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Abstract: The linear dose–response relationship has long been assumed in assessments of health
risk from an incremental chemical emission relative to background emissions. In this study, we
systematically examine the relevancy of such an assumption with real-world data. We used the
reported emission data, as background emissions, from the 2017 U.S. National Emission Inventory for
95 organic chemicals to estimate the central tendencies of exposures of the general U.S. population.
Previously published nonlinear dose–response relationships for chemicals were used to estimate
health risk from exposure. We also explored and identified four intervals of exposure in which the
nonlinear dose–response relationship may be linearly approximated with fixed slopes. Predicted rates
of exposure to these 95 chemicals are all within the lowest of the four intervals and associated with
low health risk. The health risk may be overestimated if a slope on the dose–response relationship
extrapolated from toxicological assays based on high response rates is used for a marginal increase
in emission not substantially higher than background emissions. To improve the confidence of
human health risk estimates for chemicals, future efforts should focus on deriving a more accurate
dose–response relationship at lower response rates and interface it with exposure assessments.

Keywords: background emission; exposure modeling; dose–response relationship; human health
risk assessment

1. Introduction

Assessment of human health risks associated with exposure to chemicals released from
activities of interest finds many applications in safeguarding the public interest. Promi-
nent recent examples include the assessments of consumer exposure to 20+ disinfectants
during the COVID-19 pandemic due to an elevated use of cleaning products [1], children’s
exposure to 400+ chemicals of concern due to frequent contact with plastic toys [2], and
consumer co-exposure to 700+ chemicals due to the daily use of consumer products [3].
Some of these assessments focus on the determination of whether harm is likely to happen
or not. Examples include the comparison between external exposure with the reference
dose in traditional noncancer risk assessments [4] or, more recently, the use of New Ap-
proach Methodologies comparing internal exposure with in vitro bioactivity data [1,5,6].
In traditional cancer risk assessments, exposure rates can also be converted to risks, with a
predetermined toxicological factor, e.g., the cancer slope factor or unit risk [7]. When the
exposure rate is coupled with a probability of risk to the population, assessment results can
also be interpreted as health impact to the population in life cycle impact assessment [8].

In general, these assessments quantify health risk or impact by multiplying an envi-
ronmentally relevant exposure with a fixed dose–response “slope” (i.e., the health impact
resulting from a unit exposure dose). Such a slope is often derived from toxicological
endpoints measured at high doses with high responses. Typical endpoints include the
median effective dose (ED50) that corresponds to the population incidence response level of

Toxics 2021, 9, 308. https://doi.org/10.3390/toxics9110308 https://www.mdpi.com/journal/toxics

https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0002-8432-4023
https://doi.org/10.3390/toxics9110308
https://doi.org/10.3390/toxics9110308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxics9110308
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics9110308?type=check_update&version=1


Toxics 2021, 9, 308 2 of 15

50%, and, more recently, the 10% effective dose (ED10) recommended by the latest version
of the life cycle impact assessment scientific consensus model USEtox [9]. Underlying this
practice is an assumption of the linear dose–response relationship, in which the health effect
(response) is independent of the exposure rate (dose) without a safe dosage (threshold).
This linear assumption means that a marginal increase in the exposure rate always results
in the same marginal increase in health effects. In other words, the resulting increment in
health risk or impact is independent of the background exposure dose, i.e., the long-term
baseline exposure level without impacts of the activity of interest.

While the linear dose–response relationship is intuitively simple in risk assessment,
it may not necessarily represent the real mechanistic link between dose and response.
In fact, the dose–response curve can be quite diverse: the literature is full of examples
of the nonlinear, monotonic curves (i.e., the threshold model) and even nonmonotonic
curves (i.e., the hermetic model) [10]. We can expect biases, i.e., the overestimation or
underestimation of health risk and impact, when using a linear relationship to approximate
the real nonlinear dose–response relationship. Notably, such biases can be remarkable if
the environmentally relevant dose level diverges substantially from the toxicological dose
from which the effect factor is derived (e.g., ED50 or ED10). Indeed, a recent methodological
paper for toxicity characterization of chemicals proposed using lower toxicological doses
to derive such an effect factor to ensure its environmental relevance [9]. This bias issue
can be even compounded when the background exposure dose, i.e., exposure resulting
from existing sources of emission (background chemical emissions) other than the activity
of interest, is taken into consideration, given that in a nonlinear dose–response curve, the
increment in health risk or impact depends on not only the incremental exposure, but
also the background exposure dose. In our earlier works, we showcased that the linear
dose–response relationship may overestimate the risk when compared to the results from
a nonlinear dose–response relationship hypothetically more representative of the real
interplay between dose and response [11,12].

