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Increase in tibial internal rotation due 
to weight-bearing is a key feature to diagnose 
early-stage knee osteoarthritis: a study 
with upright computed tomography
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Abstract 

Background:  The classification of knee osteoarthritis is an essential clinical issue, particularly in terms of diagnosing 
early knee osteoarthritis. However, the evaluation of three-dimensional limb alignment on two-dimensional radio-
graphs is limited. This study evaluated the three-dimensional changes induced by weight-bearing in the alignments 
of lower limbs at various stages of knee osteoarthritis.

Methods:  Forty five knees of 25 patients (69.9 ± 8.9 years) with knee OA were examined in the study. CT images 
of the entire leg were obtained in the supine and standing positions using conventional CT and 320-row detector 
upright CT, respectively. Next, the differences in the three-dimensional alignment of the entire leg in the supine and 
standing positions were obtained using 3D-3D surface registration technique, and those were compared for each 
Kellgren–Lawrence grade.

Results:  Greater flexion, adduction, and tibial internal rotation were observed in the standing position, as opposed to 
the supine position. Kellgren–Lawrence grades 1 and 4 showed significant differences in flexion, adduction, and tibial 
internal rotation between two postures. Grades 2 and 4 showed significant differences in adduction, while grades 1 
and 2, and 1 and 3 showed significant differences in tibial internal rotation between standing and supine positions.

Conclusions:  Weight-bearing makes greater the three-dimensional deformities in knees with osteoarthritis. Particu-
larly, greater tibial internal rotation was observed in patients with grades 2 and 3 compared to those with grade 1. The 
greater tibial internal rotation due to weight-bearing is a key pathologic feature to detect early osteoarthritic change 
in knees undergoing osteoarthritis.
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Introduction
The classification of knee osteoarthritis (OA) is an essen-
tial clinical issue, particularly in terms of the diagnosis 
of early knee OA, as the primary goals of treatment of 
knee OA is to prevent its progression and to avoid irre-
versible degenerative change occurring in the joint [1]. 
To apply effective intervention to early knee OA, precise 
diagnosis is a first step. However, there is a limitation to 
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use two-dimensional (2D) radiographs to evaluate the 
degree of tibiofemoral joint deformity in early-stage knee 
OA. Traditionally, the Kellgren–Lawrence (K–L) classi-
fication, which was developed in 1957, is considered the 
gold standard for the clinical evaluation of knee OA and 
is used for radiological grading [2]. This classification is 
based on osteophyte formation and joint space narrow-
ing, and subtle changes in these features are difficult to 
determine on 2D images. Several studies have suggested 
limitations of K-L classification in diagnosis of early knee 
OA [3–6] To overcome this problem, Oka et  al. devel-
oped an automatic system for diagnosing knee OA (knee 
osteoarthritis computer-aided diagnosis; KOACAD) [7] 
and reported normal and threshold values of various 
knee OA parameters [8]. Although KOACAD enables 
the automatic classification of knee OA, the joint space 
widths between K–L1 and K–L2 differ by <0.4 mm, [8] 
which is too small to enable differentiation on clinical 
radiographic images. Thus, the ability to diagnose early 
degenerative changes in the tibiofemoral joint based on 
2D radiography remains limited.

In recent years, weight-bearing computed tomography 
(CT) has been investigated as a potentially more reliable 
method for diagnosing knee OA. For example, Segal et al. 
reported the superior test-retest reliability of cone-beam 
CT for the three-dimensional (3D) measurement of joint 
space width in the weight-bearing OA knee, with intra-
class correlation coefficients of 0.95–0.97 and 0.90–0.97 
for the lateral and medial compartment, respectively [9, 
10]. Hirschmann et al. also used cone-beam CT to deter-
mine the effect of weight-bearing using 3D images of the 
knee joint [11]. However, these studies conducted cone-
beam CT using effective fields of view of 220 mm × 220 
mm or 200 mm × 350 mm, respectively, which were not 
sufficiently wide to scan the entire leg or evaluate the 
lower limb alignment while standing. Accordingly, the 
use of cone-beam CT to conduct a 3D analysis of the tibi-
ofemoral deformity has been limited. Recently, Fujii et al 
reported that 3D lower limb alignment under weight-
bearing condition [12]. Their results clearly demonstrated 
3D deformity of knees undergoing OA, and suggest that 
it is important to evaluate 3D whole leg alignment under 
weight-bearing when diagnosing OA.

