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Abstract: Polyphenols are potent micronutrients that can be found in large quantities in various food
sources and spices. These compounds, also known as phenolics due to their phenolic structure, play a
vital nutrient-based role in the prevention of various diseases such as diabetes, cardiovascular diseases,
neurodegenerative diseases, liver disease, and cancers. However, the function of polyphenols in
disease prevention and therapy depends on their dietary consumption and biological properties.
According to American Cancer Society statistics, there will be an expected rise of 23.6 million new
cancer cases by 2030. Due to the severity of the increased risk, it is important to evaluate various
preventive measures associated with cancer. Relatively recently, numerous studies have indicated
that various dietary polyphenols and phytochemicals possess properties of modifying epigenetic
mechanisms that modulate gene expression resulting in regulation of cancer. These polyphenols and
phytochemicals, when administrated in a dose-dependent and combinatorial-based manner, can have
an enhanced effect on epigenetic changes, which play a crucial role in cancer prevention and therapy.
Hence, this review will focus on the mechanisms of combined polyphenols and phytochemicals that
can impact various epigenetic modifications such as DNA methylation and histone modifications as
well as regulation of non-coding miRNAs expression for treatment and prevention of various types
of cancer.
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1. Introduction

Cancer is the second leading cause of death in the United States [1]. Globally, 9.6 million deaths
occurred in the year 2018 compared to 7.6 million cancer-associated deaths in 2008. Collectively, cancer
is comprised of a heterogeneous group of disorders which involves uncontrolled proliferation of
previously healthy cells [2]. Even though there are over 100 different types of cancers, the primary
contributors to the increased mortality rates are cancer of the breast, lung, prostate, colon and rectum
(a.k.a. colorectal cancer) [3–5]. It is, therefore, imperative to evaluate the factors leading to different
types of cancers, their prevention, and therapeutic measures. The uncontrolled proliferation of cancer
cells originates locally and may widely spread through metastasis. This process further results in loss
of control of cell growth, eventually leading to the invasion of cancer cells to healthy tissues [6].
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Factors such as alcohol consumption, exposure to harmful chemicals due to smoking, an
unhealthy diet, and physical sedentariness result in higher rates of lifestyle-associated cancer risks
(cancer-transition) in part by inducing mutations in DNA. Genetic changes and epigenetic aberrations
play a critical role in the progression of the disease and each of these alterations is known to be an
essential hallmark for different types of cancer [7–10]. Traditionally, cancer research was primarily
focused on genetic changes, mainly elucidating the overexpression/mutation of oncogenes and
inactivation of tumor suppressor genes (TSGs). Each of these changes reinforces major cancer pathways
such as the RTK/RAS pathway, PI3K pathway, Wnt pathway, Myc pathway, p53 pathway, Notch
Signaling pathway, Nrf2 pathway, and cell cycle pathways [11–16]. Since the 1990s, cancer research has
also centered around understanding heritable changes which regulate various epigenetic alterations.
Therefore, it is crucial to understand the etiology behind epigenetics mechanisms, which eventually
lead to carcinogenesis [17]. Epigenetics is the study of changes in the phenotypes that do not arise
from alterations in the DNA sequence. The various epigenetic mechanisms include DNA methylation,
histone tail modifications, non-coding RNA functions, regulation of polycomb assembly proteins,
and cofactor modifiers. DNA methylation and histone modifications are the primary contributors
to cancer epigenetics machinery that eventually may cause alterations in gene expression but no
alteration in the DNA sequence [18–22]. Unlike genetic changes such as mutations and deletions,
which can be difficult to reverse [23,24], epigenetics aberrations are often reversible. Epigenetically
altered genes can be potentially corrected, by reversing the alteration in DNA methylation found in
CpG dinucleotides, for example, thereby causing transcriptional activation of histone complexes by
acetylation and methylation [25]. Epigenetic modifications are also known to be a dynamic hallmark
of cancer due to their massive impact on cell proliferation and differentiation.

Various studies have reported strong evidence that natural compounds can potentially regulate
gene expression by targeting different foundations/components of the epigenetic machinery [26].
With the continuous advancement of the lifestyle changes, it is necessary to extract new molecules,
which can be potentially used for disease prevention and to find new drugs which may be crucial for
cancer patient survival. The natural compounds are extracted in part from vegetal [27], microbial [28],
and marine species [29] (Figure 1). Each of these can widely be used as a major source of activities
against cancer and other diseases such as diabetes [30], cardiovascular diseases [31], liver diseases [32],
asthma [33], neurodegenerative diseases [34], osteoporosis [35], anemia [36], bulimia [37], influenza/

pneumonia [38], renal and thyroid disorders [39,40], nephritis [41], periodontal (gum) disease [42],
hypertension [43] and skin disorders [44] (Figure 1).

Amongst various natural compounds, polyphenols have predominantly evolved as a large group
of compounds by providing resistance and immunity against ultraviolet exposure, signal transduction
and host defense against pathogens [45]. Although polyphenols are primarily involved with numerous
mechanisms, through interactions with various cellular components such as carbohydrates, proteins
and enzymes for the regulation of gene expression, they also exhibit active involvement in cancer
pathways, in particular, signaling pathways [46,47]. Plant-based polyphenols are well-known to
modulate cancer pathways by inhibiting cancer cell proliferation, which can cause an overall decrease
in tumor mass, thus allowing tumor regression.

In spite of large preventive measures, plant-based dietary polyphenols also exhibit a significant
role in protecting the healthy cells from adverse effects of chemotherapy by enhancing the cytotoxic
activity of chemotherapeutic agents in cancerous cells [48].

A plethora of studies have described the anticancer mechanisms of polyphenols for individual
compounds [49]. Despite being potent anti-cancer agents, many polyphenols have poor bioavailability
thereby impeding there in vivo effects, mainly when used individually [50]. Their scope of efficacy
can be increased by combining them with other different polyphenols and phytochemicals for
potential synergistic effects. Here, we will focus on the combinatorial effects of various polyphenols,
phytochemicals, and anti-cancer drugs on the epigenetics machinery by providing insights into their
specific epigenetics targets associated with cancer prevention and therapy.
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Figure 1. Health benefits effect of dietary polyphenols. Polyphenols are largely found in fruits, 
vegetables, spices, and beverages. Most of these compounds are involved in protection against the 
development of chronic diseases such as cardiovascular diseases (CVDs), neurodegenerative diseases, 
cancer, diabetes, osteoporosis, and liver diseases. 

Amongst various natural compounds, polyphenols have predominantly evolved as a large 
group of compounds by providing resistance and immunity against ultraviolet exposure, signal 
transduction and host defense against pathogens [45]. Although polyphenols are primarily involved 
with numerous mechanisms, through interactions with various cellular components such as 
carbohydrates, proteins and enzymes for the regulation of gene expression, they also exhibit active 
involvement in cancer pathways, in particular, signaling pathways [46,47]. Plant-based polyphenols 
are well-known to modulate cancer pathways by inhibiting cancer cell proliferation, which can cause 
an overall decrease in tumor mass, thus allowing tumor regression.  

In spite of large preventive measures, plant-based dietary polyphenols also exhibit a significant 
role in protecting the healthy cells from adverse effects of chemotherapy by enhancing the cytotoxic 
activity of chemotherapeutic agents in cancerous cells [48].  

A plethora of studies have described the anticancer mechanisms of polyphenols for individual 
compounds [49]. Despite being potent anti-cancer agents, many polyphenols have poor 
bioavailability thereby impeding there in vivo effects, mainly when used individually [50]. Their 
scope of efficacy can be increased by combining them with other different polyphenols and 
phytochemicals for potential synergistic effects. Here, we will focus on the combinatorial effects of 
various polyphenols, phytochemicals, and anti-cancer drugs on the epigenetics machinery by 
providing insights into their specific epigenetics targets associated with cancer prevention and 
therapy.  

2. Dietary-Based Polyphenols: Role in Cancer Prevention and Therapy 

Many studies have demonstrated the use of plant or animal-based natural compounds for 
prevention and treatment of multiple diseases such as asthma, cardiovascular diseases, pathogens 
protection, diabetes, neurodegenerative diseases and cancer [51]. More than 8000 polyphenolic 
compounds are from plant species [52]. Multiple studies have shown that some plant-based 
polyphenols possess anti-cancerous properties such as inhibition of cell proliferation, tumor growth, 

Figure 1. Health benefits effect of dietary polyphenols. Polyphenols are largely found in fruits,
vegetables, spices, and beverages. Most of these compounds are involved in protection against the
development of chronic diseases such as cardiovascular diseases (CVDs), neurodegenerative diseases,
cancer, diabetes, osteoporosis, and liver diseases.

2. Dietary-Based Polyphenols: Role in Cancer Prevention and Therapy

Many studies have demonstrated the use of plant or animal-based natural compounds for
prevention and treatment of multiple diseases such as asthma, cardiovascular diseases, pathogens
protection, diabetes, neurodegenerative diseases and cancer [51]. More than 8000 polyphenolic
compounds are from plant species [52]. Multiple studies have shown that some plant-based polyphenols
possess anti-cancerous properties such as inhibition of cell proliferation, tumor growth, angiogenesis,
metastasis, inflammation, and apoptosis [47,50]. These polyphenols can also be used as active
compounds to develop novel chemopreventive agents, which can be highly effective while conferring
little if any toxicity [47].

Polyphenols can be broadly classified into three main categories; flavonoids, stilbenoids, and
phenolic acids [53] (Figure 2).
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and their structural elements. Flavonoids account for about 60% of polyphenols which include two 
or more aromatic rings, linked by a carbon bridge containing three carbon atoms and the aromatic 
rings which possess one or more phenolic hydroxyl groups [55]. Flavonoids are subdivided into 
different subclasses: flavones, isoflavones, flavonols, flavanones, flavanols and anthocyanidins. 
Flavonoids possess various antioxidant and anti-inflammatory properties [56]. Among these, 
flavanols are the most abundant and are found in different food sources. For instance, quercetin, 
curcumin (CUR), and epigallocatechin-3-gallate (EGCG) are bioactive flavonoid compounds found 
in black tea, turmeric, and green tea [57–59]. The flavanols are further categorized into monomers 
(such as catechins found in red wine and chocolate) and polymers (such as proanthocyanidins and 
theaflavins) [47,60]. Unlike flavanols, flavones are less abundant in fruits and vegetables but found 
in parsley and celery to a greater extent [61]. Isoflavones, also known as phytoestrogens (due to their 
structural similarity to estrogens), are found in leguminous plants [62]. Table 1 provides a 
comprehensive list of the chemical structures and molecular formulas of the key polyphenols 
possessing anti-cancer properties. 
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subdivided into flavonols, flavanones, flavanols, flavones, isoflavones, and anthocyanidins.
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Among these, flavonoids are the largest group that are comprised of approximately 5000
polyphenols [54]. These classifications differ from each other based on the number of phenolic
rings and their structural elements. Flavonoids account for about 60% of polyphenols which include
two or more aromatic rings, linked by a carbon bridge containing three carbon atoms and the
aromatic rings which possess one or more phenolic hydroxyl groups [55]. Flavonoids are subdivided
into different subclasses: flavones, isoflavones, flavonols, flavanones, flavanols and anthocyanidins.
Flavonoids possess various antioxidant and anti-inflammatory properties [56]. Among these, flavanols
are the most abundant and are found in different food sources. For instance, quercetin, curcumin
(CUR), and epigallocatechin-3-gallate (EGCG) are bioactive flavonoid compounds found in black tea,
turmeric, and green tea [57–59]. The flavanols are further categorized into monomers (such as catechins
found in red wine and chocolate) and polymers (such as proanthocyanidins and theaflavins) [47,60].
Unlike flavanols, flavones are less abundant in fruits and vegetables but found in parsley and celery to
a greater extent [61]. Isoflavones, also known as phytoestrogens (due to their structural similarity to
estrogens), are found in leguminous plants [62]. Table 1 provides a comprehensive list of the chemical
structures and molecular formulas of the key polyphenols possessing anti-cancer properties.

Table 1. Classification of polyphenols, chemical structure, molecular formula and their dietary
source availability.

Polyphenols Dietary Source * Chemical Structure ** Molecular Formula References

Apigenin
Grapefruit, parsley, onion,
orange, tea and wheat
sprouts
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Table 1. Classification of polyphenols, chemical structure, molecular formula and their dietary source 
availability. 

Polyphenols Dietary Source * Chemical Structure 
** Molecular 
Formula 

References 

Apigenin 
Grapefruit, parsley, 
onion, orange, tea 
and wheat sprouts 

 

C15H10O5 [63] 

Anacardic Acid Cashew nuts 
 

C22H36O3 [64] 

Biochanin 
Red clove, chickpea, 
clover sprout and 
kidney beans 

 

C16H12O5 [65–67] 

Butein 

Rhus verniciflua, 
Caesalpinia sappan 
and Carthamus tinc-
torius 

 

C15H12O5 [68,69] 

Catechin 

Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 

C15H10O5 [63]

Anacardic Acid Cashew nuts
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C15H10O5 [63] 
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Red clove, chickpea, 
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kidney beans 

 

C16H12O5 [65–67] 

Butein 

Rhus verniciflua, 
Caesalpinia sappan 
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torius 

 

C15H12O5 [68,69] 

Catechin 

Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 

C22H36O3 [64]

Biochanin Red clove, chickpea, clover
sprout and kidney beans
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availability. 
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Formula 

References 

Apigenin 
Grapefruit, parsley, 
onion, orange, tea 
and wheat sprouts 

 

C15H10O5 [63] 

Anacardic Acid Cashew nuts 
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C15H12O5 [68,69] 
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Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 

C16H12O5 [65–67]

Butein
Rhus verniciflua, Caesalpinia
sappan and Carthamus
tinc-torius
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Apigenin 
Grapefruit, parsley, 
onion, orange, tea 
and wheat sprouts 

 

C15H10O5 [63] 

Anacardic Acid Cashew nuts 
 

C22H36O3 [64] 

Biochanin 
Red clove, chickpea, 
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kidney beans 

 

C16H12O5 [65–67] 

Butein 

Rhus verniciflua, 
Caesalpinia sappan 
and Carthamus tinc-
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C15H12O5 [68,69] 

Catechin 

Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 

C15H12O5 [68,69]

Catechin
Green tea, apples,
blackberries, dark chocolate
and red wine
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Caffeic Acid Coffee and olive oil 
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Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 
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Curcumin (CUR) Turmeric
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Table 1. Classification of polyphenols, chemical structure, molecular formula and their dietary source 
availability. 