This work seeks to systematically address the extent to which a linear dose–response
relationship is adequate for risk quantification when we consider a marginal increase in
exposure dose over the background level. Specifically, we analyze the relationship between
linear and nonlinear dose–response relationships to explore (i) whether the magnitude
of exposure due to current background chemical emissions is so low that the linear ex-
trapolation of effect factors derived from high-dose toxicological endpoints becomes less
reasonable, (ii) whether, and in what situation, the use of a linear dose–response slope
can reasonably approximate the nonlinear dose–response relationship, and (iii) how the
increase in health impacts responds to incremental emissions over the background emis-
sions in the nonlinear dose–response relationship. We also used reported background
emission rates of 95 organic chemicals in the United States to construct realistic exposure
levels and quantified the associated risks. This establishment of background exposure
was then compared to the nonlinear dose–response relationship curve to determine at
what magnitude marginal increase in emission could make certain linear dose–response
relationship assumptions unreasonable.

2. Materials and Methods
2.1. General Approach

Figure 1 presents an overview of the approach used in this work. We used a compre-
hensive fate and exposure model named PROduction-To-EXposure (PROTEX) to predict the
typical, environmentally relevant magnitude of human exposure due to current background
chemical emissions in the United States (Section 2.3). To this end, we ran PROTEX with a
steady-state assumption, given that the steady-state is recommended as a conservative repre-
sentation of the maximal, reasonable level of long-term contamination and exposure in risk and
impact assessments [13]. PROTEX requires partitioning, dissociation, and reactive properties
as inputs (Section 2.2), and outputs an average daily dose (in mgchemical/kgbodyweight/d) as
an estimate of human exposure to chemicals. On the other hand, we constructed a nonlinear
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dose–response relationship, which links a given dose (mgchemical/kgbodyweight/d) to the proba-
bility of the occurrence of health effects (unitless), based on an assumed sigmoid curve and
noncancer ED50, which represents the effective dose causing a probability of noncancer health
effects of 50% for lifetime exposure (Section 2.4). By placing the dot representing the modeled
average daily dose on the constructed dose–response curve, we can estimate the probability of
the occurrence of adverse health effects among the general American population caused by
background emissions.

Figure 1. Schematic overview of the modeling approach in this study.

2.2. Chemical Data

We selected 95 structurally diverse organic chemicals for this case study, given that
their nationally representative emission rates are available from the United States National
Emission Inventory [14] and their toxicities are well documented in the USEtox toxicity
database [8].

The most recent version of NEI (2017 NEI) included 291 pollutants from the on-road,
nonroad, point, and nonpoint sources with detailed spatial information. We aggregated
the reported emission rates (in kg/year) for the 95 organic pollutants across all sources
and locations; these emission rates represent the status quo of pollutant emissions in the
United States and are referred to as “background emissions” in this work. Since our work
adopted the steady-state assumption, we assumed that the background emission rates
do not undergo a remarkable change in time. Generally, this assumption is valid, as the
reported emissions from NEI in 2011, 2014, and 2017 (Table S1) show that the median of
the difference between the largest reported value is merely 23% of the average reported
values in these three reporting years, albeit some larger variations do exist.

Meanwhile, we searched USEtox toxicity database (ver. 2.12) for noncancer toxicity ef-
fective doses (ED50) of the 95 organic chemicals. Originally, USEtox reports this value with
a unit of kgchemical/lifetime. We converted this value to a unit of mgchemical/kgbodyweight/d
to be consistent with our exposure prediction in this study, using a standard body weight
of 70 kg and a lifetime of 70 years (25,550 days) from USEtox. Note that for respiratory
inhalation and oral ingestion routes, ED50 values may be different due to route-specific
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mechanisms. We therefore utilized route-specific ED50, whenever available, in subse-
quent assessments.

We gathered the partitioning and reaction properties of these 95 organic chemicals
(Table 1) as inputs for environmental fate and exposure modeling. Overall, experimen-
tally determined values collected from the literature were given the highest priority.
When experimentally determined values were unavailable, we used quantitative structure–
activity/property relationships (QSAR/QSPR) to make predictions from the molecular
structure. Most chemicals were located well within the applicability domains of the
QSAR/QSPR models used here.

Table 1. Properties of the 95 organic chemicals examined in this study.

Property Experimentally Determined Value (EDV) Model Predicted Value (MPV)

Equilibrium octanol–water
partition coefficient (KOW)

91 chemicals with EDVs from the PHYSPROP
database

4 chemicals with MPVs as consensus values
(geometric means) of predictions made with

OPERA (all within the applicability domain or
AD) [15] and the KOWWIN module in EPI

Suite [16] (all within the AD (a)).

Equilibrium octanol–air
partition coefficient (KOA) N.A.

95 chemicals with MPVs as consensus values
(geometric means) of predictions made with

OPERA (89 chemicals within the AD) and the
KOAWIN module in EPI Suite (92 chemicals

within the AD).

Dissociation rate constant
(pKa and pKb)

46 chemicals do not dissociate in the
environment

(neither acids nor bases)

49 ionogenic organic chemicals with MPVs
predicted by OPERA (all within the AD).