Our institution has installed a 320-detector upright CT 
capable of scanning the entire body in a standing position 
[13–16]. In order to know the condition of the knee joint, 
it is necessary to know the alignment of the whole leg, 
especially under weight-bearing. As mentioned above, 
radiographs and partial cone-beam CT have been used 
to evaluate joint space narrowing under weight-bearing, 
but it has been difficult to evaluate whole leg alignment 
under weight-bearing in 3D using those imaging modali-
ties. In this study, we aimed to use the upright CT and 

conventional CT to evaluate changes in the 3D alignment 
of the entire leg in response to weight-bearing in patients 
with medial knee OA. We hypothesised that weight-
bearing causes 3D alignment changes of the knee even in 
early-stage knee OA.

Methods
Subjects
A power analysis was performed to calculate the mini-
mum sample size for the study, as our study design 
involves two CT examinations for each subject. We 
used population values and the sigma of our previous 
study [14] and calculated the sample size with an alpha 
probability of 0.05, effect size of 0.5, and power of 0.8. 
The analysis revealed that a minimum sample size of 
48 was required for the study. According to the analy-
sis, we recruited 26 patients to study 52 knee joints. We 
recruited patients with knee OA being treated at our 
hospital in writing and included those who offered to 
participate in the study. However, 7 knees in 6 patients 
diagnosed with inflammatory arthritis on MRI or hav-
ing valgus knee OA were excluded as this study focused 
on medial knee OA. Finally, we included 45 knee joints 
in 25 patients with knee OA (21 women, 4 men). Knee 
OA was defined as knee joint pain or stiffness during 
the past 3 months in the absence of any trauma includ-
ing medial and lateral knee ligament injuries or system-
atic disease (e.g. rheumatoid arthritis) that could cause 
knee joint pain as well as a radiological classification of a 
K–L grade ≥1 based on an anterior-posterior radiograph 
obtained under the supine position [2]. Three orthopae-
dic surgeons who have more than 20 years of experience 
in treatment of knee OA diagnosed and classified the 
patients. All methods were performed in accordance with 
the Japanese Ethical Guidelines for Medical and Biologi-
cal Research Involving Human Subjects. Each participant 
provided written informed consent, and the study proto-
col was approved by our ethical committee (Institutional 
Review Board ID# 20150293).

Image acquisition
CT images were acquired from the pelvis to the end of 
the foot using two CT scanners under the following con-
ditions. CT examinations in the supine position were 
performed using a 320-row CT scanner (Aquilion ONE, 
Canon Medical Systems, Otawara, Japan), while exami-
nations in the standing position were performed using 
an upright CT scanner with a 320-row detector (proto-
type TSX-401R, Canon Medical Systems; Fig.  1A). The 
patients stood or lay in a relaxed position and placed both 
feet at shoulder width. To avoid intentional rotation of 
the hip joints, the patients were only instructed to extend 
the knees as much as possible, with no other restrictions. 
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The upright CT examinations were performed using the 
following parameters: peak tube voltage, 100 kV; tube 
current, 10–800 mA (noise index = 8 at a slice thickness 
= 5 mm); rotation speed, 0.5 second ; and slice thickness, 
0.5 mm (Fig. 1B). The approximate acquisition time was 
10–20 seconds.