Polyphenols Dietary Source * Chemical Structure 
** Molecular 
Formula 

References 

Apigenin 
Grapefruit, parsley, 
onion, orange, tea 
and wheat sprouts 

 

C15H10O5 [63] 

Anacardic Acid Cashew nuts 
 

C22H36O3 [64] 

Biochanin 
Red clove, chickpea, 
clover sprout and 
kidney beans 

 

C16H12O5 [65–67] 

Butein 

Rhus verniciflua, 
Caesalpinia sappan 
and Carthamus tinc-
torius 

 

C15H12O5 [68,69] 

Catechin 

Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 

C9H8O4 [73]

Cholorogenic Acid Pomegranate and berries
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availability. 

Polyphenols Dietary Source * Chemical Structure 
** Molecular 
Formula 

References 

Apigenin 
Grapefruit, parsley, 
onion, orange, tea 
and wheat sprouts 

 

C15H10O5 [63] 

Anacardic Acid Cashew nuts 
 

C22H36O3 [64] 

Biochanin 
Red clove, chickpea, 
clover sprout and 
kidney beans 

 

C16H12O5 [65–67] 

Butein 

Rhus verniciflua, 
Caesalpinia sappan 
and Carthamus tinc-
torius 

 

C15H12O5 [68,69] 

Catechin 

Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 

C16H18O9 [74]
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Capsaicin Chili peppers
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Table 1. Classification of polyphenols, chemical structure, molecular formula and their dietary source 
availability. 

Polyphenols Dietary Source * Chemical Structure 
** Molecular 
Formula 

References 

Apigenin 
Grapefruit, parsley, 
onion, orange, tea 
and wheat sprouts 

 

C15H10O5 [63] 

Anacardic Acid Cashew nuts 
 

C22H36O3 [64] 

Biochanin 
Red clove, chickpea, 
clover sprout and 
kidney beans 

 

C16H12O5 [65–67] 

Butein 

Rhus verniciflua, 
Caesalpinia sappan 
and Carthamus tinc-
torius 

 

C15H12O5 [68,69] 

Catechin 

Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 

C18H27NO3 [75]

Daidzein Soybeans and tofu
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Table 1. Classification of polyphenols, chemical structure, molecular formula and their dietary source 
availability. 

Polyphenols Dietary Source * Chemical Structure 
** Molecular 
Formula 

References 

Apigenin 
Grapefruit, parsley, 
onion, orange, tea 
and wheat sprouts 

 

C15H10O5 [63] 

Anacardic Acid Cashew nuts 
 

C22H36O3 [64] 

Biochanin 
Red clove, chickpea, 
clover sprout and 
kidney beans 

 

C16H12O5 [65–67] 

Butein 

Rhus verniciflua, 
Caesalpinia sappan 
and Carthamus tinc-
torius 

 

C15H12O5 [68,69] 

Catechin 

Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] 

C15H10O4 [76,77]

Delphinidin Cereal grains
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Table 1. Classification of polyphenols, chemical structure, molecular formula and their dietary source 
availability. 

Polyphenols Dietary Source * Chemical Structure 
** Molecular 
Formula 

References 

Apigenin 
Grapefruit, parsley, 
onion, orange, tea 
and wheat sprouts 

 

C15H10O5 [63] 

Anacardic Acid Cashew nuts 
 

C22H36O3 [64] 

Biochanin 
Red clove, chickpea, 
clover sprout and 
kidney beans 

 

C16H12O5 [65–67] 

Butein 

Rhus verniciflua, 
Caesalpinia sappan 
and Carthamus tinc-
torius 

 

C15H12O5 [68,69] 

Catechin 

Green tea, apples, 
blackberries, dark 
chocolate and red 
wine 

 

C15H14O6 [70] 

Cyanidin 

Acai berry, bilberry, 
blackberry, 
cranberry and 
raspberry 

C15H11O6+ [71] 

Curcumin (CUR) Turmeric 

 

IC21H20O6 or 

C21H20O6 
[72] 

Caffeic Acid Coffee and olive oil 

 

C9H8O4 [73] 

Cholorogenic Acid 
Pomegranate and 
berries 

 

C16H18O9 [74] 

Capsaicin Chili peppers 

 

C18H27NO3 [75] 

Daidzein Soybeans and tofu 

 

  C15H10O4 [76,77] 

Delphinidin Cereal grains 

 

C15H11CIO7 [78] C15H11CIO7 [78]

Diosmetin Vetch
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Diosmetin Vetch 

 

C16H12O6 [79] 

Ellagic Acid 
Blackberries, 
raspberries and 
pomegranate 

 

C14H6O8 [80] 

Epicatechin 
Milk, chocolates, 
and commercial 
reduced fat 

 

C15H14O6 [81] 

Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
Fats, oils, beef, red 
clover, soybeans, 
and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
and lianas 

 

C14H12O4 [85] 

Hesperidin 
Bitter orange, petit 
grains, orange, lime 
and lemon 

 

C28H34O15 [86] 

Isoliquiritigenin Rose petals 

 

C15H12O4 [87] 

C16H12O6 [79]

Ellagic Acid Blackberries, raspberries and
pomegranate
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Diosmetin Vetch 

 

C16H12O6 [79] 

Ellagic Acid 
Blackberries, 
raspberries and 
pomegranate 

 

C14H6O8 [80] 

Epicatechin 
Milk, chocolates, 
and commercial 
reduced fat 

 

C15H14O6 [81] 

Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
Fats, oils, beef, red 
clover, soybeans, 
and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
and lianas 

 

C14H12O4 [85] 

Hesperidin 
Bitter orange, petit 
grains, orange, lime 
and lemon 

 

C28H34O15 [86] 

Isoliquiritigenin Rose petals 

 

C15H12O4 [87] 

C14H6O8 [80]

Epicatechin Milk, chocolates, and
commercial reduced fat

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 47 

Int. J. Mol. Sci. 2019, 20, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijms 

Diosmetin Vetch 

 

C16H12O6 [79] 

Ellagic Acid 
Blackberries, 
raspberries and 
pomegranate 

 

C14H6O8 [80] 

Epicatechin 
Milk, chocolates, 
and commercial 
reduced fat 

 

C15H14O6 [81] 

Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
Fats, oils, beef, red 
clover, soybeans, 
and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
and lianas 

 

C14H12O4 [85] 

Hesperidin 
Bitter orange, petit 
grains, orange, lime 
and lemon 

 

C28H34O15 [86] 

Isoliquiritigenin Rose petals 

 

C15H12O4 [87] 

C15H14O6 [81]

Epigallocatechin-3-gallate
(EGCG) Green tea
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Diosmetin Vetch 
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Ellagic Acid 
Blackberries, 
raspberries and 
pomegranate 

 

C14H6O8 [80] 

Epicatechin 
Milk, chocolates, 
and commercial 
reduced fat 

 

C15H14O6 [81] 

Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
Fats, oils, beef, red 
clover, soybeans, 
and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
and lianas 

 

C14H12O4 [85] 

Hesperidin 
Bitter orange, petit 
grains, orange, lime 
and lemon 

 

C28H34O15 [86] 

Isoliquiritigenin Rose petals 

 

C15H12O4 [87] 

C22H18O11 [70]

Gallic Acid Pomegranate, nuts and
green tea
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Diosmetin Vetch 

 

C16H12O6 [79] 

Ellagic Acid 
Blackberries, 
raspberries and 
pomegranate 

 

C14H6O8 [80] 

Epicatechin 
Milk, chocolates, 
and commercial 
reduced fat 

 

C15H14O6 [81] 

Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
Fats, oils, beef, red 
clover, soybeans, 
and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
and lianas 

 

C14H12O4 [85] 

Hesperidin 
Bitter orange, petit 
grains, orange, lime 
and lemon 

 

C28H34O15 [86] 

Isoliquiritigenin Rose petals 

 

C15H12O4 [87] 

C7H6O5 [82]

Genistein Fats, oils, beef, red clover,
soybeans, and fava beans
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Diosmetin Vetch 

 

C16H12O6 [79] 

Ellagic Acid 
Blackberries, 
raspberries and 
pomegranate 

 

C14H6O8 [80] 

Epicatechin 
Milk, chocolates, 
and commercial 
reduced fat 

 

C15H14O6 [81] 

Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
Fats, oils, beef, red 
clover, soybeans, 
and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
and lianas 

 

C14H12O4 [85] 

Hesperidin 
Bitter orange, petit 
grains, orange, lime 
and lemon 

 

C28H34O15 [86] 

Isoliquiritigenin Rose petals 

 

C15H12O4 [87] 

C15H10O5 [83,84]

Gnetol Gnetum ula, gnetum gnemon,
trees, shrubs and lianas
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Diosmetin Vetch 

 

C16H12O6 [79] 

Ellagic Acid 
Blackberries, 
raspberries and 
pomegranate 

 

C14H6O8 [80] 

Epicatechin 
Milk, chocolates, 
and commercial 
reduced fat 

 

C15H14O6 [81] 

Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
Fats, oils, beef, red 
clover, soybeans, 
and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
and lianas 

 

C14H12O4 [85] 

Hesperidin 
Bitter orange, petit 
grains, orange, lime 
and lemon 

 

C28H34O15 [86] 

Isoliquiritigenin Rose petals 

 

C15H12O4 [87] 

C14H12O4 [85]

Hesperidin Bitter orange, petit grains,
orange, lime and lemon
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reduced fat 
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Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
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and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
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C14H12O4 [85] 
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grains, orange, lime 
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Diosmetin Vetch 

 

C16H12O6 [79] 

Ellagic Acid 
Blackberries, 
raspberries and 
pomegranate 

 

C14H6O8 [80] 

Epicatechin 
Milk, chocolates, 
and commercial 
reduced fat 

 

C15H14O6 [81] 

Epigallocatechin-3-
gallate (EGCG) 

Green tea 

 

C22H18O11 [70] 

Gallic Acid 
Pomegranate, nuts 
and green tea 

 

C7H6O5 [82] 

Genistein 
Fats, oils, beef, red 
clover, soybeans, 
and fava beans 

 

C15H10O5 [83,84] 

Gnetol 
Gnetum ula, gnetum 
gnemon, trees, shrubs 
and lianas 

 

C14H12O4 [85] 

Hesperidin 
Bitter orange, petit 
grains, orange, lime 
and lemon 

 

C28H34O15 [86] 

Isoliquiritigenin Rose petals 

 

C15H12O4 [87] C15H12O4 [87]

Kaempferol
Apples, grapes, tomatoes,
green tea, potatoes, onions
and broccoli
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Kaempferol 

Apples, grapes, 
tomatoes, green tea, 
potatoes, onions and 
broccoli 

 

C15H10O6 [88] 

Licochalcone A Cranberry 

 

C21H22O4 [89] 

Luteolin 

Celery, broccoli, 
green pepper, 
parsley, thyme, 
dandelion, perilla 
and chamomile tea 

 

C15H10O6 [90,91] 

Macluraxanthone 
Maclura tinctoria 
(Hedge apple) and 
dyer’s mulberry 

 

C23H22O6 [92] 

Myricetin 
Vegetables, fruits, 
nuts, berries, tea and 
red wine 

 

C15H10O8 [93] 

Naringenin Grapes C15H12O5 [94] 

Oxyresveratrol 
Morus alba and 
artocarpus lakoocha 

 

C14H12O4 [95] 

Peonidin 

Cranberries, 
blueberries, plums, 
cherries and sweet 
potatoes 

 

C16H13O6+ [96] 

Piceatannol 

Berries, grapes, 
rhubarb (rheum), 
passion fruit 
(passiflora) and white 

tea. 

 

C14H12O4 [97] 

Pterostilbene 
Blueberries and 
grapes 

 

C16H16O3 [98] 

C15H10O6 [88]

Licochalcone A Cranberry
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Kaempferol 

Apples, grapes, 
tomatoes, green tea, 
potatoes, onions and 
broccoli 

 

C15H10O6 [88] 

Licochalcone A Cranberry 

 

C21H22O4 [89] 

Luteolin 

Celery, broccoli, 
green pepper, 
parsley, thyme, 
dandelion, perilla 
and chamomile tea 

 

C15H10O6 [90,91] 

Macluraxanthone 
Maclura tinctoria 
(Hedge apple) and 
dyer’s mulberry 

 

C23H22O6 [92] 

Myricetin 
Vegetables, fruits, 
nuts, berries, tea and 
red wine 

 

C15H10O8 [93] 

Naringenin Grapes C15H12O5 [94] 

Oxyresveratrol 
Morus alba and 
artocarpus lakoocha 

 

C14H12O4 [95] 

Peonidin 

Cranberries, 
blueberries, plums, 
cherries and sweet 
potatoes 

 

C16H13O6+ [96] 

Piceatannol 

Berries, grapes, 
rhubarb (rheum), 
passion fruit 
(passiflora) and white 

tea. 

 

C14H12O4 [97] 

Pterostilbene 
Blueberries and 
grapes 

 

C16H16O3 [98] 

C21H22O4 [89]

Luteolin

Celery, broccoli, green
pepper, parsley, thyme,
dandelion, perilla and
chamomile tea
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Kaempferol 

Apples, grapes, 
tomatoes, green tea, 
potatoes, onions and 
broccoli 

 

C15H10O6 [88] 

Licochalcone A Cranberry 

 

C21H22O4 [89] 

Luteolin 

Celery, broccoli, 
green pepper, 
parsley, thyme, 
dandelion, perilla 
and chamomile tea 

 

C15H10O6 [90,91] 

Macluraxanthone 
Maclura tinctoria 
(Hedge apple) and 
dyer’s mulberry 

 

C23H22O6 [92] 

Myricetin 
Vegetables, fruits, 
nuts, berries, tea and 
red wine 

 

C15H10O8 [93] 

Naringenin Grapes C15H12O5 [94] 

Oxyresveratrol 
Morus alba and 
artocarpus lakoocha 

 

C14H12O4 [95] 

Peonidin 

Cranberries, 
blueberries, plums, 
cherries and sweet 
potatoes 

 

C16H13O6+ [96] 

Piceatannol 

Berries, grapes, 
rhubarb (rheum), 
passion fruit 
(passiflora) and white 

tea. 