Atmospheric hydroxylation
rate constant (k(OH))

65 chemicals with EDVs from the PHYSPROP
database

30 chemicals with MPVs as consensus values
(geometric means) of predictions made with

OPERA (22 chemicals within the applicability
domain or AD) and the AOPWIN module in

EPI Suite (25 chemicals within the AD).

Biodegradation rate constant (b) 11 chemicals with EDVs
collected by Arnot et al. [17]

84 chemicals with MPVs as consensus values
(geometric means) of predictions made with

OPERA (39 chemicals within the AD), the
BioHCWIN module in EPI Suite (for the 15

hydrocarbons only), and estimates converted
using the empirical relationships in Arnot et al.

[17] based on the probabilities of primary
degradation predicted by the BIOWIN module

in EPI Suite.

Biotransformation rate constant in fish
(normalized to 10 g) (c) N.A.

All chemicals with MPVs as consensus values
(geometric means) of predictions made with

OPERA (89 chemicals within the AD) and
IFS-QSAR [18] (81 chemicals within the AD).

Biotransformation rate constant in mammals
(including humans) (normalized to 70 kg) (d)

11 chemicals with EDVs
collected by Arnot et al. (2014)

84 chemicals with MPVs predicted by
IFS-QSAR [19] (67 chemicals within the AD).

Note: (a) EPI Suite does not provide explicit information on the applicability domain of each module. Instead, it suggests that a prediction
is “less reliable” if it (i) is outside the range of experimental values in the training set, (ii) is outside the range of molar mass of chemicals in
the training set, (iii) has more instances of a given fragment than the maximum for all training set compounds of functional groups, and/or
(iv) contains structural features not represented in the training set. We define that a prediction is outside the applicability domain if it meets
at least one of these conditions. (b) Rate constants of degradation in water, soil, and sediment were assumed to be 1, 2, and 10 times slower
than the biodegradation rate constant, based on a generic empirical relationship by Fenner et al. [20]. (c) Used with an allometric correction
for body weight for all aquatic organisms modeled in PROTEX. (d) Used with an allometric correction for body weight for all mammals and
avian species modeled in PROTEX.

The complete list of chemicals studied, along with their emission, toxicity, and
physical–chemical properties can be found in Table S2 in the Supplementary Materials.

2.3. Exposure Prediction

Based on the NEI emission rates and gathered properties of the 95 organic chemicals,
PROTEX calculated chemical concentrations in various compartments and organisms in
an archetypal, generic subtropical North American environment, as well as the exposure
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of chemicals by a median American throughout the lifetime. The rationale, structure,
and mathematical representation of PROTEX have been documented elsewhere [21,22].
The parameterization of the subtropical North American environment (including the
geometry of each environmental compartment, intercompartmental mass exchange rates,
meteorological and hydrological conditions, atmospheric hydroxyl concentration, etc.) and
the median American (including anthropometrics, dietary patterns, drinking rate, etc.)
is detailed in Li and Li [12]. PROTEX’s performance in predicting respiratory and oral
exposure has previously been well-evaluated against monitoring and biomonitoring data
of various chemicals [12,21–24].

PROTEX contains a regional environmental fate module describing the accumulation,
transport, and transformation of chemicals between an urban, industrial area and a rural
area where produces and livestock are grown. With this module, we calculated chemi-
cal concentrations in different environmental compartments (e.g., compartments of soil,
freshwater, sediment, vegetation, impervious surfaces, etc., in the urban, industrial area;
compartments of soil, freshwater, estuary water, sediment, vegetation, etc., in the rural
area). For simplification, we assumed that the NEI atmospheric emissions went exclusively
to the air compartment of the urban, industrial area before partitioning into other compart-
ments and migration to the rural area along with atmospheric and riverine flows. While
the modeled region accounted for <1% of the total area of the United States, we assumed
that 1% of the national annual emissions occurred in this region, given that population
and industries are disproportionately distributed in the subtropical part of the country. We
acknowledge that this assumption may be associated with uncertainty; however, it led
to a reasonable agreement between predicted and reported air concentrations from U.S.
EPA’s National Air Toxics Assessment (NATA), and the linearity of PROTEX also allows
scaling model outputs to any emission rate if a site-specific simulation is desired in future
studies. PROTEX also quantified the uptake and accumulation of chemicals by aquatic
(planktivorous and piscivorous fish) and terrestrial organisms (beef and dairy cattle, pigs,
poultry, and vegetables) living in the modeled rural area. These organisms served as the
foods (fish, beef, milk, pork, chicken, vegetables, etc.) for a modeled individual.

The modeled individual took in chemicals from the area without direct emissions
through (i) oral ingestion, i.e., consuming contaminated food originating from the aquatic
and terrestrial organisms, and (ii) respiratory inhalation, i.e., inhaling contaminated air
and airborne particles. We simulated the average daily dose (mgchemical/kgbodyweight/d) of
chemical uptake by the modeled individual at ages 3, 14, and 25.

