DPP-4
cleavage [45], led to the development of Exenatide (the syn-
thetic form of Exendin-4) as the first FDA-approved GLP-1RA
for the treatment of T2DM. Up to now,more than 10 GLP-1RAs
with improved pharmacokinetic profiles and therapeutic
efficacy have been approved for treatment of T2DM and/or
obesity, including liraglutide, dulaglutide, albiglutide, sem-
aglutide, lixisenatide, beinaglutide and PEG-loxenatide.

Given that T2DM and obesity are the major risk factors
for MAFLD, there is a growing clinical interest in exploring
the therapeutic effects of GLP-1RAs on MAFLD. In phase-2
clinical trials in patients with MAFLD, MRI analysis has
consistently detected significant reductions in liver fat
contents after treatment with exenatide, liraglutide, sem-
aglutide and dulaglutide [81–84]. Furthermore, the thera-
peutic efficacy of liraglutide and semaglutide on MASH and
liver fibrosis has recently been evaluated in liver biopsy-
confirmed patients [83, 85, 86]. In a multicentre, double-
blinded, randomised, placebo-controlled phase-2 LEAN
study conducted in the UK, daily subcutaneous injections of
1.8 mg liraglutide for 48 weeks led to MASH resolution in
39 % of patients compared to 9 % in the placebo group [85].
Furthermore, modest, but significant improvements in
histopathological parameters were observed, as evidenced
by a greater proportion of patients experiencing reductions
in histological scores of hepatocyte ballooning, steatosis
and Kleiner fibrosis stages.

Similarly, semaglutide, a newer generation of GLP-1RAs,
also demonstrated a certain degree of hepatoprotective
effects in liver biopsy-confirmed NASH patients. Armstrong
et al. conducted a double-blind phase-2 trial involving
patients with biopsy-confirmedNASH and F1–F3fibrosis and
found that daily subcutaneous administration of different
doses (0.1, 0.2, and 0.4 mg) of semaglutide for 72 weeks
resulted in a significantly higher proportion of patients
achieving NASH resolution without worsening fibrosis [86].
Additionally, a dose-dependent reduction in liver enzymes,
along with substantial weight reduction and improved gly-
caemic control, was observed in the patients treated with
semaglutide [86]. However, there was no significant differ-
ence in fibrosis improvement between the 0.4 mg group and
the placebo group.

In another multicentre phase-2 clinical study in patients
with compensated cirrhosis and biopsy-confirmed MASH,
once-weekly administration of 2.4mg semaglutide for
48weeks did not achieve the primary endpoint of improve-
ment in liver fibrosis without worsening of MASH, or MASH
resolution [83]. Nevertheless, obvious improvements in liver
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steatosis as well as significant reductions in serum markers
for liver injury (ALT, AST), fibrosis (PRO-C3) and inflam-
mation (CRP) were observed in patients treated with sem-
aglutide [83]. The discrepant results between these two
clinical trials might be attributed to differences in dosage,
frequency and duration of semaglutide treatment, small
sample size and heterogeneity in the study subjects. The
phase-3 ESSENCE trial (NCT04822181), which was initiated
in 2021 aiming to recruit 1,200 liver biopsy-confirmed
MASH patients with stage 2 or 3 fibrosis for a treatment
period of 240 weeks, is expected to provide more definitive
evidence regarding the therapeutic efficacy of semaglutide
for MASH and liver fibrosis [87].

Themechanism of action whereby GLP-1RAs ameliorate
MAFLD and MASH is still a subject of debate. Early studies
reported the presence of GLP-1Rs on human hepatocytes,
suggesting a direct action of GLP-1 in decreasing hepatic
steatosis [88]. However, subsequent studies using a highly
specific anti-GLP-1R monoclonal antibody showed that
GLP-1R expression was virtually undetectable in primate
liver [89]. Likewise, GLP-1R expression was not detectable in
hepatocytes, Kuppfer cells, or hepatic stellate cells in a diet-
inducedmousemodelwith NASH [90, 91], suggesting that the
liver is unlikely to be the direct target of GLP-1RAs.