Surface registration
The 3D surface data corresponding to the femur and 
tibia were extracted from the CT DICOM files using 3D 
visualisation software (AVIZO 6.4; Thermo Fisher Sci-
entific, Tokyo, Japan). For each participant, we matched 
the femoral surfaces in both positions using the itera-
tive closest point (ICP) algorithm from the Visualiza-
tion Toolkit 8.1.0 (Kitware Inc., Clifton Park, NY, USA) 
for the 3D surface registration technique (Fig.  2B). 
Besl and McKay proposed a 3D–3D surface registra-
tion technique using this ICP algorithm in 1992 [17]. 
In a previous in vivo 3D lumber spine study using this 
technique, the mean absolute translation error was 
observed to be <0.1 mm in the x-direction and z-direc-
tion, and the mean absolute rotation error was <0.2° 
around the X-axis and Z-axis [18]. We set the number 
of registration times by ICP algorithm to be 1000 times 
and performed 3D-3D surface registration.

Coordinate System
We used a modified femoral and tibial coordinate system 
based on the method defined by Sato et al. [19], Enomoto 
et  al. [20] and the International Society of Biomechan-
ics [21] (Fig. 2A). For the femoral coordinate system, the 
Z-axis was defined as a rightward-pointing line connect-
ing the centres of the posteromedial and posterolateral 
condyles. The temporary (T)-axis was defined as a line 

connecting the centre of the Z-axis and the centre of the 
femoral head. The X-axis was defined as the line perpen-
dicular to both the Z-axis and T-axis and pointing ante-
riorly. The Y-axis was defined as an upward-pointing line 
perpendicular to both the Z-axis and X-axis.

For the tibial coordinate system, the X-axis was defined 
as an anterior-pointing line connecting the proximal end 
of the tibial tuberosity medial margin and the centre of 
posterior intercondylar notch at the level of lateral joint 
space (Akagi’s line [22]). The T-axis was defined as an 
upward-pointing line connecting the centre of the Aka-
gi’s line and the centre of the tibial plafond. The Z-axis 
was defined as a laterally pointing line perpendicular to 
both the X-axis and T-axis. The Y-axis was defined as an 
upward-pointing line perpendicular to both the X-axis 
and Z-axis.

Analysis of Joint Movement
Next, we analysed differences in knee rotation between 
the supine and standing positions. We used the Euler/
Cardan angles representing three sequential rota-
tions about the anatomical axis of the proximal bone to 
describe the bone-to-bone rotations of the tibia relative 
to the femur around each axis. Specifically, we used the 
Euler rotation sequence Z-X-Y, wherein the rotations 
around X, Y, and Z were defined as varus/valgus, exter-
nal/internal rotation, and flexion/extension, respectively.

In addition, to evaluate the difference in the original 
lower limb position in the supine and standing positions 
during the CT examinations, the tibia external angles 
with respect to the pelvis were calculated. Specifically, 
the angle between the perpendicular of the line con-
necting both anterior superior iliac spins of the pelvis 

Fig. 1  Upright computed tomography (CT) scanner and the acquired images. A A 320-row upright CT scanner (prototype TSX-401R; Canon 
Medical Systems, Otawara, Japan) was used to acquire images from the hip joint to the end of the foot in the standing position. The approximate 
acquisition time was 10–20 s. B Acquired images of knee osteoarthritis (OA) with an upright CT scanner. The image qualities of the upright CT 
scanner range from good to excellent [11]
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and the anterior–posterior axis (X-axis) of the tibia was 
measured.

Statistical Analysis
Participants were divided into four grades based on the 
K–L classification: K–L grade 1, K–L 2, K–L 3, and K–L 
4 [2]. Differences in the knee angles in each plane were 
compared among these four grades. To examine the 
validity of the rotation of the foot position, we examined 
the correlation between the tibia external rotation angle 
with respect to the pelvis and the tibia external rota-
tion angle with respect to the femur, and we also com-
pared the four grades. To compare the four grades, we 
used ANOVA at a significance level of p < 0.05. SPSS 
24.0 (IBM, Armonk, NY, USA) was used for statistical 
analysis.