 

C14H12O4 [97] 

Pterostilbene 
Blueberries and 
grapes 

 

C16H16O3 [98] 

C15H10O6 [90,91]

Macluraxanthone Maclura tinctoria (Hedge
apple) and dyer’s mulberry

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 47 

Int. J. Mol. Sci. 2019, 20, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijms 

Kaempferol 

Apples, grapes, 
tomatoes, green tea, 
potatoes, onions and 
broccoli 

 

C15H10O6 [88] 

Licochalcone A Cranberry 

 

C21H22O4 [89] 

Luteolin 

Celery, broccoli, 
green pepper, 
parsley, thyme, 
dandelion, perilla 
and chamomile tea 

 

C15H10O6 [90,91] 

Macluraxanthone 
Maclura tinctoria 
(Hedge apple) and 
dyer’s mulberry 

 

C23H22O6 [92] 

Myricetin 
Vegetables, fruits, 
nuts, berries, tea and 
red wine 

 

C15H10O8 [93] 

Naringenin Grapes C15H12O5 [94] 

Oxyresveratrol 
Morus alba and 
artocarpus lakoocha 

 

C14H12O4 [95] 

Peonidin 

Cranberries, 
blueberries, plums, 
cherries and sweet 
potatoes 

 

C16H13O6+ [96] 

Piceatannol 

Berries, grapes, 
rhubarb (rheum), 
passion fruit 
(passiflora) and white 

tea. 

 

C14H12O4 [97] 

Pterostilbene 
Blueberries and 
grapes 

 

C16H16O3 [98] 

C23H22O6 [92]

Myricetin Vegetables, fruits, nuts,
berries, tea and red wine
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Kaempferol 

Apples, grapes, 
tomatoes, green tea, 
potatoes, onions and 
broccoli 

 

C15H10O6 [88] 

Licochalcone A Cranberry 

 

C21H22O4 [89] 

Luteolin 

Celery, broccoli, 
green pepper, 
parsley, thyme, 
dandelion, perilla 
and chamomile tea 

 

C15H10O6 [90,91] 

Macluraxanthone 
Maclura tinctoria 
(Hedge apple) and 
dyer’s mulberry 

 

C23H22O6 [92] 

Myricetin 
Vegetables, fruits, 
nuts, berries, tea and 
red wine 

 

C15H10O8 [93] 

Naringenin Grapes C15H12O5 [94] 

Oxyresveratrol 
Morus alba and 
artocarpus lakoocha 

 

C14H12O4 [95] 

Peonidin 

Cranberries, 
blueberries, plums, 
cherries and sweet 
potatoes 

 

C16H13O6+ [96] 

Piceatannol 

Berries, grapes, 
rhubarb (rheum), 
passion fruit 
(passiflora) and white 

tea. 

 

C14H12O4 [97] 

Pterostilbene 
Blueberries and 
grapes 

 

C16H16O3 [98] 

C15H10O8 [93]

Naringenin Grapes
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Kaempferol 

Apples, grapes, 
tomatoes, green tea, 
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tea. 
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grapes 

 

C16H16O3 [98] 

C15H12O5 [94]

Oxyresveratrol Morus alba and artocarpus
lakoocha
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Table 1. Cont.

Polyphenols Dietary Source * Chemical Structure ** Molecular Formula References

Quercetin
Vegetables, fruits and
beverages, spices, soups and
fruit juices

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 47 

Int. J. Mol. Sci. 2019, 20, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijms 

Quercetin 

Vegetables, fruits 
and beverages, 
spices, soups and 
fruit juices 
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Resveratrol 
Almonds, 
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C14H12O3 [98] 
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C18H16O8 [101] 

Rutin 
Citrus fruits, apple, 
berries and peaches 

C27H30O16 [92,102,103] 

Scopoletin 
Vinegar, dandelion 
and coffee 
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Silibinin Milk and artichokes 

 

C25H22O10 [105,106] 

Tangeretin Citrus fruits 

 

C20H20O7 [107] 

Taxifolin Vinegar 

 

C15H12O7 [108] 

Theaflavin 
Tea leaves, black tea 
and oolong tea 

 

C29H24O12 [109] 

Tricin 
Rice bran and 
sugarcane 

 

C17H14O7 [110] 

C15H10O7 [99,100]

Resveratrol Almonds, blueberries and
grapes
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Stilbenoids, another critical category of polyphenols, are a small group of compounds which 
contain polyhydroxystilbenes. These are found in lower quantities in our diet, thereby compromising 
their potential for significant health benefits. However, more massive amounts of stilbenoids can be 
provided from various strenuous extracts or as purified compounds. For instance, resveratrol (found 
in red wine, peanuts, grapes, and almonds) and pterostilbene (present in blueberries and grapes) are 
key stilbenoids that have anticarcinogenic properties and other health benefits [112]. Another 
primary classification of polyphenols, phenolic acids, account for 30% of polyphenols and consist of 
two main categories; hydroxybenzoic acid and hydroxycinnamic acid which are glycosylated 
derivatives of esters of quinic acid, shikimic acid, and tartaric acid. Hydroxybenzoic acid, is found in 
few consumable plants making it of lesser nutritional interest, although hydroxycinnamic acid is 
found in cinnamon, coffee, blueberries, kiwis, plums, apples, and cherries [113,114]. 

3. Bioavailability of Polyphenols 

Bioavailability pertains to the process of nutrient digestion, absorption, and metabolism in 
biochemical pathways. After digestion and before absorption of polyphenols, they are hydrolyzed by 
intestinal enzymes that are present in the colon. During intake, polyphenols undergo various 
modifications and are further processed in the liver through methylation, sulfation, and 
glucuronidation [115]. It has been evident that polyphenols possess metabolic activities, which 
primarily depends on intrinsic activity, rate of metabolism, and their elimination. Polyphenol 
metabolic activity mainly occurs in the intestines and liver. Since most biologically active polyphenols 
are not very common in the diet, the bioavailability of polyphenols signifies a significant issue as they 
may reach the target organs in low concentrations [116]. Because of this many polyphenols portray a 
poor bioavailability as anti-cancer agents, thereby moderating in vivo effects. 

One way to thwart this issue is with the help of nanotechnology, which plays a vital role in 
cancer prevention and treatment. Nanoparticle encapsulation of anticancer polyphenols can cause a 
several-fold increase to their oral bioavailability. For example, nanoformulations of curcumin and 
piperine combination led to a 9-fold expansion due to enhanced absorption thereby increasing 
efficacy and creating a dose advantage over free curcumin in different cancer cell lines [117]. Despite 
combating the low bioavailability of polyphenols, only a few combinations have been tried as nano-
encapsulation as it can cause adverse side effects when administered in high doses [118–120]. Various 
studies have shown strong evidence of combinatorial effects of different polyphenols that increased 
chemoprotective and the anti-cancer properties at considerably lower concentrations [121]. This 
synergy of polyphenols in some cases is due to simultaneous impact on different cancer pathways as 
well as epigenetic modifications such as DNA methylation and histone modifications. 

4. Epigenetics Mechanisms and Cancer 

4.1. DNA Methylation 

DNA methylation plays a crucial role in regulating growth and development of carcinogenesis 
by contributing to aberrations such as genomic instability, oncogenes activation and silencing of 
tumor suppressor genes (TSGs) which are mainly involved in cell proliferation, DNA repair and 
apoptosis [17,122–124]. The CpG positions are the areas of DNA where a cytosine nucleotide is 
followed by a guanine nucleotide in a 5′ → 3′ direction. These occur primarily in genomic as CpG 
islands. CpG dinucleotides are unevenly distributed in the human genomes but are common in 
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Stilbenoids, another critical category of polyphenols, are a small group of compounds which
contain polyhydroxystilbenes. These are found in lower quantities in our diet, thereby compromising
their potential for significant health benefits. However, more massive amounts of stilbenoids can be
provided from various strenuous extracts or as purified compounds. For instance, resveratrol (found
in red wine, peanuts, grapes, and almonds) and pterostilbene (present in blueberries and grapes) are
key stilbenoids that have anticarcinogenic properties and other health benefits [112]. Another primary
classification of polyphenols, phenolic acids, account for 30% of polyphenols and consist of two main
categories; hydroxybenzoic acid and hydroxycinnamic acid which are glycosylated derivatives of
esters of quinic acid, shikimic acid, and tartaric acid. Hydroxybenzoic acid, is found in few consumable
plants making it of lesser nutritional interest, although hydroxycinnamic acid is found in cinnamon,
coffee, blueberries, kiwis, plums, apples, and cherries [113,114].

3. Bioavailability of Polyphenols

Bioavailability pertains to the process of nutrient digestion, absorption, and metabolism in
biochemical pathways. After digestion and before absorption of polyphenols, they are hydrolyzed
by intestinal enzymes that are present in the colon. During intake, polyphenols undergo
various modifications and are further processed in the liver through methylation, sulfation, and
glucuronidation [115]. It has been evident that polyphenols possess metabolic activities, which
primarily depends on intrinsic activity, rate of metabolism, and their elimination. Polyphenol metabolic
activity mainly occurs in the intestines and liver. Since most biologically active polyphenols are not
very common in the diet, the bioavailability of polyphenols signifies a significant issue as they may
reach the target organs in low concentrations [116]. Because of this many polyphenols portray a poor
bioavailability as anti-cancer agents, thereby moderating in vivo effects.

One way to thwart this issue is with the help of nanotechnology, which plays a vital role in
cancer prevention and treatment. Nanoparticle encapsulation of anticancer polyphenols can cause
a several-fold increase to their oral bioavailability. For example, nanoformulations of curcumin and
piperine combination led to a 9-fold expansion due to enhanced absorption thereby increasing efficacy
and creating a dose advantage over free curcumin in different cancer cell lines [117]. Despite combating
the low bioavailability of polyphenols, only a few combinations have been tried as nano-encapsulation
as it can cause adverse side effects when administered in high doses [118–120]. Various studies have
shown strong evidence of combinatorial effects of different polyphenols that increased chemoprotective
and the anti-cancer properties at considerably lower concentrations [121]. This synergy of polyphenols
in some cases is due to simultaneous impact on different cancer pathways as well as epigenetic
modifications such as DNA methylation and histone modifications.

4. Epigenetics Mechanisms and Cancer

4.1. DNA Methylation

DNA methylation plays a crucial role in regulating growth and development of carcinogenesis
by contributing to aberrations such as genomic instability, oncogenes activation and silencing of
tumor suppressor genes (TSGs) which are mainly involved in cell proliferation, DNA repair and
apoptosis [17,122–124]. The CpG positions are the areas of DNA where a cytosine nucleotide is followed
by a guanine nucleotide in a 5′→ 3′ direction. These occur primarily in genomic as CpG islands. CpG
dinucleotides are unevenly distributed in the human genomes but are common in promoter regions of
genes. The DNA methylation state is modulated by the DNA methyltransferase (DNMT) enzymes.
DNMTs are actively involved in the displacement of the methyl group from S-adenosyl-L-methionine
(SAM) and placing it onto the 5-position of certain cytosines in CpG dinucleotides [49]. In mammals,
there are three major types of DNMTs: DNMT1, DNMT3a, and DNMT3b [125]. DNMT1 is a ubiquitous
enzyme and is primarily responsible for the maintenance of DNA methylation patterns during cell



Int. J. Mol. Sci. 2019, 20, 4567 9 of 42

division. The DNMT3a and DNMT3b enzymes actively participate in de novo methylation processes,
which involve the addition of a methyl group to cytosine and is necessary for differentiation [126,127].

Studies have provided strong evidence supporting the association of both DNA hypomethylation
and hypermethylation sequences during cancer progression and have emphasized the importance
of DNA hypomethylation and hypermethylation in the regulation of cancer-related genes [128]. The
hypermethylation of CpGs can occur in the 5′ region of the cancer-associated genes and lead to
inactivation of a significant number of tumor-suppressor genes during tumorigenesis in cancers. Either
a single gene or small subsets of genes can be hypermethylated in different types of cancer [129]. For
instance, p16INK4a (CDKN2A) which acts as a cyclin-dependent kinase inhibitor essential for TSGs, can
undergo hypermethylation in cancer. Hypermethylation of TSGs such as E-Cadherins and H-Cadherins
can cause metastasis, leading to tumor cells proliferation [130]. In addition, the silencing of APC gene
has also been reported in various cancers such as breast, lung, prostate, and colorectal cancer. APC
acts as an antagonist of the Wnt Signaling pathway, which is efficiently involved with cell migration
and adhesion. Other instances of gene silencing are found in breast cancer, such as the silencing
of BRCA1, resulting in DNA repair double-stranded breaks and transcription [131]. Unlike DNA
hypermethylation of individual genes, genomic DNA hypomethylation of different genes in tumor
cells is a rare phenomenon. DNA hypomethylation can cause chromosomal abnormality and induce
mutations, thereby leading to activation of some transposable elements that may result in modification
of the genome at random sites [132]. As a result, mutagenesis and genomic instability occur, thus
leading to tumor development. Hypomethylation of TTF-3 and MUC4 frequently occurs in ovarian
cancer, prostate cancer and pancreatic cancer [133].

A large number of FDA-approved drugs such as paclitaxel, doxorubicin, cisplatin, vorinostat,
decitabine, and azacitidine have shown a potential role in cancer therapy via targeting the DNMTs.
Therefore, the DNA methylation process is an important area with respect to epigenetic mechanisms
leading to different types of cancer [134]. Only a few FDA-approved drugs have shown promising
results in cancer patients due to their slight specificity towards cancerous cells [135]. Therefore, to
increase the response of anti-cancer drugs towards cancerous cells, cancer patients are subjected to
increased doses, which may result in adverse side effects.