2.4. Dose–response Relationships

We used a sigmoid dose–response relationship Equation (1) to convert a given average
daily dose (Xi, mgchemical/kgbodyweight/d) to the probability of the occurrence of adverse
health effects (PrHE, unitless) [25]:

PrHEnon−linear(Xi) =
∫ Xi

0

e
− 1

2 (
log

Xi
ED50,i
σlog

)

2

σlog ×
√

2π × Xi × ln 10
dXi (1)

The overall shape of this curve is determined by the chemical toxicity (ED50,i, mgchemical/
kgbodyweight/d) and the spread in human toxicological susceptibility (σlog, unitless) with a central
tendency of 0.26 [25]. Equation (1) indicates that, for any chemical, PrHE depends on the relativity
of the average daily dose to ED50 (i.e., the ratio of Xi to ED50,i in Equation (1)) instead of the
absolute value of ED50. Therefore, we constructed a curve based on Equation (1) with the daily
dose expressed as a fraction of ED50.

Here, we did not take the assumption that no risks will happen when exposure is
below a certain threshold for noncancer effects, for reasons detailed in our earlier study [12].
In addition, effectively, exposure at low enough doses will generate negligible risks that
are statistically equivalent to no risk, as shown in the results of this study.
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To address the question of whether, and in what situation, the use of a linear dose–
response slope can reasonably approximate the nonlinear dose–response relationship, we
focused on a range of PrHE between 1/1,000,000 (i.e., smaller than which a health effect
is considered to be negligible) and 10% (i.e., ED10; the upper limit of possible health risks
associated with environmentally relevant exposure dose). This corresponds to the range of
Xi between ~0% and 46.4% of ED50. We segmented this range into several intervals with the
purpose of constructing linear approximations of the nonlinear dose–response curve using
the following steps. First, we took the marginal slope of the nonlinear dose–response curve,
S1, at the starting point of the first interval, at which a dose of X1 results in a probability of
the occurrence of adverse health effects PrHE(X1), i.e.,

S1 = lim
∆X→0

PrHEnon−linear(X1 + ∆X)

X1 + ∆X
(2)

Then, we can construct a linear dose–response curve for any dose X in the first interval
Equation (3):

S1 =
PrHElinear,1(X)− PrHE(X1)

X− X1
(3)

By rearranging Equation (3), the constructed linear dose–response curve gives PrHE
for any dose X within the interval Equation (4):

PrHElinear,1(X) = S1 × (X− X1) + PrHE(X1) (4)

A reasonable linear approximation requires PrHEnonlinear Equation (1) and PrHElinear
Equation (3) to be as close to each other as possible at any dose X within the interval. Obvi-
ously, as the dose increases further away from X1, the discrepancy between PrHEnonlinear
and PrHElinear also increases. When the discrepancy increases to a factor of five, we con-
sidered the marginal slope S1 no longer to be appropriate for risk estimate and started the
second interval. Likewise, we calculated a new marginal slope (S2) at this exposure (X2)
as the starting point of the second interval. PrHElinear,2(X) was calculated similarly using
Equation (3) based on S2 and X2 and, again, was compared with PrHEnonlinear(X) until a
discrepancy of a factor of five was reached. This iterative process was then repeated until
the entire range of PrHE between 1/1,000,000 and 10% was covered. The factor of five is
based on a general understanding of the magnitude of uncertainties in toxicity and risk
assessments. For instance, uncertainty factors for different aspects in deriving reference
doses have a range of 1 to 10 [26]; comparisons between multiple toxicity endpoints also
found the differences range from one to two orders of magnitude [8]. Thus, our choice of a
factor of five represents a rather rigorous assumption.

In so doing, we segmented this range into several intervals. Next, we took the starting
and ending points of each interval and extrapolate a fixed slope between these two points
to derive a linear approximation of each interval. This was performed so that, when
compared to the PrHE from the nonlinear dose–response curve, PrHE from these linear
approximations would deviate even less than PrHE from the marginal slopes at starting
points of intervals (less than a factor of two, see details in the Results section). Moreover,
these extrapolated slopes between the starting and ending points of intervals will produce
a higher, instead of lower, PrHE, which is often preferred in risk assessment, as such a more
conservative estimate is more protective of human health. In addition, the starting point
of the first interval was set to 0 to capture the whole range of exposure. This set of linear
dose–response curves provides an intuitive approach to estimate PrHE.