Results
Based on the radiographs, 11, 11, 11, and 12 knees were 
categorised as K–L grades 1, 2, 3, and 4, respectively. The 
mean (± standard deviation) age, body weight, and body 
mass index of the participants were 69.9 ± 8.9 (range, 
53–86) years, 58.5 ± 12.8 (range, 36.0–80.0) kg, and 24.3 
± 5.1 (range, 16.9–35.3) kg/m2, respectively. For the com-
parison of all coordinate axis rotations, ANOVA results 
showed p ≥0.05 for Levene’s test, so equal variances were 
used and Tukey’s test was performed as a post-hoc test. In 
the supine position, the knee joint flexed and adducted in 
the high K-L grade group compared to the low K-L grade 
group, but there was no significant difference in rotation. 
In the standing position, the OA knee joint flexed and 

adducted in the high K-L grade group, and the tibia was 
originally externally rotated with respect to the femur but 
gradually internally rotated in the high K-L grade group 
(Fig. 3). The flexion angles between the two positions in 
K–L grades 1, 2, 3, and 4 changed by 0.04 ± 1.91°, 2.37 ± 
2.36°, 2.33 ± 3.38°, and 4.08 ± 4.36°, respectively (Fig. 4a). 
The difference between K–L grades 1 and 4 was signifi-
cant (p = 0.020). The varus angles between the two posi-
tions in K–L grades 1, 2, 3, and 4 changed by 0.40 ± 0.62°, 
0.69 ± 0.87°, 1.52 ± 0.91°, and 3.03 ± 2.16°, respectively 
(Fig. 4b). The differences between K–L grades 1 and 4 (p 
<0.001), between grades 2 and 4 (p <0.001) and between 
K–L grades 3 and 4 (p =0.042) were significant. The tib-
ial internal rotation angles between the two positions in 
grades K–L 1, 2, 3, and 4 changed by 0.34 ± 1.26°, 2.95 ± 
1.44°, 3.60 ± 2.25°, and 3.88 ± 2.00°, respectively (Fig. 4c). 
The differences between K–L grades 1 and 2 (p = 0.008), 
between grades 1 and 3 (p =<0.001), and between grades 
1 and 4 (p < 0.001) were significant. No other differences 
were found in the 3D rotation angle among the 4 OA 
grades.

Table 1 presents difference in lower leg positions under 
two CT examinations, that were the tibia external rota-
tion angles with respect to the femur and pelvis. Pear-
son’s correlation coefficient between the tibia external 
rotation angle with respect to the pelvis and the tibia 
external rotation angle with respect to the femur were 
both 0.069, and there were no significant correlations (p 
= 0.52). Also, there was no significant difference in tibia 
external rotation angle with respect to the pelvis between 
each grade between the supine and standing positions 
during the CT examinations.

Fig. 2  Coordinate systems of each bone. A Coordinate system of the tibia was defined as reported by Sato et al. and the International Society of 
Biomechanics. The rotations around X, Y, and Z were defined as the varus/valgus, external/internal rotation, and flexion/extension, respectively. B 
After three-dimensional (3D)–3D surface registration of the femur, the relative movement of the tibia due to weight-bearing was evaluated in the 
sagittal, coronal, and axial planes
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Fig. 3  Comparison of the 3D rotation angle among OA grades in both the supine and standing positions. An asterisk (*) indicates a significant 
difference (p<0.05), a double asterisk (**) indicates a significant difference (p<0.01). A In the supine position, the knee joint flexed and adducted 
in the high K-L grade group compared to the low K-L grade group, but there was no significant difference in rotation. B In the standing position, 
the OA knee joint flexed and adducted in the high K-L grade group, and the tibia was originally externally rotated with respect to the femur but 
gradually internally rotated in the high K-L grade group