Nutritional polyphenols and phytochemicals have an enormous impact on DNA methylation by
causing changes in DNMTs levels via the direct or indirect effect on DNMT activity in cancer prevention
and therapy. For instance, genistein of soy forms a complex with DNMT reducing methylation activity
and resulting in activation of tumor suppressor genes which can eventually lead to cancer prevention
and therapy [136]. Resveratrol, primarily found in grapes, also acts as a DNMT inhibitor, which may
facilitate cancer prevention and treatment [137]. Table 2 provides a comprehensive list of different
polyphenols and their effects on the DNA methylation epigenetic machinery.

4.2. Histone Modifications

Histones are soluble proteins involved in wrapping DNA into a structural unit called nucleosomes.
The nucleosome, approximately ~146 bp, is positioned as beads at a regular distance [138]. Classically,
a nucleosome is comprised of linker histones H1 and core histones: H2A/H2B, H3, and H4. Linker
histones (H1) are also a primary component of nucleosomes [139]. The linker histone H1 binds to the
outside of the nucleosome periphery and serves as a bridge between two adjacent nucleosomes. Core
histones are more firmly bound to the DNA than H1 [140].

Histone modifications are also actively involved with tumor development and carcinogenesis [141]
and most occur at the globular N-terminus domain which protrudes outwards from core histones H3 and
H4. The N-terminus domain is prone to various chemical changes at lysine, serine, and threonine [142].
Post-translational modifications (PTMs) are also a primary component of the epigenome assembly which
contributes to histone modifications. PTMs often lead to charge-induced changes in the nucleosome,
which causes a massive influence on the gene expression. Histones associated with PTMs also assist many
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biological processes through chromatin modifications and PTMs can impact gene expression by altering
chromatin structures, which contribute significantly to tumor development and carcinogenesis [142].

Even though PTMs are reversible, they are not restricted to lysine acetylation, lysine-arginine
methylation, serine-threonine phosphorylation, and lysine ubiquitination [143]. Various catalytic
enzymes such as histone acetyltransferases (HATs), histone deacetylases (HDACs), histone
methyltransferases (HMTs) and histone demethylases (HDMs) also contribute to histone modifications.
These induced histone modifications can result in cancer initiation and progression by causing
genome-wide alterations [144]. HAT enzymes are actively involved in histone acetylation, which
is responsible for the regulation of various cellular processes such as transcription, gene silencing,
apoptosis, DNA repair, and cell differentiation [145,146]. Unlike HATs, HDACs are a class of enzymes
which catalyzes the opposite action of HATs by influencing various processes such as signal transduction,
apoptosis, and cell growth [147]. Histone acetylation imbalance due to these catalytic processes can lead
to tumor cell development and cancer progression. HMTs and HDMs also act as a stimulus for histone
modifications. HMTs are involved in DNA methylation via chromatin-dependent transcriptional
repression and activation [148]. Due to these catalytic processes, specific genes within DNA complexed
with histone can either be activated or silenced [149]. Amongst various types of HMTs, G9a and EZH2
are critical histone methyltransferases, as they catalyze methylation of histone H3 at lysine 27 (H3-K27).
The H3-K27 methylation and lysine 9 histone H3 methylation (H3-K9) facilitate the development of
heterochromatin resulting in gene silencing and contribute to cancer progression [150].

Many dietary polyphenols have promise in modulating histone modifications in cancer prevention
and therapy. For example, sulforaphane, in broccoli, kale and cauliflower, complexes with the HDACs
active sites thereby impeding HDAC activity [151].

4.3. Noncoding RNAs

Besides DNA methylation and histone modifications, microRNAs (miRNAs) also significantly
contribute to epigenetic regulation. miRNAs can perform RNA splicing-related catalytic functions
and miRNAs significantly contribute to post-translational gene regulations. miRNAs are small
single-stranded non-coding RNAs that are 20–22 nucleotides long and regulate gene expression
via post-translational silencing of the target genes [152]. miRNAs control numerous biological
processes, such as cell proliferation, apoptosis, and cell differentiation. Due to their significant role
in cell physiology, expression level alterations are directly related to disease progression. A large
number of studies has shown direct association between miRNAs alterations and cancer [152–155].
MicroRNA expression can be regulated by different mechanisms such as chromosomal abnormalities,
single nucleotide polymorphisms (SNPs), mutations in the primary transcripts such as miR-15a and
miR-16-1 [156], altered activity of different transcription factors such as miR-17-92 cluster and changes
in miR-34 family due to activation of p53. These mechanisms can be associated with different types
of cancers such those of the bladder, lung and breast [156–158]. For instance, hypermethylation of
miR-9-1 in breast cancer occurs while miR-34b and miR-34c clusters are hypermethylated in colorectal
cancer [159,160]. Deviant methylation of miR-9, miR-34b, miR-34c and miR-148a are often associated
with metastasis. Furthermore, methylation of miR-148a, miR-34b/c and miR-9 are commonly associated
with malignant cells [161]. In addition to these aberrations, promoter methylation and histone
acetylation can also regulate microRNA expression in different types of cancer [162]. Table 2 provides
a comprehensive list of polyphenols which are known to regulate epigenetic modifications associated
with different types of cancer.
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Table 2. Assessment of polyphenols and their associated epigenetics modifications and molecular mechanisms (in vivo and in vitro studies) in cancer.

Dietary
Compounds

Epigenetic
Modifications Gene Targets * Overall Role in Cancer

Progression Dose In Vitro Model In Vivo Model References

Apigenin

DNMT1 inhibitor
DNMT3a inhibitor
DNMT3b inhibitor
HDAC1 inhibitor
HDAC3 inhibitor

NFE2L, NQO1, Nrf2,
GRP78, GADD153, p21,
waf1, and hTERT
p53

↓ Viability
↓ GLI1 expression
Cell cycle arrest
↑ Apoptosis
↑ Caspase 3 Activity

20–30 µM
40–160 µM
20–50 µM
20–100 µM
20–40 µM

Pancreatic cancer
Lung cancer (H460 cells)
Breast cancer (BT-474 cells)
Skin cancer (JB6 P+ cells)
Prostate cancer (PC-3, 22Rv1 cells)

Mouse [163–170]

Curcumin

DNMT inhibitor
HAT inhibitor
HDAC1 inhibitor
Down-regulation of
histone methylation

CDKN2B, NEUROG1,
NFE2L2, Nrf2, Neurog1
RASSF1A, p16, SPARC,
SOCS1, SOCS3, p53, p21,
GAS5, HOTAIR, H19,
AF086415, AK095147,
RP1-17916.3, MUDENG,
AK056098, AK294004

↓ Proliferation
↑ Apoptosis
↓ ERK, MKK4, JNK activity
↓ Bcl-2
↓ Akt expression
↑ p38 activation
↓ Cell viability
↑ Bax Activity

40 µM
0–100 µM
0–50 µM
2.5–160 µM
7.5–10 µM
0–50 µM

Breast cancer (MCF-7 cells)
Prostate cancer (LnCap cells)
Colorectal cancer (HCT116, HT29 and
RKO cell lines)
Gastric cancer (MiaPaCa-2, PANC-1 cells)
Breast cancer (MCF-7 cells)
Ovarian cancer (SKOV3 cells)

[171–182]

Daidzein DNMT inhibitor
HDAC inhibitor

BRCA1, GSTP1, EPHB2,
MMP-2, BRF1, BRF2,
RARβ

↓ Proliferation
↑ Apoptosis
↓ ERK, MKK4, JNK activity

200–600 µM
20–100 µM
3–50 µM
12.8–100 µM

Colorectal cancer
Breast cancer (MDA-MB-231 cells)
Liver cancer (SKHEP-1 cells)
Prostate cancer

[62,183,184]

Delphinidin
DNMT inhibitor
HAT inhibitor
HDAC-3 inhibitor

p21, WAF1/Cip1, p53,
p27/KIP1

↓ Cell Proliferation
↓Metastasis
Cell Cycle Arrest
Oxidative Stress

3–90 µM
30–240 µM
5–60 µM
100 µM

Prostate cancer (PC3 cells)
Colorectal cancer (HCT116 cells)
Lung cancer (NCI-H441 cells)
Prostate cancer (LNCaP cells)

Athymic nude mice [185–188]

Myricetin DNMT inhibitor
Increased SIRT1 activity GSTP1, RARβ, HIN-1 ↑ Apoptosis

Autophagy

20–40 µM
5–25 µM
100 µM

Gastric cancer (GC HGC-27, SGC7901 cells)
Breast cancer
Colon cancer (HCT-15 cells)

[189–191]

Ellagic Acid
DNMT1 inhibitor
DNMT3b inhibitor
HDAC inhibitor

p16INK4a, RASSF1A,
GSTP1, HIN1, VEGF,
MMP-2, p53

↑ Apoptosis
Cell proliferation
Cell migration
↑ Caspase 3 Activity
↑ Caspase 9 Activity

50–200 µM
10–100 µM

Colorectal cancer
Prostate cancer (PC-3 cells)
Breast cancer (MCF-7 cells)

[192–195]

EGCG

DNMT inhibitor
HAT inhibitor
Down-regulation of
histone methylation
Effect on histone
ubiquitination
Upregulation of histone
phosphorylation

p16INK4a; RARβ; MGMT;
hMLH1; GSTP1; WIF-1;
RECK, Cip1/p21
AT102202, p53, p21

↓ Invasiveness
↓ Proliferation
↑ Apoptosis
↑ Caspase 3 Activity
↑ Caspase 8 Activity
↑ Cytochrome c

1–40 µM
1–50 µM
5–20 µM
20–100 µM
1–50 µM
0–20 µg/mL

Breast cancer (MCF-7 cells)
Colorectal cancer (HT-29 cells)
Lung cancer (CL1-5 cells)
Gastric cancer (MKN-1, MKN-28, MKN-45,
NUGC-3 and TMK-1)
Colorectal cancer
Skin cancer (A431 cells)

Xenograft mice [47,196–208]
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Table 2. Cont.

Dietary
Compounds

Epigenetic
Modifications Gene Targets * Overall Role in Cancer

Progression Dose In Vitro Model In Vivo Model References

Hesperidin DNMT inhibitor
HDAC inhibitor

GSTP1, Akt, LAMTOR2,
LAMTOR3, LAMTOR5,
MAPK1, KRAS, HRAS,
MAPK3

↓ Cell proliferation
↑ Apoptosis
↑ Glucose uptake
↑ ASK1/JNK pathway
↑ ROS production

40–90 µM
40–200 µM
650 µM
20–50 µM
90 µM
50 µM

Breast cancer (MCF-7, MDA-MB-231 Cells)
Liver cancer
Cervical cancer (SiHa cells)
Esophageal cancer
Prostate cancer (PC-3 cells)
Endometrial carcinoma (ECC-1 cells)

Xenograft mice
Rats [209–215]

Kaempferol
DNMT3a inhibitor
DNMT3b inhibitor
HDAC1 inhibitor

p-Akt, ERK, MSK1, CD1,
p23, BTG3, BRCA1,
MGMT, and hMLH1

↑ Apoptosis
↓ Glucose uptake
Autophagy
Cell cycle arrest

100 µM
10–50 µM
0–60 µM
4 µM
50 µM
20 mg/kg

Liver cancer (SK-HEP-1 cells)
Lung cancer (A549 cells)
Colorectal cancer (HT-29 cells)
Breast cancer (MCF-7 cells)
Gastric cancer (G9a cells)
Gastric cancer (MKN28, SGC7901 and
GSE-1 cells)

Athymic mice
Xenograft mice [216–221]

Luteolin DNMT inhibitor
HDAC inhibitor VRK1, MPK2

↑ Apoptosis
Cell cycle arrest
Cell invasion

20–50 µM
5–50 µM
10–40 µM
20–100 µM
10 µM

Esophageal cancer
Lung cancer (A549 cells)
Breast cancer (MCF-7 cells)
Colorectal cancer
Lung cancer (A549 cells)

Xenograft Mice [222–227]

Pterostilbene
DNMT inhibitor
Decreased SIRT1
activity

p53, NF-κB and
miRNA488

↑ Apoptosis
Cell cycle arrest 25–75 µM Breast cancer (MCF-7 and MDA-MB-231

cells) Mice [137,228–232]

Polyphenol- rich
Strawberry extract
(PRSE)

Csf1, Mcam, Nr4a3,
SET, Gpnmb, Itgb3,
CC17, Ctsl, Cxcr4, Htatip2,
Mmp-10 and Mmp3

↓ Cellular Viability
↓Number of cells in S phase
Accumulation of cells in G1
phase
↓ Tumor Weight
↓ Tumor Volume

0.5–5 mg/mL Breast Cancer (MCF-7 and A-17 cells) Mice [233]

Genistein

DNMT1 inhibitor
DNMT3a inhibitor
DNMT3b inhibitor
HDAC inhibitor
HAT activator
Decreased SIRT activity
Upregulation of histone
methylation

p16INK4a; RAR β; MGMT;
PTEN; CYLD, MGMT,
CDKN2A, BTG3, TERT,
GSTP1, EZH 2, FoxM1,
sFRP1, p21, p16, PTEN,
CCLD, p53, FOXA3, SIRT1,
BTG3, hTERT, RAR,
HOTAIR

↓ Proliferation
↓ Tumorigenesis
↑ Apoptosis
↑mRNA expression of
tumor suppressor genes
↑ H2A variant at serine 139
(γ-H2AX)

25–75 µM
0.5–50 µM
0.5–50 µM
100 µM
20–50 µmol/L
5–100 µM

Lung cancer (H446 cells)
Breast cancer (MCF-7, MDA-MB-231 cell
lines)
Prostate cancer (LAPC-4 cells)
Cervical cancer
Esophageal squamous cell carcinoma
Prostate, breast cancer and renal cancer

Agouti mice
Sprague-Dawley rats [234–242]

Gallic Acid DNMT1 inhibitor
DNMT3b inhibitor

MMP-2, MMP-9,
ADAM17, Erk/p-Erk, p-Akt ↑ Apoptosis

200 µM
80.5 µM
25–200 µM
0–40 µg/mL
50 µM

Colorectal cancer
Breast cancer (MCF-7 cells)
Prostate cancer (PC-3 cells)
Cervical cancer (HeLa and HTB-35 cells)
Oral cancer (H1299 cells)

[243–247]
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Table 2. Cont.