2.5. Risk Quantification

Based on Equation (1), analytically, the risk is determined by the relative magnitude
between daily dose and ED50, independent of their respective absolute values. When
considering the combined risks from respiratory inhalation and oral ingestion exposure, we
first determined this relativeness by expressing respiratory inhalation and oral ingestion
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exposures as fractions of their respective ED50. These fractions were then added together
as the combined relative exposure to ED50:

X%ED50,i =
Xinh,i

ED50,inh,i
+

Xing,i

ED50,ing,i
(5)

Since the estimated risk is only determined by the relative magnitude between expo-
sure and ED50, we can set ED50 to 1 and calculate the total risk with the following equation
modified from Equation (1):

PrHE
(
Xinh,i, Xing,i

)
=
∫ X%ED50,i

0

e
− 1

2 (
log X%ED50,i

σlog
)

2

σlog ×
√

2π × X%ED50,i × ln 10
dX%ED50,i (6)

Furthermore, we can apply the same principle to calculate the total relative expo-
sure to ED50 for all 95 chemicals and the associated risk (PrHEtotal) with the following
two equations:

X%ED50,total = ∑ X%ED50,i (7)

PrHEtotal =
∫ X%ED50,total

0

e
− 1

2 (
log X%ED50,total

σlog
)

2

σlog ×
√

2π × X%ED50,total × ln 10
dX%ED50,total (8)

3. Results
3.1. Predicted Human Exposures and Environmental Concentrations

Figure 2 shows the predicted average daily doses for respiratory and oral exposure of
the general American population to 95 organic chemicals. For both respiratory and oral
exposures, the average daily dose varied over 13 orders of magnitude between chemicals.
Specifically, the average daily oral dose was highest for toluene (CASRN 108-88-3), whereas
the average daily respiratory dose was highest for methanol (CASRN 67-56-1). Oral in-
gestion is more, up to a factor of 2 × 107 times, important than respiratory inhalation for
most chemicals, with exceptions of methanol (CASRN 67-56-1), methyl chloride (CASRN
74-87-3), 1,3-butadiene (CASRN 106-99-0), vinyl chloride (CASRN 75-01-4), triethylamine
(CASRN 121-44-8), and N,N-dimethylformamide (CASRN 68-12-2). For all the 95 organic
chemicals, 3-year-old children possess ~3 times higher average daily doses, relative to
14-year-old teenagers and 25-year-old adults.

Figure 2. Average daily doses (ingestion in blue and inhalation in orange) of 95 organic chemicals for 3-, 14-, and 25-year-old
individuals predicted in this study based on background emission rates from NEI, ranked by the average daily oral dose
for age 3.
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To evaluate the fidelity of the PROTEX predictions, we selected chemicals that demon-
strated the top 10 highest estimated risks and compared their air chemical concentrations
predicted by PROTEX with predictions from the latest NATA [27]. Here, NATA predicted
air concentrations at the census tract level across the country, using air quality models such
as CMAQ and AERMOD supplied with modified NEI data. We aggregated the census
track-specific estimates and calculated the 95% confidence intervals (defined by 2.5th and
97.5th percentiles) as reasonable estimates of the typical level of contamination in the
United States (Table S3). Overall, for eight of the 10 chemicals, the PROTEX predictions
fell well within the 95% confidence intervals of NATA predictions, with a discrepancy
between the PROTEX predictions and NATA’s means generally smaller than a factor of
10. Of particular attention is that PROTEX underpredicted the concentration of carbon
tetrachloride by a factor of 180. Such underprediction is because PROTEX assumes that
emissions within the modeled region are the predominant source of contamination therein,
which may not be the case for carbon tetrachloride, because it is a global persistent pollu-
tant capable of long-range transboundary atmospheric transport, and the emissions within
the U.S. accounted for merely 8% of the worldwide total [28].

Figure 3 shows that the ratio of the predicted average daily dose to ED50 varies by
12 orders of magnitude for oral exposure and 17 orders of magnitude for respiratory
exposure between chemicals. This ratio is the highest for acrolein (CASRN 107-02-8; ratio
= 0.55%) regarding oral exposure and for tetrachloroethylene (CASRN 127-18-4; ratio =
0.053%) regarding respiratory exposure. For all the 95 chemicals investigated here, the
predicted average daily dose accounts for less than 1% of the corresponding ED50. For most
chemicals, the ratio is higher for oral ingestion than respiratory inhalation. Mirroring the
age-dependence of average daily dose (Figure 2), 3-year-old children possess higher ratios
of average daily dose to ED50, compared to 14-year-old teenagers and 25-year-old adults.

Figure 3. The ratio of the average daily dose to ED50 for 95 organic chemicals (ingestion in blue and inhalation in orange)
for 3-, 14-, and 25-year-olds predicted in this study based on background emission rates from NEI; the chemicals are ranked
in the same order as in Figure 2.

3.2. Linear Approximations along the Nonlinear Dose–response Curve

Within the range of PrHE between 1/1,000,000 and 10%, we identified four intervals
(I–IV) (Figure 4): The first covers exposure from 0 to 9.0% of ED50, the second from 9.0% to
15.3% of ED50, the third from 15.3% to 33.4% of ED50, and the fourth from 33.4% to 46.4%
of ED50. Within each interval, we consider that a linear dose–response relationship can
be a simpler implementation for characterizing health risks, compared to the nonlinear
dose–response relationship (dash lines in Figure 4).
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Figure 4. Nonlinear dose–response curve (solid line), approximated linear slopes for four intervals (dashed lines), and
extrapolated slope based on ED10 (dotted line). Circles are starting/end points for the intervals.