The beneficial effects of GLP-1RAs on the reduction of
hepatic lipid accumulation and inflammation are possibly
secondary to the improvement in metabolic profiles, espe-
cially reductions in body weight and insulin resistance
(Figure 2). In support of this notion, a 5 % weight loss by
calorie restriction can lead to a reduction in liver volume by
approximately 10 % and a decrease in hepatic triglyceride
content by 40 % [92]. Additionally, a growing body of evi-
dence suggests that GLP-1RAs induce the production of
FGF21, which may in turn confer the effects of GLP-1RAs on
alleviation of MASH and liver fibrosis. GLP-1RAs such as
liraglutide have been shown to stimulate hepatic FGF21
production through an indirect mechanism involving the
brain-liver axis inmice [93]. Likewise, T2DMpatients treated
with these GLP-1RAs also exhibit increased circulating level
of FGF21 compared to placebo controls [94]. Notably, FGF21
has been shown to serve as an obligatory mediator for the
therapeutic benefits of GLP-1RAs on inhibition of hepatic
glucose production and steatosis [94, 95], although it remains
unknown whether the anti-fibrotic and anti-NASH activities
of GLP-1RAs are dependent on FGF21. On the other hand, the
long-acting GLP-1RAs semaglutide has been shown to
improve FGF21 responsiveness by stimulating the hepatic
expression of both FGFR1 and KLB in the liver through an
unknown mechanism [96], further supporting the notion
that GLP-1RAs and FGF21 may act synergistically to exert
their hepatoprotective activities.

Concluding remarks

MAFLD has emerged as the most prevalent chronic liver
disease worldwide, but there is currently no approved
pharmacotherapy specifically for the treatment of this dis-
ease. The development of a large number of drug candidates
for MAFLD failed due to safety concerns or lack of efficacy.
Many investigational drugs had initial success in reducing
liver fat content but failed to meet the primary outcomes in
biopsy-confirmedMASH resolution and amelioration of liver
fibrosis, which are the key drivers of MAFLD-related mor-
tality. The difficulties in recruiting and monitoring patients
with histological evaluation of liver biopsies, which are the
gold standard for diagnosis and staging of MASH and
fibrosis, remain to be a major obstacle for clinical trials for
MAFLD. In this connection, identification and multicentre
validation of robust non-invasive biomarkers for MASH and
liver fibrosis to replace liver biopsies, such as sCDCP1 and
thrombospondin-2 [97, 98], are expected to facilitate the
clinical development of anti-MAFLD drugs.

Among dozens of investigational drugs under develop-
ment, several pharmacotherapies targeting endogenous
hormones, including THRβ agonists, FGF21 long-acting ana-
logues and GLP-1RAs, stand out with excellent efficacy and
safety profiles. In particular, a phase-3 clinical trial on
resmetirom has achieved the primary outcomes in MASH
resolution and improvement of fibrosis, and it is likely to get
the first FDA approval for the treatment of MAFLD and
MASH. Several ongoing phase-3 trials on these hormone-
based pharmacotherapies, which will be completed in the
coming years, are expected to provide more definite con-
clusions on their therapeutic efficacy for MASH with
compensated cirrhosis.

In light of the fact that MAFLD is a complex and multi-
factorial disease frequently intertwined with a cluster of
cardiometabolic diseases, it is unlikely that a single drug is
sufficient to treat all aspects of the disease. In this regard,
THRβ agonists, FGF21 analogues and GLP-1RAs exhibit
varying degrees of therapeutic benefits for different patho-
logical features of MAFLD and its related metabolic comor-
bidities. For example, FGF21 analogues and THRβ agonists
appear to be more potent than GLP-1RAs in amelioration of
hepatic steatosis, inflammation and fibrosis, but have mini-
mal effects on obesity, insulin resistance and hyperglycaemia.
In contrast, the amelioration in MAFLD by GLP-1RAs is
accompanied by obvious improvement in weight loss and
glycaemic control. Furthermore, both preclinical and clinical
studies have observed the reciprocal regulation between THs,
FGF21 and GLP-1 [44, 94]. Therefore, their combination ther-
apies targeting different aspects of MAFLD may produce
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synergistic and complementary therapeutic benefits, indeed,
several proof-of-concept studies in mice have shown the
therapeutic effects of FGF21 and GLP-1R dual agonist are su-
perior to each single therapy alone [99, 100]. Further in-depth
study to uncover the intricate interplays among these hor-
mones at molecular, cellular, tissue and organismal levels is
needed to developmore efficaciousmultiple hormones-based
combination pharmacotherapies for precision management
of MAFLD and its comorbidities.
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