Dietary
Compounds

Epigenetic
Modifications Gene Targets * Overall Role in Cancer

Progression Dose In Vitro Model In Vivo Model References

Naringenin

DNMT1 inhibitor
DNMT3a inhibitor
DNMT3b inhibitor
HDAC1 inhibitor

ATF3, PARP, p38, MMP-9,
ERK, Akt

↑ Apoptosis
Cell cycle arrest
↓ Cell growth
↓ Cell proliferation

100 M µM
20–80 µM
20 or 50
µmol/L
25–200 µM
50–100 µM

Lung cancer (A549 cells)
Gastric cancer
Esophageal cancer (KYSE-510 cells)
Liver cancer (HepG2, Huh-7, and HA22T
cells)
Colorectal cancer (HCT116, SW480, Lovo,
and HT-29 cells)

Resection mice
Rats [248–251]

Piceatannol
DNMT3a inhibitor
Decreased SIRT1
activity

RASSF1A, GSTP1, HIN1
mTOR

↑ Apoptosis
Cell cycle arrest

30 µM
25 µM
50 µM

Colorectal cancer (HCT116 and HT29 cells)
Prostate cancer (DU145 and PC-3 cells)
Breast cancer (MCF-7 cells)

Mice [193,252–254]

Quercetin

DNMT1 inhibitor
HDAC inhibitor
Down-regulation of
histone demethylation

CDKN2A (p16INK4a),
AMPK, Akt, DBH-AS1, p53

↓ Proliferation
↓ Akt phosphorylation
↓ Angiogenesis
↑ Caspase 3 and 7 activity
↑ Bax Activity

1–200 µM
40–160 µM

Liver cancer (HepG2 and SMCC-7721 cells)
Lung cancer (A549 cells)
Gastric cancer (AGS and MKN28 cells)
Colon cancer (HCT116 cells)

Mice [47,255–262]

Xanthohumol DNMT inhibitor
HDAC inhibitor CXCR4, CXCL12, p53

↑ Apoptosis
Cell cycle arrest
Cell Invasion
Cell proliferation
Cell migration

14–42 µM
5–40 µM

Lung cancer (A549 cells)
Liver cancer
Breast cancer
Prostate cancer (DU145 and PC3 cells)

Transgenic Mice [263–267]

Sulforaphane

DNMT3a inhibitor
DNMT3b inhibitor
HDAC inhibitor
Upregulation of histone
phosphorylation

NFE2L2, TERT, Nrf2,
ZEB1, COX-2/MMP-2,
9/snail, p21, p27, RBP2

↓ Proliferation
↑ Apoptosis
Cell cycle arrest

50 µM
5–10 µM
0–30 µM

Colorectal cancer
Breast cancer (MDA-MB-231 and MCF-7
cells)
Bladder cancer (T24 cells and 5637 cells)

Xenograft Mice [268–275]

Resveratrol

DNMT3a inhibitor
DNMT3b inhibitor
Decreased SIRT1, SIRT2,
and SIRT3 activity
HAT inhibitor
Regulation of histone
phosphorylation

PTEN, XRCC1, p21 p16,
MDR1, SP-1, STIM1,
FOXO, PCGEM1,
PRNCR1, PCAT29,
AK001796, MALAT1,
u-Eleanor, LINC00978, p53,
p21

↓ Proliferation
↑ Apoptosis
↓Metastasis
↑ Caspase 8/9 activity
↑ Bax Activity
↓Bcl-2 Activity

50–150 µM
5–50 µM
50–200 µM
20–150 µM
25–100 µM
150–250 µM
25–100 µM

Breast cancer (MCF-7 cells)
Lung cancer (H1703 and H1975 cells)
Gastric cancer (Ki67 cells)
Colon cancer (HT-29 cells, COLO 21 cells)
Prostate cancer (PC3 and DU145 cells)
Cervical cancer
Liver cancer (Huh7 cells)

Xenograft Mice [179,276–288]

*↓- decreased, ↑- increased.
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5. Combinatorial Effect of Polyphenols on Cancer Prevention and Therapy

A significant number of conventional methods are employed in cancer prevention or treatment.
However, at some point, the tumor cells may develop resistance to various traditional methods such
as radiotherapy and chemotherapy, thereby causing alterations in genes and proteins, which are
involved in cancer progression. Therefore, combinatorial approaches can potentially be used in cancer
prevention and therapy. These can be a combination of a polyphenol with two or more polyphenols,
a combination of polyphenols with anti-cancer drugs, a combination of polyphenols with vitamin
supplements or other efficacies in combination. These approaches can facilitate inhibition of tumor
growth and in some cases the combined compounds can act synergistically. Here, we provide detailed
information about various combinatorial approaches by different groups focusing on different types of
cancer. These are summarized in the Table 3.

5.1. Combinatorial Effect of Apigenin with Other Polyphenols and Anti-Cancer Drugs

Many studies have reported various blockage in immune checkpoints that can lead to up-regulation
of Interferon gamma (IFNγ) and further lead to tumor cell progression. A study was conducted
demonstrating the combined action of apigenin and IFNγ. Primary cervical cancer HeLa and SiHa cells
were co-administered with apigenin and IFNγ. This treatment resulted in enhancing the anticancer
activity by targeting cyclin-dependent kinases 1. The HeLa and SiHa cells were treated with different
doses of apigenin and IFNγ. As a result, it was found that HeLa cells were more sensitive than
SiHa cells, and cell viability was further reduced with the treatment of apigenin when co-partnered
with IFNγ. This combination also increased the upregulation of a number of tumor related genes.
Furthermore, apigenin increased the apoptosis-inducing effects of IFNγ in HeLa cells but not in SiHa
cells [289]. Paclitaxel is a chemotherapeutic FDA-approved drug used for the treatment of many
different types of cancers such as ovarian, breast, lung, cervical and pancreatic cancer. Long-term
administration of paclitaxel leads to the development of drug resistance and tumor progression. To
overcome these, a combination of polyphenols such as apigenin can potentially be used. A study
demonstrated the synergistic action of apigenin and paclitaxel in ovarian cancer. HeLa, A549, Hep3B,
and HEK293A cells were treated with apigenin in combination with paclitaxel. As a result, both
apigenin and paclitaxel induced apoptosis by eventually decreasing the number of surviving cells [290].
Cisplatin is a chemotherapeutic drug which is used in treating various cancers [291] and apigenin was
also shown to amend cisplatin function in these cases. In human renal proximal tubular epithelial
cells (HK-2cells), the combination of apigenin with cisplatin led to the reduction of p53 activation
and further promoted the PI3K/Akt pathway. A study in prostate cancer in PC-3 cells and CSCs
demonstrated a combined effect of apigenin and cisplatin by suppressing PI3K/AKT activation and
protein expression of NF-κB [292,293].

Additionally, the combination of apigenin with doxorubicin induced a synergistic decrease in
ATP levels in leukemia CCRF-CEM, Jurkat, and THP-1 cell lines. As a result, co-administration of
apigenin and doxorubicin led to a decrease in ATP levels in three (CCRF-CEM, Jurkat and THP-1) out
of four leukemia cell lines through enhancement in cell toxicity and DNA damage. This combination
treatment also led to an increase in caspase-3 activity in all the four cell lines as well as cell cycle arrest
and S and G2/M phase inhibition. Additionally, the combinatorial effect of apigenin and etoposide
resulted in a decrease in ATP levels in the leukemia THP-1 myeloid cell line along with additive effects
on other cell lines [294]. Another study was conducted in vitro in young adult mouse colonocyte
cells (YMAC) to investigate the synergistic action of the two polyphenols. Higher concentrations of
naringenin (5 µM and 10 µM) eradicated the growth of the cells, unlike apigenin, which abolished
growth of the YMAC cells at a much lower concentration. However, the combination of apigenin
and naringenin led to inhibition of YMAC cell growth, thereby causing activation of the estrogen
receptor (ERβ) at a much lower concentration (0.1 + 0.05 − 1 µM) [295]. In pancreatic cancer, apigenin
along with gemcitabine enhanced anti-tumor effects. In vitro, this combined treatment of apigenin and
gemcitabine led to a decrease in tumor cell growth and apoptosis by down-regulating NF-kappa B
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activity. The combination also resulted in the suppression of Akt activation in MiaPaca-2 and APC-1
cell lines. Collectively, these combinatorial studies have demonstrated a strong impact in different
types of cancer and their associated molecular mechanisms [296].

5.2. Combinatorial Effect of Curcumin with Other Polyphenols and Anti-Cancer Drugs

Primary prostate cancer cells in B6C3F1/J mice when treated with the combination of curcumin and
resveratrol increased the bioavailability by decreasing the tumor growth and inhibition of epithelial cell
proliferation in contrast to curcumin administered alone. The combination of curcumin and resveratrol
reduced prostate cancer by controlling the mean GU tract and decreasing the tumor weight of the
mice [297]. Another study was conducted in vivo on the 1, 2-dimethylhydrazine (DMH) rat model in
colorectal tumors and demonstrated the combinatorial effect on curcumin and catechins. The dietary
treatment of curcumin, catechins and the combination of curcumin and catechin were administered in
the positive and treated groups. As a result, although the incidence of the colorectal tumor was lower in
the catechins and curcumin treatment groups, the difference was not significant when compared to the
treatment groups when catechins and curcumin were administered alone. However, the frequency of
the colorectal tumor was significantly lower in the combination group when compared to the positive
groups. The study also demonstrated that the cell proliferation index (PI) was more significantly
inhibited with the combination group (PI index: 24.2 ± 9.02, p < 0.01) compared to the curcumin (PI
index: 39.2 ± 7.26, p < 0.05) and catechin (PI index: 36.8 ± 5.50, p < 0.05) alone [298].

Another study in breast cancer (MCF-7 and Sum149 cells) demonstrated an improved
bioavailability of curcumin and piperine in combination. Piperine (1-Piperoylpiperidine) is a dietary
alkaloid which is mainly found in fruits and roots of black pepper [299]. This combination was
known to be effective in cancer prevention by limiting stem cell self-renewal and inhibition of the Wnt
signaling pathway. As a result, both curcumin and piperine inhibited mammosphere formation and
serial passaging but the effect of inhibition was greater when both polyphenols were combined [300].
Curcumin also has positive effects with many other conventional therapies in breast cancer cells
both in vitro and in vivo. In vitro, breast cancer MDA-MB-231 cells were more prone to inhibition by
paclitaxel when combined with curcumin. In vivo, the 8-week-old athymic mice were administered
with curcumin (100 mg/kg daily), paclitaxel (7 mg/kg weekly) and curcumin + paclitaxel. As a result,
the combination treatment inhibited the growth of the cells to a more considerable extent compared
to curcumin and paclitaxel alone. Eventually, curcumin inhibited the activity of NF-κB induced by
paclitaxel, thereby increasing the apoptotic effect of paclitaxel [301].

Arcitgenin is a soluble plant extract of Arctium lappa which is used in Japanese Kampo medicine.
Flavonoids such as curcumin and EGCG have reduced bioavailability when administered alone.
Therefore, to overcome the reduced bioavailability of specific flavonoids, another study was conducted
in breast cancer MCF-7 cells and prostate cancer LNCaP cells by administering a combination for 48 h.
As a result, both cells lines demonstrated a synergistic increment of antiproliferative effect. In MCF-7
cells, arctigenin increased the cell apoptosis of curcumin and EGCG enhanced the cell cycle arrest of
curcumin. This combination also led to an increased expression of Bax-Bcl2 proteins. Another study
was conducted on non-small lung cancer (NSLC) A549 and NCI-H460 cells with the combination
of low concentration of EGCG and curcumin. EGCG, when combined with curcumin, reduced the
clonal formation in A549 cells. This combination heightened cell cycle arrest at G1 and S/G2 phase and
inhibited cyclin D1 and cyclin B1. There was also a decrement in the tumor growth, thereby being
a strong chemopreventive agent in NSLC. Also, the combination of curcumin (50 µM) and EGCG
(100 µM) had a synergistic effect on prostate cancer LNCaP, DU145 and PC3 cells by causing the
increased expression of p21, and cell cycle arrest at S and G2/M phase [302–306].
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Table 3. Impact of combinatorial therapy (polyphenols, phytochemicals, and anti-cancer drugs) on epigenetic modifications and molecular mechanisms (in vivo and
in vitro studies) in cancer.