Using the linear approximation, the estimated PrHE will be higher compared with
results from the nonlinear dose–response relationship, with the largest difference near
the beginning of each internal. These differences are the largest for interval I, as with
low exposures, the nonlinear dose–response relationship will produce exceedingly small
values of risks. The difference becomes smaller than an order of magnitude when exposure
is higher than 6.3% of ED50 (at which point the nonlinear dose–response relationship
suggests a risk of 1.94 × 10−6). For intervals II, III, and VI, the differences in estimated
PrHEs between the two relationships are no more than 175%, 176%, and 10%, showing
relatively good agreement. In contrast, a fixed linear slope based on ED10 (dotted line in
Figure 4) will produce much higher risk estimates until exposure reaches interval IV.

3.3. Exposures and Risks from Background Emissions

Table 2 shows the combined ingestion and inhalation exposures as fractions of ED50
and associated probability of occurrence of health effects (PrHE) of the top 10 chemicals. The
full result for 95 organic chemicals can be found in Table S4 in the Supplementary Materials.

Table 2. Combined ingestion and inhalation exposure as a fraction of ED50 and estimated probability of occurrence of health
effects (PrHE) for 10 chemicals with top PrHE, ranked in order.

CASRN Chemical Name
Average Daily Dose to ED50 Ratio PrHE

3-Year-Old 14-Year-Old 25-Year-Old 3-Year-Old 14-Year-Old 25-Year-Old

107-02-8 Acrolein 5.47 × 10−3 1.86 × 10−3 1.55 × 10−3 1.64 × 10−18 4.08 × 10−26 1.56 × 10−27

127-18-4 Tetrachloroethylene 5.96 × 10−4 2.07 × 10−4 1.90 × 10−4 1.25 × 10−35 7.08 × 10−46 9.20 × 10−47

108-88-3 Toluene 5.45 × 10−4 1.89 × 10−4 1.74 × 10−4 1.91 × 10−36 8.34 × 10−47 1.05 × 10−47

542-75-6 1,3-Dichloropropene 3.89 × 10−4 1.35 × 10−4 1.24 × 10−4 1.33 × 10−39 2.16 × 10−50 2.43 × 10−51

71-43-2 Benzene 3.67 × 10−4 1.27 × 10−4 1.17 × 10−4 3.61 × 10−40 4.93 × 10−51 5.52 × 10−52

50-00-0 Formaldehyde 1.72 × 10−4 5.89 × 10−5 5.11 × 10−5 7.75 × 10−48 8.03 × 10−60 1.66 × 10−61

77-47-4 Hexachlorocyclopentadien 1.38 × 10−4 4.79 × 10−5 4.39 × 10−5 3.47 × 10−50 2.69 × 10−62 2.47 × 10−63

91-20-3 Naphthalene 9.45 × 10−5 3.28 × 10−5 3.01 × 10−5 2.40 × 10−54 6.07 × 10−67 5.10 × 10−68

56-23-5 Carbon Tetrachloride 8.69 × 10−5 3.02 × 10−5 2.77 × 10−5 2.74 × 10−55 5.49 × 10−68 4.48 × 10−69

75-07-0 Acetaldehyde 8.40 × 10−5 2.84 × 10−5 2.33 × 10−5 1.12 × 10−55 8.97 × 10−69 2.65 ×10−71

Despite being orders of magnitude higher than others, the highest PrHE estimated
in this study, which, for a 3-year-old exposed to acrolein, was still negligible (<1 in a
million). The total relative exposures to ED50 from all 95 organic chemicals analyzed were
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0.00823, 0.00282, and 0.00242 for a 3-year-old, a 14-year-old, and a 25-year-old, respectively.
The risks estimated from these exposure levels were 5.43 × 10−16, 5.23 × 10−23, and
4.16 × 10−24 (Table S4). These exposure levels are still within the first interval on the
nonlinear dose–response relationship curve.

3.4. Application of Linear Approximations for Estimating Risks from Incremental Emissions

Based on our analysis of the dose–response relationship and the background risks
from NEI emissions, we propose an intuitive way to calculate PrHE associated with
an incremental exposure, which results from an incremental emission rate due to the
activity of interest:

Step 1: For any of the 95 chemicals included in our analysis, search Table S4 for the
baseline average daily dose (expressed as a fraction of ED50) resulting from the background
emission rate.

Step 2: Calculate the average daily dose due to an incremental emission rate (expressed
as a fraction of ED50) using exposure modeling, e.g., PROTEX.

Step 3: Add these two daily doses to give a total average daily rate (X), assuming the
average daily dose scales linearly to the emission rate.

Step 4: Search Table 3 to locate the interval (bracket) that X falls in, and calculate PrHE
using the following equation:

PrHE (X) = S × (X − X0) + R0 (9)

Table 3. Risk quantification using approximated linear dose–response relationship.