Fig. 4  Differences in sagittal, coronal and axial angles of the knee between supine and standing. An asterisk (*) indicates a significant difference 
(p<0.05), a double asterisk (**) indicates a significant difference (p<0.01). a Flexion angle by K-K grade. b Varus angle by K-L grade. c Tibial internal 
rotation angle by K-L grade. The change in the flexion angle differed significantly between K–L grades 1 and 4 (p < 0.05). Changes in the adduction 
angle differed significantly between K–L grades 1 and 4 and between grades 2 and 4 (p < 0.01). Changes in the internal rotation angle differed 
significantly between K–L grades 1 and 2, between grades 1 and 3, and between grades 1 and 4 (p <0.01)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Discussion
Our findings from this study supported our hypothesis 
that weight-bearing causes 3D alignment changes of the 
OA knees, and greater 3D deformities were found in 
knees with end-stage OA. An important finding of our 
investigation was the determination of a significantly 
greater tibial internal rotation with respect to the femur 
under weight-bearing conditions in knees with K–L 
grade 2 OA, compared to grade 1 OA. In K-L grade 2, 
there is subtle joint space narrowing with minimal oste-
ophyte formation on the anterior-posterior radiography 
[2, 7, 8]. While weight-bearing CT clearly detects early 
change occurring in the knee joint which is increased 
internal rotation with weight-bearing.

Consistent with our findings, Hirschmann et  al. used 
cone-beam CT to demonstrate that the tibial internal 
rotation increased in the knee under weight-bearing 
conditions [11]. However, that study was significantly 
limited by the following factors: the subjects without 
knee OA were involved (17 of 26 were knee OA) ; a rela-
tion between the OA grade and tibial internal rotation 
was not found; the axial CT images were subjected to 
2D measurements, which should include measurement 
errors to account for possible differences in the levels of 
axial CT images; and an unnatural subject standing pos-
ture (i.e. standing on the foot of the examined leg with 
the other knee bent and resting outside the gantry) that 
placed the knee in a non-physiological position. Mat-
sui et  al. used conventional CT to evaluate rotational 
deformity in patients with knee OA in supine position 
and observed an increase in the tibial external rotation as 
the OA severity increased [23]. However, a direct com-
parison of our results with their results is difficult, as the 
OA knees in their study were more severely deformed 
(femorotibial angles > 190° or 200°) than those in our 
study, and the two studies used different coordinate sys-
tems to measure tibiofemoral rotation. Recently, Fujii 
et  al. compared 3D lower limb alignment in OA knees 
between weight-bearing and non-weight-bearing condi-
tions [12]. They used 2D–3D image-matching with bipla-
nar computed radiography (CR) and 3D bone models of 
the complete lower extremity rebuilt using computed 
tomography-based information. Lower limb alignment 

during standing was evaluated using biplanar CR images 
obtained while participants stood with as extended as 
possible of the knees and toes in the neutral state. The 
OA knees showed flexion and varus both in the supine 
and standing positions, and neutral rotation of the tibia 
to the femur in the supine position and internal rotation 
of the tibia in the standing position. Fujii et  al.’s study 
used compatible methods and experimental conditions 
with our study, and their results agreed well with those 
of our study. Both studies indicates that weight-bearing 
alters the 3D lower limb alignment of OA knees, particu-
larly internal rotation of the tibia occurs in the standing 
position, although their study did not show the results 
with each OA grade.

To our knowledge, ours is the first study to demon-
strate changes in 3D alignment in patients with knee 
OA of various grades under natural full weight-bearing 
conditions.

The classification of knee OA is an essential clinical 
issue, particularly in terms of the diagnosis of early knee 
OA [1]. As described above, differentiating early knee 
OA using 2D radiographs is difficult owing to a very 
small difference in joint space width between K-L grades 
1 and 2 [8]. Although cone-beam CT imaging depicted 
the joint space widths of OA knees under weight-bearing 
conditions with a high level of repeatability [9–11], even 
3D images obtained using this technique could not eas-
ily distinguish early changes associated with knee OA. In 
our analysis, we observed an average difference of 2.6° in 
the tibial internal rotation under weight-bearing condi-
tions between K–L grades 1 and 2 (Fig. 3). Given the high 
level of accuracy of 3D–3D registration based on CT (0.2° 
about the X-axis and Z-axis [18]), we could clearly visu-
alise early changes associated with knee OA. The weight-
bearing conditions led to increased flexion, adduction, 
and tibial internal rotation as the OA grade increased. 
Moreover, a significant increase in tibial internal rotation 
occurred prior to the increases in flexion and adduction, 
suggesting that internal rotation under weight-bearing 
conditions is a key pathologic factor in the progression of 
knee OA.