Combinatorial Therapy Organ of Study In Vitro Model In Vivo Model *Epigenetic Modifications and Molecular
Mechanism

References
Cell Lines Dose

Apigenin + IFNγ Cervical cancer HeLa and SiHa cells 5–15 µM + 100 ng/mL

↓ Cell viability
↑ Apoptosis
Up-regulation of
DNMT1

[289]

Apigenin + Paclitaxel Ovarian cancer HeLa, A549, Hep3B and
HEK293A cells 15 µM + 4 nM Apoptosis through suppressing SOC activity

↑ ROS and caspase-2 cleavage. [290]

Apigenin + Cisplatin Renal cancer
Human renal proximal
tubular epithelial (HK-2)
cells

5–20 µM + 40 µM

Apigenin reduced cisplatin-induced caspase-3
activity and PARP cleavage
↓ ROS production and p53 activation
Akt phosphorylation

[293]

Prostate cancer PC3 PCa cells 15 µM + 7.5 µM

Upregulation of
Caspase-8, Apaf-1 and p53
Down-regulation of Snail expression.
Repressed phosphorylation of p-PI3K and
p-Akt

[292]

Apigenin + doxorubicin Lymphoid leukemia CCRF, CEM, Jurkat and
THP-1 cells

0.01 µM + 0.4 µM

↑ caspase-3 activity
Cell cycle arrest at S and G2/M phase
↑ DNA damage

[294]

Apigenin + etoposide
↑ caspase-3 activity
↑ caspase-8 activity
↑ caspase-9 activity

[294]

Apigenin + Naringenin Colon cancer Mice 0.1 µM + 0.05 µM ↑ ER-mediated YAMC cell growth
↑ activation of ERβ [295]

Apigenin + Gemcitabine Pancreatic cancer MiaPaca-2, AsPC-1 cell
lines 30 µM + 05–2 µM Xenograft mice model Down-regulation of NF-κB activity

Suppression of Akt activation [296]

Curcumin + Resveratrol Prostate cancer PTEN-CaP8 cancer cells B6C3F1/J mice ↓ p-Akt, and cyclin D1 activity [297]

Curcumin + Catechins Colon cancer DMH rat model 0.1% + 0.1% ↑ Apoptotic index
↓ Proliferation index [298]

Curcumin + Piperine Breast cancer MCF-7 and Sum159 cells 5–25 µM + 5–25 µM

Inhibit mammosphere formation
↓ stem cell self-renewal
↓ in the cell percentage expressing stem cell
marker ALDH1
Inhibit Wnt Signaling

[300]

Curcumin + Paclitaxel Breast cancer MDA-MB-231 cells 10 µM + 10 µM Nude mice model 100 mg/kg + 7
mg/kg

Inhibition of tumor cell growth
↓ Tumor size
↓ Tumor cell proliferation
↑ Expression of MMP-9

[301]
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Table 3. Cont.

Combinatorial Therapy Organ of Study In Vitro Model In Vivo Model *Epigenetic Modifications and Molecular
Mechanism

References
Cell Lines Dose

Curcumin + Arctigenin +
Green tea +
Epigallocatechin gallate
(EGCG)

Prostate cancer LNCaP cells 5–10 µM + 1 µM + 40
µM

↑ Apoptosis
↑ Cell cycle arrest at G0/G1 phase
↓ Activation of NFκB, PI3K/Akt and Stat3
pathways
↓ Cell migration

[303]

Breast cancer MCF-7 cells 5–10 µM + 1 µM + 40
µM

Curcumin +
Epigallocatechin gallate
(EGCG)

Non-small lung cancer A549 and NCI-H460 cells 10 µmol/L +10 µmol/L

↓ Tumor size
Cell cycle arrest at G1 and S/G2 phase
Inhibition of expression of cyclin B1 and cyclin
D1
Inhibition of clonal formation
Down-regulation of DNMTs

[304,305]

Prostate cancer LNCaP, DU145 and PC3
cells 50 µM + 100 µM ↑ p21 expression

Cell cycle arrest at S, G2/M phase

Curcumin + Dasatinib Colon cancer HCT-116, HT-29 and
SW-620 APCMin+/− mice

↓ Cell proliferation
↑ Apoptosis
↑ Invasion through the extracellular matrix
↑ Tubule formation by endothelial cells

[306]

Curcumin + TRAIL Prostate cancer LNCaP cells PC3 cells
↑ Apoptosis
↑MMP-9, MMP-2, caspase-3, and caspase-9
activity

[307,308]

Curcumin + Gemcitabine Pancreatic cancer BxPC3, MiaPaCa2 and
Panc1 PDAC cells

100 mg/kg + 25
mg/kg

↓ Tumor growth
↓ NF-κB activity
↓ VFGF expression

[309]

Genistein + Delphinidin +
Alternariol (AOH) Colon cancer HT-29 cells 25 µM + 100 µM + 50

µM

↑ Cytotoxic effect
↑ Genotoxicity effect
↑ Topoisomerase poisoning
↓ ROS generation

[310]

Genistein + Erlotinib Bladder cancer A431 cells 100 µM + 10 nM Inhibitor of EGFRs
Overexpression of RTKs [311]

Genistein + Sulforaphane Breast cancer MCF-7 and MDA-MB-231
cells 5 µM + 10-15 µM

Cell cycle arrest at G1 and G2/M phase
↓ Cell viability
↑ Apoptosis

[312]

Genistein + Cisplatin
Breast cancer MCF-7 and T47D cells

1 µM + 10 µM ↓ ROS production
↑ Cell viability
↓ Autophagy
↓ Apoptosis
Cell cycle arrest at subG0/G1 phase

[313]

Genistein + Tamoxifen 1 µM + 10 µM

Genistein + Paclitaxel 1 µM + 10 µM

Genistein + Resveratrol Prostate cancer Rats 83 mg/kg + 83
mg/kg

↓ Tumor growth
Inhibition of Growth factors [314]
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Table 3. Cont.

Combinatorial Therapy Organ of Study In Vitro Model In Vivo Model *Epigenetic Modifications and Molecular
Mechanism

References
Cell Lines Dose

Genistein + Quercetin +
Biochanin A Prostate cancer PC-3, LNCaP, DU-145

cells
8.33 µM + 8.33 µM +
8.33 µM

↑ BAX/BCL-2 activity
↑ caspase-3 activity
↑ ER-β activity
↑ p-JNK activity
↓ p-ERK activity
↓ PCNA activity
↓ Cell proliferation
↑ Apoptosis

[315]

Genistein + EGCG +
quercetin Prostate cancer CWR22Rv1 cells 2.5 µM + 2.5 µM + 2.5

µM
↑ p53 activity
↓cell proliferation [316]

Resveratrol +
Thymoquinone Breast cancer MCF-7 and T47D cells 10 µM + 25–300 µM Balb/C mice 50 mg/kg + 50

mg/kg per day

↑ Apoptosis,
↓ Tumor growth
Inhibition of angiogenesis

[317]

Resveratrol + Quercetin Prostate cancer 22Rν1, DU145 and PC3
cells TRAMP mice model 625 mg/kg + 60

mg/kg ↓ Cell proliferation [318]

Resveratrol + Curcumin +
ADR Ovarian cancer A2780 cells 10 µM +2 µM +1 µM Xenograft model in

Athymic mice

19.68 mg/kg +
26.06 mg/kg +
5mg/kg

↓ Cell viability
↓ Tumor size
↑ Apoptosis

[319]

Resveratrol + Quercetin +
ADR Ovarian cancer A2780 cells 10 µM +10 µM +1 µM Xenograft model in

Athymic mice
19.68 mg/kg + 5.2
mg/kg + 5mg/kg

↓ Cell viability
↓ Tumor size
↑ Apoptosis

[319]

Resveratrol + Doxorubicin Gastric cancer SGC7901 and MGC803 cell
lines 50 mg/L + 0.75 mg/L Nude xenograft mice

model
3 mg/kg + 50
mg/kg$

↑ expression of caspase 9
↑ PTEN, TSC1, TSC2, and cleaved caspase 3
↓ p-AkT, and mTOR activity

[320]

Resveratrol + Genistein +
Quercetin + Apigenin +
Baicalein + Curcumin +
EGCG

Prostate cancer PC3 and LNCaP cells TRAMP mice model

1 µmol/L + 20
µmol/l + 10
µmol/L + 3
µmol/L+ 3
µmol/L+ 10
µmol/L+ 10
µmol/L

↓ GLi1 mRNA activity$↓ Tumor size [321]

Resveratrol +
Pomegranate + Orange +
Lemon + Olive + Cocoa +
Grape seed

Breast Cancer MCF-7 cells

53.85 mg + 161.5
mg + 53.85mg +
53.85 mg + 161.5
mg + 161.5 mg +
53.85 mg

↓ Anti-proliferative activity $↓ Estrogenic
estrogenic/anti-esterogenic activity [323]

EGCG + Sunitinib
Breast cancer
Non-small cell lung
cancer

H460, H1975, and MCF-7
cells 50 µM + 3 µM Xenograft mice model 50 mg/kg + 40

mg/kg Suppression of IRS/MAPK/p-S6K1 signaling [324]
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Table 3. Cont.

Combinatorial Therapy Organ of Study In Vitro Model In Vivo Model *Epigenetic Modifications and Molecular
Mechanism

References
Cell Lines Dose

Resveratrol + Quercetin +
Catechin + Gefitinib Breast cancer MDA-MB-231 cells 15 µM + 15 µM+ 15

µM + 15 µM SCID mice model

5 mg/kg +5 mg/kg
+ 5 mg/kg + 5
mg/kg + 200
mg/kg

↓Tumor size
Cell cycle arrest at S phase
↓ Cell viability
Inhibition of Akt/mTOR signaling

[322]

EGCG +
Vitexin-2-O-xyloside +
Glucoraphasatin

Breast cancer MDA-MB-231 cells
MCF-7 cells

(1980 ± 94) µg/mL +
(1200 ± 66) µg/mL +
(21 ± 6) µg/mL + (350
± 47) µg/mL + (350 ±
48) µg/mL + (31 ± 4)
µg/mL

Induction of apoptosis
Cell cycle arrest at
Regulation of Bcl2, Bax, cleaved caspase-9 and
PARP
↑ ROS production

[325]

Colorectal cancer Caco-2 cells
LoVo cell

(21 ± 3) µg/mL + (120
± 9) µg/mL + (16 ± 4)
µg/mL + (135 ± 16)
µg/mL + (158 ± 13)
µg/mL + (36 ± 5)
µg/mL

EGCG + NAC Lung cancer H1299 cells 100 µM + 2 mM CL13 mice ↑ Apoptosis
↑ ROS production [326]

EGCG + Pterostilbene Pancreatic cancer PANC-1 and MIA-Pa-Ca-2
cells 20–40 µM + 30 µM

↓ Cell proliferation
Cell cycle arrest at S phase
↑ caspase-3/7 activity

[327]

EGCG + TRAIL Pancreatic cancer MIA-Pa-Ca-2 cells 50 µg/mL + 5 ng/mL ↑ Apoptosis
↑ Activation of caspase-8 and caspase-9 [328]

EGCG + 5- Fluorouracil Colorectal cancer HCT-116 and SW480 cells 25–400 µM + 2.5–40
µM Xenograft mice model

↓miR-34a, miR-145, and miR-200c
Cell cycle arrest
↓ Notch1, Bmi1, Suz12, and Ezh2 activity

[329]

EGCG + 5- Fluorouracil Colorectal cancer HCT-116 and SW480 cells 25–400 µM + 2.5–40
µM Xenograft mice model

↓miR-34a, miR-145, and miR-200c
↑ spheroid formation
↓ Notch1, Bmi1, Suz12, and Ezh2 activity
Cell cycle arrest at G0/G1 phase

[329]

Sulforaphane + Green tea
polyphenols (GTPs) Breast cancer MDA-MB-231 cells 5–10 µM + 20 µg/mL

Reactivation of Tumor suppressor genes
(TSGs) p21CIP1/WAF1 and KLOTHO
Cell cycle arrest at G2/M phase
↓ CDK1 and CDC25C expressions
Inhibition of IGF-1 pathways

[330]

Sulforaphane +
Withaferin-A Breast cancer MCF-7 and MDA-MB-231

cells 5 µM + 10 µM

↓ HDAC1
Inhibition of DNMT1, DNMT3A, and DNMT3B
↑ Apoptosis
↓ BAX/BCL-2 activity

[331]
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Table 3. Cont.

Combinatorial Therapy Organ of Study In Vitro Model In Vivo Model *Epigenetic Modifications and Molecular
Mechanism

References
Cell Lines Dose

Sulforaphane + Curcumin Liver cancer HepG2-C8 cells

Low dose: 12.5 µM +
10 µM
High dose: 50 µM +
25 µM

↑ ARE-luciferase activity
↑ Expression of HO-1 and UGT1A1
↑ Nrf2 mRNA levels

[332]

Sulforaphane + EGCG

Prostate cancer PC-3-AP-1 cells

Low Dose: 25 µmol/L
+20 µmol/L
High Dose: 25 µmol/L
+µmol/L

Nrf2-deficient mice 45 mg/kg + 100
mg/kg

Inhibition of AP-1 activity
Down-regulation of Nrf2-dependent genes [334]

Ovarian cancer SKOV-ip1 and
SKOVTR-ip2 cells 10 µM + 20 µM

↑ Expression of hTERT, DNMT1
↓ Cell viability
Cell cycle arrest in G2/M and S phases
↑ Apoptosis

[333]

Colon cancer HT-29 cells

Low Dose: 25 µM + 20
µM
High Dose: 10 µM +
20 µM

↓ Cell viability
↑ AP-1 activity [335]

Sulforaphane +
Acetazolamide (AZ) Urothelial cancer HTB-9 and RT112(H) cells 40 µM + 40 µM

↑ Apoptosis
↓ Ki-67, pHH3, cyclin D1 activity
Cell cycle arrest
Inhibition of Akt kinase activity
Downregulation of p-Akt (Ser473) and p-S6
activity

[336]

Sulforaphane + Docetaxel
+ Paclitaxel Breast cancer SUM149 and SUM159

cells 5 µM + 0–20 µM Xenograft mice model 50 mg/kg daily +
10 mg/kg weekly

↓ Tumor growth
Inhibition of NF-κB p65 translocation

↓- decreased, ↑ - increased.
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Primary colon cancer cells are commonly treated with the drug dasatinib, which is a small
molecule-inhibitor of the SRC-family of protein kinases. Sustained chemotherapeutic treatment with
this drug results in drug resistance and tumor progression. Therefore, to prevent these harmful effects,
dasatinib when combined with curcumin using in vitro and in vivo models, resulted in the enhanced
inhibition of various metastatic processes. In vivo, this combination enhanced the cell adhesion
phenotype of colon cancer HCT-116 cells. In vitro, this combination led to a 95% regression of intestinal
adenomas in APCMin+/− mice, thereby decreasing tumor proliferation and increasing apoptosis [306].
TNF-related apoptosis-inducing ligand (TRAIL) is a tumor necrosis factor (TNF) gene which possesses
apoptosis-inducing activity against cancer cells in vivo and in vitro. Despite this functionality, the
defects in intrinsic and extrinsic pathways (such as Akt and NF-κB pathways) could potentially cause
cell resistance thereby affecting its functional role. Thus far, the combinatorial approach of TRAIL with
curcumin can cause synergistic action in prostate cancer PC3 cells. This combination caused suppression
of NF-κB activity through Akt pathways, and further inhibition of Bcl-2, Bcl-XL, and XIAP expression.
In vivo, when this was administered to xenografted mice with prostate LNCAP cells, the inhibition of
tumor growth, increased apoptotic activity, and further activation of anti-proliferative, anti-angiogenic,
and anti-metastatic mechanisms were observed [307,308]. Gemcitabine is a chemotherapeutic drug
which is known to treat various types of cancer such as those of bladder, pancreatic and breast. Like
Dasatinib, this drug also results in drug resistance. When gemcitabine (25 mg/kg body weight once
every four weeks) is used in combination with curcumin (100 mg/kg body weight daily) in pancreatic
cancer BxPC3, MiaPaCa2 and Panc1 PDAC cells, it inhibited tumor growth thereby inhibiting expression
of PRC2 subunit EZH2 and lncRNA PVT1. This combination also suppressed the spheroid-forming
capability of tumor cells [309].