Interval
Dose as a

Fraction of ED50
(X/ED50)

Base Dose (X0) Slope (S) Base PrHE (R0)

I (0, 0.090) 0 0.00031 0
II (0.090, 0.153) 0.090 0.013 0.000028
III (0.153, 0.334) 0.153 0.18 0.00085
IV (0.334, 0.464) 0.334 0.51 0.034

For example, acrolein has a background exposure for a 3-year-old of 0.00547 of its ED50
(Table 2) with a national background emission of 10.1 million kg (Table S1). If we assume
that an incremental emission of acrolein occurs for 101 million kg and exposure scales
linearly to emission, the total exposure as a fraction of ED50 (X) would be 0.00547 (back-
ground) + 0.0547 (incremental) = 0.0602. This is still within Interval I. Thus, the total risk
would be 1.87 × 10−7. Suppose a higher incremental emission occurs for 505 million kg of
acrolein: assuming exposure scales linearly with emission again, the total exposure as a
fraction of ED50 due to background and incremental would then be 0.279. This is within
Interval II. Thus, the total risk would be 2.35 × 10−2.

Theoretically, the assessment of health risks and impacts should be based on the total
exposure, which includes not only the incremental exposure due to the activity of interest
but also the exposure caused by background emissions. However, the above calculations
(Table 2 and Table S4) show that the background emissions likely pose negligible risks to
the general population, and that the exclusion of background emissions is unlikely to have
an influential effect on the results. Therefore, for chemicals without information on back-
ground emissions and exposures, the risks associated with known incremental emissions
alone should not differ substantially from risks calculated with background emissions.

4. Discussion

This study provided four linear approximations of the nonlinear dose–response rela-
tionship, which offer a potentially more accurate, yet still intuitive, approach to quantify
risks from exposures to chemicals. Our approach will not produce results more than an
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order of magnitude higher than that from the nonlinear dose–response relationship for
exposure higher than 6.3% of ED50. By contrast, using an extrapolated linear slope from no
exposure/risk to an exposure of ED10 [9] (dotted line in Figure 4) could produce results at
7000 times higher for the same range of exposure. Notably, we provided a predetermined
estimate of the linear dose–response slope for the interval where exposure resulting from
background emission is relevant (Interval I in Table 3). Such linearity eases the assessment
of the health risks and impacts of the environmentally relevant dose of exposure. Given
that exposure levels from background emissions are far below the starting point of Interval
II, we expect that the risks associated with a marginal increase in emission for any of the 95
chemicals can still be reasonably quantified by a linear dose–response relationship with
the predetermined linear slope, as long as the increment is less than orders of magnitude
of corresponding background emission. The only exception is for exposure of 3-year-old
children to acrolein, in which the slope of Interval I would be no longer valid, and that of
Interval II would be needed if the marginal increase in emission exceeds about 15 times the
background emission.

In this study, we predicted the average daily doses of 95 organic chemicals by Ameri-
cans aged 3, 14, and 25 through oral ingestion and respiratory inhalation. The predictions
are believed to be representative of the central tendencies of Americans’ chemical exposures,
given that the PROTEX-predicted air chemical concentrations agree well with the national
means estimated by NATA. Note that NATA predicts only human respiratory inhalation of
chemical contamination in the air, while PROTEX additionally considers contamination in
the multimedia environment and the aggregate human exposure through multiple routes.
Notably, Figure 2 shows that, compared to respiratory inhalation, oral ingestion made an
over 300 times higher contribution to the total average daily dose. The ratio of average daily
dose to ED50 was up to 2 × 107 times higher for oral ingestion than respiratory inhalation
(Figure 3). These comparisons indicate that diet is also a relevant route responsible for
human exposure to chemicals released into air, in particular when chemicals are relatively
bioaccumulative due to hydrophobicity and resistance to degradation [29]. Focusing on
respiratory inhalation may substantially underestimate the overall human exposure to
certain chemicals.

The work shows that children typically had higher daily doses of chemicals compared
to teenagers and adults. This is mostly because children have high rates of food ingestion,
relative to their small body weights, to support fast growth and development. This finding
implies disproportionately higher health impacts on children even if they live in a similarly
contaminated environment with parents.