5.3. Combinatorial Effect of Genistein with Other Polyphenols and Anti-Cancer Drugs

The primary mechanism of genistein is to induce DNA strand breaks and oxidative stress. On the
other hand, delphinidin suppresses DNA-damaging properties and possess anti-oxidative properties.
Despite possessing strong anti-cancer properties, their systemic bioavailability is low. Therefore, both
genistein and delphinidin, when used in combination with alternariol (AOH) which is predominantly
found in mushrooms, strongly interact with cancer cells. This combination demonstrated strong
interactions with the HT-29 colon carcinoma cells and by influencing topoisomerase poisoning and
reactive oxygen species (ROS) which are oxygen-containing chemical species [310]. Erlotinib, a
cytostatic drug, is a chemotherapeutic drug for the treatment of pancreatic cancer and non-small cell
lung cancer. The drug mainly functions by inhibition of epidermal growth factors (EGFR). Recently, a
study was performed on human epithelial A431 cells with a combination of genistein and erlotinib.
Genistein antagonized the Erlotinib-EGFR inhibitory effect, thereby effecting a different mechanism
of cancer cell intrusion [311]. Another study demonstrated the combinatorial effect of genistein with
sulforaphane on breast cancer MCF-7 and MDA-MB-231 cells. This combination resulted in an overall
decrease in cell viability in both breast cancer cell lines thereby promoting cell death and cell cycle arrest
in G1 phase (MCF-7 cells) and G2/M phase (MDA-MB-231 cells) [312]. A study in genistein-treated
breast cancer MCF-7, and T47D cell lines also demonstrated the synergistic effect of genistein with
cisplatin, paclitaxel, and tamoxifen chemotherapeutic drugs. As a result, in MCF-7 breast cancer cell
lines, it was found that genistein + cisplatin and genistein + tamoxifen decreased the production of
ROS and autophagy. Also, it enhanced the cell cycle at G2/M phase and decreased the cell cycle at
the G0/G1 phase. On the contrary, this combination demonstrated a decrease in cell viability in T47D
cell lines due to enhanced autophagic effect. Moreover, the genistein + tamoxifen combination led to
an increase in cell viability in MCF-7 cell lines to a larger extent compared to genistein + paclitaxel
combination [313].

Genistein also demonstrated synergistic action with resveratrol in the suppression of prostate
cancer in the SV-40 Tag rat model. When this combination was fed to rats (high dose combination:
250 mg/kg AIN-76A diet and low dose combination: 83 mg genistein + 83 mg resveratrol/kg diet),
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there was a reduction in cell proliferation and reduced expression of insulin-like growth factor (IGF-1
factor) [314]. Many studies have shed light upon the poor bioavailability of genistein, quercetin,
and biochanin A since their anti-cancerous activity such as tyrosine kinase activity, is hindered. A
combinatorial approach can potentially overcome these programmed barriers. Prostate cancer LNCaP,
DU-14, and PC-3 cells were subjected to treatment with genistein, quercetin and biochanin A. As a result,
this combination demonstrated the inhibitory effect of tyrosine kinases, and also activated human
aryl-hydrocarbon (ArH) receptors thereby inhibiting prostate carcinogenesis [315]. A combination
treatment of genistein, quercetin, and EGCG was performed on prostate cancer CWR22Rv1 cells. Even
though each of these polyphenols possesses non-overlapping activities, their combination led to the
suppression of cell proliferation thereby altering the expression of androgen receptor, tumor suppressor
p53 and quinone reductase type 1(NQO1) enzyme [316].

5.4. Combinatorial Effect of Resveratrol with Other Polyphenols and Anti-Cancer Drugs

Resveratrol is a phytoalexin that can potentially counteract with many anti-cancerous properties.
Due to its limited bioavailability, it can have hindrance in various molecular mechanisms associated
with cancer. Studies have shown that resveratrol can overcome its bioavailability barriers when used
in combination with other polyphenols and anti-cancer drugs. A study was conducted in breast cancer
cell lines with the administration of a combination of resveratrol and thymoquinone. Thymoquinone
is a phytochemical compound that possesses a large number of antioxidants, anti-inflammatory,
anti-carcinogenic and chemo-sensitizing properties. In vivo, Balb/C mice were treated with resveratrol
and thymoquinone, and as a result, there was an order of decrease in tumor size, followed by an increase
in apoptosis, decrease in VEGF expression and inhibition of angiogenesis [317]. A study was conducted
in prostate cancer cells, both in vitro and in vivo. Each of these polyphenols was administered alone or
in combination in 22Rν1, DU145, and PC3 cell lines and in a TRAMP mice model. When resveratrol
was combined with quercetin, the bioavailability of resveratrol was heightened by constraining its
sulfation, thereby imparting higher anti-proliferation properties [318]. ADR is a hydrochloride salt,
and a pegylated liposomal formulation. Numerous studies have shown that liposomal formulation is
prone to increase the risk in cardiac events. Dexrazoxane, an FDA-approved drug, is effectively used
to lessen ADR-induced cytotoxicity. However, the use of Dexrazoxane has led to interference with the
efficacy with ADR, thereby increasing the risks of secondary tumors. Resveratrol, quercetin, curcumin,
and ADR were administered alone and in combination in ovarian cancer ES2-Luc or A2780ADR cells
which resulted in reducing ADR dozing via chemosensitization. This combination also resulted in
tumor size reduction and enhanced apoptosis in ovarian cancer xenograft models [319].

Doxorubicin (DOX) is a chemotherapeutic drug which is primarily used against gastric cancer.
Long-term exposure to doxorubicin in gastric cancer patients leads to the development of drug
resistance and tumor regression. As a result, resveratrol reverses the Dox-resistance challenge by
preventing EMT by controlling PTEN/Akt signaling pathways. A study was conducted in gastric
cancer SGC7901 and MGC803 cell lines. A DOX-resistance gastric cancer cell line was developed by
using a DOX concentration gradient method in SGC7901 cells. When these cells lines were subjected
to treatment of resveratrol (RES) and doxorubicin, there was an enhanced cell survival of SGC7901

cells. A nude mice xenograft model was also used for the in vivo procedure where resveratrol and
doxorubicin were administered alone and in combination. This combination enhanced the expression
of caspase-9, increased the level of PTEN, TSC1, TSC2, and cleaved caspase-3 and reduced p-Akt,
p-mTOR, and p70 S6K significantly [320]. A few other combinations of resveratrol have also been
investigated using in vivo models for their chemopreventive effects. A study was conducted with the
potential abilities of resveratrol along with quercetin, apigenin, baicalein, curcumin, genistein and
EGCG in vitro as well as in vivo. The study revealed that the combination of four out of six compounds:
genistein, curcumin, EGCG, and resveratrol combination inhibited hedgehog signaling. Furthermore,
the combination of apigenin, baicalein, and quercetin led to an overall decrease in GLi1 mRNA activity.
When these compounds were fed in combination altogether, then there was an overall decrease in tumor
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size [321]. Gefitinib is a tyrosine kinase inhibitor (TKI) which interrupts signaling through various
epidermal growth factors (EGFR) in target cells. A large number of clinical trials have demonstrated
the potential benefits of gefitinib; however, like other anti-cancer drugs, its acquired resistance is a
recurrent problem. Therefore, a potential combinatorial approach of dietary-based polyphenols with
gefitinib might help to overcome the drug resistance. A combination study on grapes-based dietary
polyphenols was conducted in vitro in breast cancer MDA-MB-231 cells as well as in vivo in a nude
mice model. In vitro, the study revealed that resveratrol, quercetin, and catechin reduced Akt activity,
induced the activation of AMPK, and inhibited mTOR signaling in breast cancer cell lines. Further,
when resveratrol, quercetin and catechin were administered in combination with gefitinib, decreased
gefitinib resistance occurred in these cell lines. In vivo, mice were fed with alone and in a combination
5 mg/kg of each resveratrol, quercetin, and catechin along with 200 mg/kg of gefitinib for 84 days.
As a result, it was found that there was an inhibition of mammary tumor growth and metastasis to
bone and liver in this mouse model [322]. A recent study was conducted in breast cancer patients
wherein the patients were administered with a polyphenolic supplement consisting of a mixture of
resveratrol (53.85 mg) and various plant extracts (orange: 53.85 mg, lemon: 53.85 mg, pomegranate:
161.5 mg, cocoa: 161.5 mg, olive: 161.5 mg, and grape seed: 53.85 mg). The components were blended
and further encapsulated in hard gelatin capsules. Each patient (19 patients) was administered with 3
capsules since the beginning of the diagnosis until the night before the surgery and urine samples,
blood samples, normal tissue samples and malignant tissue samples were collected. Upon metabolic
profiling, a total of 101 metabolites were identified in urine, 69 metabolites were identified in plasma,
39 metabolites were identified in normal tissue and 33 metabolites were identified in malignant tissues.
As a result, the metabolites identified in malignant tissues did not exhibit anti-proliferative activity or
estrogenic estrogenic/anti-esterogenic activities in MCF-7 breast cancer cells [323].

5.5. Combinatorial Effect of Epigallocatechin Gallate (EGCG) with Other Polyphenols and Anti-Cancer Drugs

Sunitinib is a small molecule tyrosine kinase inhibitor, which is mainly used for the treatment
of renal and pancreatic cancer. Due to the long-term administration of sunitinib, cancer patients are
likely to develop drug resistance. This can be overcome by using sunitinib in combination with EGCG.
A study was conducted in H460, MCF-7 and H1975 cell lines in vitro and in a xenograft mice model
for in vivo study. When sunitinib was administered in combination with EGCG, the EGCG was seen
to chemically interact with sunitinib thereby reducing its plasma concentration, leading to inhibition
of various receptor kinases and downstream kinases, such as Erk1/2, STAT3 and phosphoinositide
3-kinase (PI3K)/AKT [324]. Furthermore, a study was conducted when EGCG was used in combination
with vitexin-2-O-xyloside and raphasatin in breast cancer MDA-MB-231 and MCF-7 cell lines, and
colorectal Caco-2 and LoVo cell lines. Vitexin-2-Oxyloside was extracted and further purified from
seeds of Beta vulgaris cicla, and glucoraphasatin from Raphanus sativus L. This combination induced
apoptosis through the mitochondrial pathway. Further analysis also revealed cell cycle arrest at the
G0/G1 phase. This combination also controlled the activity of Bax, Bcl2, caspase-9, and ADP-ribose
polymerase [325]. Another study was conducted in vivo and in vitro in lung cancer H1299 cell lines
and CL3 mice wherein N-acetylcysteine and EGCG were administered in combination and alone.
EGCG inhibited CL13 cell growth when used alone. However, when N-acetylcysteine (2 nM) was
used in combination with EGCG, there was enhanced cell growth inhibition. This combination also
increased ROS production and enhanced apoptotic activity [326].

The synergistic action of ECGC and pterostilbene in pancreatic cancer MIA PaCa-2 and PANC-1 cell
lines was also revealed when administered in combination. In MIA PaCa-2 cells, this combination led
to cell cycle arrest in S-phase arrest but not in PANC-1 cells. The combination also led to depolarization
of mitochondria and upregulation of cytochrome- C in MIA PaCa-2 cells and not in PANC-1 cells.
However, the increased apoptotic effect was observed in PANC-1 cells and not in MIA PaCa-2 cells.
Therefore, this combination results in enhanced anti-cancerous activities of EGCG and pterostilbene
when used in combination with each other [327]. In vitro study was conducted in pancreatic cancer
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MIA PaCa-2 cell lines. The study demonstrated the effect of EGCG and tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) together on pancreatic cancer cells. This combination resulted in
the reduction of cell proliferation, enhanced apoptosis and enhanced activation of caspase-8 activity.
Hence, this combination could potentially serve as a potential therapeutic method for pancreatic
cancer [328]. To further overcome the poor bioavailability of EGCG, another study was conducted
in colorectal cancer in vivo and in vitro. Colorectal cancer HCT116 and SW480 cell lines were used,
and cytotoxicity of both the compounds was measured individually and in combination. The study
revealed that this combination of compounds led to minor enhancement in cytotoxicity. EGCG also
induced enhanced apoptosis and cycle arrest in 5-fluorouracil-resistant colorectal cancer cells [329].

5.6. Combinatorial Effect of Sulforaphane with Other Polyphenols and Anti-Cancer Drugs

A large number of studies have demonstrated the synergistic effect of sulforaphane and green
tea polyphenols (GTPs) in reactivating ERα expression in breast cancer MDA-MB-231 cell lines. A
study was conducted in breast cancer MDA-MB-231 cell lines to investigate the consequence of ERα
expression by reactivation of tumor suppressor genes (TSGs). The combination of sulforaphane and
green tea polyphenols (GTPs) induced cell cycle arrest at G2/M phase by down-regulation of cell
cycle regulatory proteins such as p21CIP1/WAF1 and KLOTHO that are mainly responsible for cell
proliferation. Overall, this combination can induce the silencing of TSGs along with reactivation of
ERα in MDA-MB-231 cell lines [330]. Withaferin A is isolated from winter cherry which is commonly
found in India. A large number of studies have demonstrated the anti-cancerous effect of withaferin
A which leads to reduced cell proliferation and cell viability in various cancer cell lines. A study
was conducted in breast cancer MCF-7 and MDA-MB-231 cell lines to investigate the combinatorial
impact of sulforaphane and withaferin A with their promising role in epigenetic gene expression of
DNMT1, DNMT3A, DNMT3B, and HDAC1. It was detected that the combination had a synergistic
effect on MCF-7 cells and an additive effect was observed on MDA-MB-231 cell lines thereby resulting
in promotion of cell death as well as changes in BAX and BCL-2 activity. The combination also
decreased HDAC expression and led to changes in DNMT1, DNMT3, and DNMT3B expression. The
expression of DNMT1, DNMT3a, and DNMT3B was expressively reduced in MCF-7 and MDA-MB-231
cell lines [331]. The dietary polyphenols sulforaphane (SFN) and curcumin (CUR) have revealed
tremendous chemopreventive effects in vivo and in vitro. However, the effects of these polyphenols
are enhanced in different ways when used in combination. A study was conducted to investigate
the combinatorial effect of SFN and CUR in a dose-dependent manner in liver cancer Hep-G2-C8
cell lines. Low doses of SFN; CUR; SFN + CUR enhanced the expression of HO-1 and UGT1A1
genes. Furthermore, higher dosage administration of SFN; CUR; SFN + CUR led to inhibition of cell
viability [332].

Similar to other combinatorial approaches of polyphenols, EGCG has also demonstrated potential
synergistic effects when administered along with SFN in vivo and in vitro in prostate cancer PC-3-AP-1
cell lines, ovarian cancer SKOV-ip1 and SKOVTR-ip2 cell lines and colon cancer HT-29-AP-1 cell
lines. In prostate cancer, this combination resulted in down-regulation of the Nrf2, ATF, and ELK-1
genes. The combination also inhibited SRF expression and CREB5 compared to individual dietary
agents and caused the inhibition of SFN-induced expression of the SLCO1B3 gene. In ovarian
cancer, the combination of SFN and EGCG was administered in paclitaxel-sensitive SKOV-ip1 and
paclitaxel-resistant SKOVTR-ip2 cell lines. This led to enhanced apoptosis in paclitaxel-resistant
cells, increased expression of hTERT and DNMT1 in SKOVTR-ip2 cell lines and inhibition of cell
viability in both the cell lines. In colon cancer HT-29 cell lines, low dose combination of SFN and
EGCG enhanced AP-1 activity and decreased cell viability to 70%. And higher dose combination
of SFN and EGCG decreased cell viability to 40% [333–335]. Many studies have demonstrated the
anti-cancerous effects such as apoptosis and reduced tumor growth of acetazolamide (AZ) when used
alone. The potential anti-cancerous properties of sulforaphane and AZ can be enhanced when used
in combination. A study investigated the synergistic action of sulforaphane and AZ alone and in
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combination in a dose-dependent manner which led to the suppression of tumor growth, enhanced
apoptosis and activation of caspase-3 and PARP activity. Furthermore, this combination also led to a
significant effect on Ki-67, pHH3, cyclin D1 and down-regulation of p21 and p27 expression [336].

Another study demonstrated the combinatorial effect of sulforaphane, docetaxel, and paclitaxel in
breast cancer SUM149 and SUM159 cell lines. Docetaxel and paclitaxel led to an increase in IL-6 and
IL-8 secretion, and SFN caused a decrease in IL-6 and IL-8 secretion. However, when SFN was used in
combination with docetaxel and paclitaxel, it was found that the IC50 of docetaxel and paclitaxel was
reduced to 1.4 nM and 2.2 nM in SUM149 cells and 1.9 nM and 7.5nM in SUM149 cells. Therefore,
this combination can potentially inhibit cell proliferation. An in vivo study was also performed to
investigate the combined effect of SFN and docetaxel in a xenograft mouse model. As a result, the
frequency of tumor formation was lower in combination when compared to SFN and docetaxel alone.
Furthermore, the administration of SFN also reversed the enrichment of aldehyde dehydrogenase and
reduced the size of mammosphere formation, which is caused by docetaxel and paclitaxel [337].

6. Conclusions

Traditional therapies such as chemotherapy and radiation are associated with substantial side
effects. Therefore, it is imperative to develop novel approaches that have fewer side effects and are
safer. A plethora of in vivo studies have demonstrated the use of dietary-based polyphenols in cancer
prevention and therapy. Despite a limited number of in vitro studies and clinical trials showing the
use of these polyphenols in cancer prevention and therapeutic measures against various molecular
mechanisms and epigenetic modifications, these compounds portray a promising role in cancer
prevention and therapy if used safely. Besides their promising roles in cancer treatment, polyphenols
may possess a poor bioavailability when administered alone. However, the bioavailability and multiple
preventive properties of these nutrients can be improved when administered in combination with
other polyphenols, phytochemicals, and anti-cancer drugs. Therefore, future research directions can
potentially expand upon the use of dietary-based polyphenols, especially in combinations, as a potent
and effective method in cancer prevention and therapy.
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Abbreviations

AOH Alternariol
AZ Acetazolamide
Bp Base pair
CUR Curcumin
DMH 1, 2-dimethylhydrazine
DOX Doxorubicin
DNMTs DNA methyltransferases
DNMT1 DNA methyltransferase 1
DNMT3a DNA methyltransferase 3 Alpha
DNMT3b DNA methyltransferase 3 Beta
EGFR Epidermal growth factors
EGCG Epigallocatechin-3-gallate
GTPs Green tea polyphenols
HAT Histone acetyltransferase
HDAC Histone deacetylase
HMT Histone methyltransferase
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HDM Histone demethylase
H3-K27 Histone H3 on lysine 27
H3-K9 Histone H3 on lysine 9
IFNγ Interferon γ

miRNA microRNA
NSCLC Non-small cell lung cancer
PI Proliferation index
PRSE Polyphenol- rich Strawberry extract
ROS Reactive oxygen species
SAM S-adenosyl-L-methionine
SNP Single Nucleotide Polymorphism
SFN Sulforaphane
miRNAs microRNAs
NAC N-acetylcysteine
NQO1 Quinone reductase type 1
PTMs Post-translational modifications
TSGs Tumor suppressor genes
TRAIL Tumor necrosis factor genes
YMAC Young adult mouse colonocytes cells
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321. Ślusarz, A.; Shenouda, N.S.; Sakla, M.S.; Drenkhahn, S.K.; Narula, A.S.; MacDonald, R.S.; Besch-Williford, C.L.;
Lubahn, D.B. Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer.
Cancer Res. 2010, 70, 3382–3390. [CrossRef] [PubMed]

322. Castillo-Pichardo, L.; Dharmawardhane, S.F. Grape polyphenols inhibit Akt/mammalian target of rapamycin
signaling and potentiate the effects of gefitinib in breast cancer. Nutr. Cancer 2012, 64, 1058–1069. [CrossRef]
[PubMed]

323. Ávila-Gálvez, M.Á.; García-Villalba, R.; Martínez-Díaz, F.; Ocaña-Castillo, B.; Monedero-Saiz, T.;
Torrecillas-Sánchez, A.; Abellán, B.; González-Sarrías, A.; Espín, J.C. Metabolic profiling of dietary
polyphenols and methylxanthines in normal and malignant mammary tissues from breast cancer patients.
Mol. Nutr. Food Res. 2019, 63, 1801239. [CrossRef] [PubMed]

324. Zhou, Y.; Tang, J.; Du, Y.; Ding, J.; Liu, J.-Y. The green tea polyphenol EGCG potentiates the antiproliferative
activity of sunitinib in human cancer cells. Tumor Biol. 2016, 37, 8555–8566. [CrossRef]

325. Papi, A.; Farabegoli, F.; Iori, R.; Orlandi, M.; De Nicola, G.R.; Bagatta, M.; Angelino, D.; Gennari, L.; Ninfali, P.
Vitexin-2-O-xyloside, raphasatin and (−)-epigallocatechin-3-gallate synergistically affect cell growth and
apoptosis of colon cancer cells. Food Chem. 2013, 138, 1521–1530. [CrossRef]

326. Lambert, J.D.; Sang, S.; Yang, C.S. N-Acetylcysteine enhances the lung cancer inhibitory effect of
epigallocatechin-3-gallate and forms a new adduct. Free Radic. Biol. Med. 2008, 44, 1069–1074. [CrossRef]

327. Kostin, S.F.; McDonald, D.E.; McFadden, D.W. Inhibitory effects of (-)-epigallocatechin-3-gallate and
pterostilbene on pancreatic cancer growth in vitro. J. Off Surg. Res. 2012, 177, 255–262. [CrossRef]

328. Basu, A.; Haldar, S. Combinatorial effect of epigallocatechin-3-gallate and TRAIL on pancreatic cancer cell
death. Int. J. Oncol. 2009, 34, 281–286. [CrossRef]

329. Toden, S.; Tran, H.-M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer
stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget 2016, 7, 16158.
[CrossRef]

330. Sinha, S.; Shukla, S.; Khan, S.; Tollefsbol, T.O.; Meeran, S.M. Epigenetic reactivation of p21CIP1/WAF1 and
KLOTHO by a combination of bioactive dietary supplements is partially ERα-dependent in ERα-negative
human breast cancer cells. Mol. Cell. Endocrinol. 2015, 406, 102–114. [CrossRef] [PubMed]

331. Royston, K.; Udayakumar, N.; Lewis, K.; Tollefsbol, T. A novel combination of withaferin A and sulforaphane
inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells. Int. J. Mol. Sci.
2017, 18, 1092. [CrossRef] [PubMed]

332. Fuentes, F.; Gomez, Y.; Paredes-Gonzalez, X.; Barve, A.; Nair, S.; Yu, S.; Saw, C.L.L.; Kong, A.-N.T.
Nrf2-mediated antioxidant and detoxifying enzyme induction by a combination of curcumin and sulforaphane.
Gene Expr. 2016, 11, 18.

333. Chen, H.; Landen, C.N.; Li, Y.; Alvarez, R.D.; Tollefsbol, T.O. Epigallocatechin gallate and sulforaphane
combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2
down-regulation. Exp. Cell Res. 2013, 319, 697–706. [CrossRef] [PubMed]

334. Nair, S.; Barve, A.; Khor, T.-O.; Shen, G.-x.; Lin, W.; Chan, J.Y.; Cai, L.; Kong, A.-N. Regulation of Nrf2-and
AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout
or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells. Acta Pharmacol. Sin. 2010, 31, 1223. [CrossRef]
[PubMed]

335. Nair, S.; Hebbar, V.; Shen, G.; Gopalakrishnan, A.; Khor, T.O.; Yu, S.; Xu, C.; Kong, A.-N. Synergistic effects of
a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon
carcinoma cells. Pharm. Res. 2008, 25, 387–399. [CrossRef]

336. Islam, S.; Mokhtari, R.; Akbari, P.; Hatina, J.; Yeger, H.; Farhat, W. Simultaneous targeting of bladder
tumor growth, survival, and epithelial-to-mesenchymal transition with a novel therapeutic combination of
acetazolamide (AZ) and sulforaphane (SFN). Target. Oncol. 2016, 11, 209–227. [CrossRef]

337. Burnett, J.P.; Lim, G.; Li, Y.; Shah, R.B.; Lim, R.; Paholak, H.J.; McDermott, S.P.; Sun, L.; Tsume, Y.; Bai, S.
Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing
cancer stem cells. Cancer Lett. 2017, 394, 52–64. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1158/0008-5472.CAN-09-3012
http://www.ncbi.nlm.nih.gov/pubmed/20395211
http://dx.doi.org/10.1080/01635581.2012.716898
http://www.ncbi.nlm.nih.gov/pubmed/23061908
http://dx.doi.org/10.1002/mnfr.201801239
http://www.ncbi.nlm.nih.gov/pubmed/30690879
http://dx.doi.org/10.1007/s13277-015-4719-x
http://dx.doi.org/10.1016/j.foodchem.2012.11.112
http://dx.doi.org/10.1016/j.freeradbiomed.2007.12.016
http://dx.doi.org/10.1016/j.jss.2012.04.023
http://dx.doi.org/10.3892/ijo_00000150
http://dx.doi.org/10.18632/oncotarget.7567
http://dx.doi.org/10.1016/j.mce.2015.02.020
http://www.ncbi.nlm.nih.gov/pubmed/25725373
http://dx.doi.org/10.3390/ijms18051092
http://www.ncbi.nlm.nih.gov/pubmed/28534825
http://dx.doi.org/10.1016/j.yexcr.2012.12.026
http://www.ncbi.nlm.nih.gov/pubmed/23333498
http://dx.doi.org/10.1038/aps.2010.147
http://www.ncbi.nlm.nih.gov/pubmed/20729872
http://dx.doi.org/10.1007/s11095-007-9364-7
http://dx.doi.org/10.1007/s11523-015-0386-5
http://dx.doi.org/10.1016/j.canlet.2017.02.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Dietary-Based Polyphenols: Role in Cancer Prevention and Therapy 
	Bioavailability of Polyphenols 
	Epigenetics Mechanisms and Cancer 
	DNA Methylation 
	Histone Modifications 
	Noncoding RNAs 

	Combinatorial Effect of Polyphenols on Cancer Prevention and Therapy 
	Combinatorial Effect of Apigenin with Other Polyphenols and Anti-Cancer Drugs 
	Combinatorial Effect of Curcumin with Other Polyphenols and Anti-Cancer Drugs 
	Combinatorial Effect of Genistein with Other Polyphenols and Anti-Cancer Drugs 
	Combinatorial Effect of Resveratrol with Other Polyphenols and Anti-Cancer Drugs 
	Combinatorial Effect of Epigallocatechin Gallate (EGCG) with Other Polyphenols and Anti-Cancer Drugs 
	Combinatorial Effect of Sulforaphane with Other Polyphenols and Anti-Cancer Drugs 

	Conclusions 
	References