A common feature found for the 10 chemicals with the highest estimated risks is that
they (i) share high emission rates, given that seven of them also were on the list for top 20
in emission rates, and (ii) possess high toxicity, manifested by relatively low ED50 values
for respiratory/oral exposure, or both. A typical case is for hexachlorocyclopentadiene,
which was ranked 76th in emission rates but 7th in the estimated risk due to its high
toxicity for inhalation (ranked 4th). Despite the fact that the notion that higher emission
will result in higher risk seems intuitive, the Pearson correlation coefficient between the
rankings of emission amounts and estimated risks was a moderate 0.59. This echoes our
earlier finding that chemical tonnage plays a limited role in determining health risks [30].
Highlighting this is the case of methanol, the top emitted chemical with over 2 billion kg
reported emission—more than the other 94 chemicals’ emission amounts combined. It was
only ranked 34th in estimated risk because of low toxicity (90th for both inhalation and
ingestion). Chemical properties also impact the estimated risks: chemicals that are highly
hydrophilic (i.e., associated with a low octanol–water partition coefficient KOW), highly
volatile (i.e., associated with a high octanol–air partition coefficient KOA), and/or liable
to reaction in the environment or organisms (i.e., associated with short biodegradation or
biotransformation half-lives) tend to be minimally taken up by humans, especially through
diet [24,29]. A complete ranking for emission rate, toxicity values, and estimated risks
for the 95 organic chemicals can be found in Table S5 in the Supplementary Materials.
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The complex relationship between emission amount and risk could have implications
when designing epidemiology studies and interpreting environmental monitoring data
for risk if emission amount was the primary, if not only, factor considered [31–35]. This
complex relationship also brings into question the suitability of using chemical tonnage
(e.g., production, trade, or emission volume) alone in chemical regulation and management.

Based on methods proposed in this study, all background emissions only resulted
in minimal risks, which is consistent with findings of the most recent NATA [36]. How-
ever, it should be noted that this conclusion depends on the assumption of homogenous
distribution of the pollutant and exposure over a large area. In reality, the distribution
of pollution can be highly concentrated in certain areas (e.g., occupational settings near
polluting processes, the proximity of a factory emitting the pollutant, downwind of a
wildfire, area surrounding roads with heavy traffic) and result in higher exposure and risk.
Therefore, the numeric results for risk estimates in this study should not be interpreted, as
environmental pollution is irrelevant to public health. Environmental and exposure models
that can produce finer spatial resolution would provide more relevant data to estimate
risks. Indeed, NATA also indicated that 100 census tracts (out of more than 70 thousand)
could experience some noncancer respiratory risks from emissions reported by NEI [36].

It should be noted that the numeric values of health risks in this study were dependent
on Equation (1) describing the nonlinear dose–response relationship, which was published
more than 15 years ago. To our knowledge, no refined nonlinear equations that can
similarly calculate the risk based on exposure have been proposed since. Recently, a
sophisticated model, APROBA, which produces probabilistic reference doses for more than
a thousand chemicals, has been developed [37,38]. However, the output from APROBA is
more qualitative since the reference dose is an exposure threshold where, if not exceeded,
no risk is expected. It is therefore challenging to deduce quantitative risk information
from a given exposure with APROBA. To improve the confidence in risk quantification
results, better fundamental knowledge and computational models are needed in this
regard. This is especially true for estimating risks from low-dose exposure, which has
been a challenge in risk assessment [39,40]. Based on this study, exposures resulting from
background emissions are likely in the low-dose range and will stay in this range unless
incremental emission causes an increase of orders of magnitude higher. Therefore, it is vital
to better understand how to characterize human risks for low-dose exposure, which the
development of New Approach Methodologies could offer assistance in [1,41–44].

In addition, in this study, we assumed homogenous exposure among individuals
in the same age groups and toxicological susceptibility for all individuals across the
population. In our previous study, we demonstrated that if interindividual variability was
considered, the health impacts (the number of cases of diseases) for the population were
dominated by the subpopulation with high exposure and toxicological susceptibility. The
total fraction of the population having health effects would also increase substantially [12].
The largest uncertainty involved in quantifying interindividual variability risks is the lack
of robust data and models for toxicological susceptibility for different chemicals. Certain
New Approach Methodologies that could provide more insight on this issue have been
developed [45–48]. It is our opinion that further research in this area is needed to enable
more robust and population-relevant risk quantification.

5. Conclusions

This study presented an approach to linearly approximate the nonlinear dose–response
relationship without creating substantial deviation in results when used for risk assess-
ment. The dose-based linear approximations can potentially increase the accuracy of risk
assessments compared to the conventional approach based on the linear dose–response
relationship extrapolated from a fixed toxicity metric. The approach was applied to back-
ground pollutant emissions in the United States, yielding good agreement between our
results and those from more sophisticated models. While the risks based on background
emissions in the United States are minimal, it should be noted that certain microenviron-
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ments within the United States and other regions that have higher emissions could still
pose risks at a concerning level. Future studies are needed to improve our understanding
of the actual dose–response relationship for various chemicals, as well as interindividual
variances in susceptibility, which will advance more precise human health risk assessments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxics9110308/s1, Table S1: Emission amounts reported by NEI in 2011, 2014, and 2017 for the
95 organic chemicals analyzed in this study, Table S2: Chemical analyzed and relevant data used in
this study, Table S3: Comparison between PROTEX predicted air concentration and predictions from
U.S. EPA’s National Air Toxics Assessment, Table S4: Exposure as a fraction to ED50 and estimated
risk for the 95 organic chemicals analyzed, Table S5: Rankings for emissions, KOW, toxicity values,
and estimated risks for 95 organic chemicals analyzed in this study.
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