Several studies have depicted the 3D kinematics of OA 
knees during weight-bearing activities. Matsuki et  al. 
used fluoroscopy and 2D–3D registration to evaluate 
the knee kinematics associated with early knee OA (K–L 
grades 1 and 2) during pivoting and squatting activities 
[24]. In that study, reduced tibial internal rotation was 
observed during pivot activity in early OA knees rela-
tive to control knees. Another study similarly reported 
reduced tibial internal rotation during various weight-
bearing activities in knees with advanced OA (K–L 
grades 3 and 4) relative to healthy knees [25]. Both stud-
ies demonstrated differences in the tibiofemoral rotation 

Table 1  The tibia external rotation angle with respect to the 
pelvis

Data are expressed as mean ± SD

KL Supine Standing

1 13.9 ± 9.30 7.48 ± 11.5

2 17.4 ± 18.6 3.74 ± 10.7

3 22.8 ± 14.5 13.1 ± 7.78

4 20.9 ± 13.0 10.4 ± 9.43
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patterns between OA and healthy knees. Till date, only 
one study has suggested a link between tibial rotation 
and the onset of knee OA. Andriacchi et al. used a com-
puter simulation to demonstrate the effect of tibial inter-
nal rotation during gait on the thinning of cartilage in the 
knee [26]. The authors found that a 5° increase in tibial 
internal rotation, which is usually seen in the anterior 
cruciate ligament deficient knee, was associated with 
rapid rate cartilage thinning in the medial compartment 
and speculated that this increase could initiate knee OA. 
We also thought that ACL function causes the change in 
rotation from the supine to the upright position. In the 
past, it has been reported that ACL function declines 
by 20% between people in their 20s and 80s, and aging 
may be one of the reasons for ACL dysfunction [27]. In 
another upright cone-beam CT, arch drop was found to 
cause internal rotation of the tibia in a group of women at 
high risk for knee OA [28]. This suggests that tibial inter-
nal rotation may be a risk factor for more severe knee 
OA. It was suggested that abnormal rotation of the tibia 
triggered by ACL dysfunction may be the trigger of the 
OA and may determine the indication for early preven-
tion of progression of the OA and surgeries such as high 
tibial osteotomy or total knee arthroplasty. However, 
the relation between abnormal tibial kinematics and the 
onset and progression of knee OA remains unclear and 
further investigation is needed.

Several limitations of this study should be noted. 
First, even when we performed a power analysis prior 
to the study, to analyse statistical difference in each OA 
grade, the statistical power of our analysis was limited 
by the small number of OA patients included in our 
study. Even with the limited numbers of the patients, 
our results clearly demonstrate potential to diag-
nose early-stage knee OA using upright CT. Second, 
to evaluate accurate tibial internal rotation in stand-
ing, as shown in the present study and in the study by 
Fuji et al. [12], CT images with matching technique are 
required [12]. As anterior-posterior radiograph is still 
the gold standard to diagnose knee OA, there is a need 
to develop method to evaluate tibial internal/external 
rotation on radiographs. In the future, computer-aided 
method with deep learning algorithm has a potential to 
evaluate the tibial rotation and to diagnose early-stage 
knee OA on 2D radiograph [29]. Third, K-L grading was 
done on supine non-weight-bearing radiographs. How-
ever, assessment of joint space narrowing (K-L grade 3 
and 4) is certainly impaired by grading on non-weight-
bearing images and the fully extended position also is 
known to reduce reliability and validity of assessments 
of joint space narrowing. Forth, we evaluated knee 
kinematics under weight-bearing conditions while the 

subjects stood on both legs. Under this physiological 
condition, the entire body weight was divided evenly 
between the knees. However, the application of greater 
weight-bearing conditions would likely elucidate the 
pathology of knee OA. Moreover, using a self-selected 
pose could lead to patients with more severe knee OA 
standing in a way that minimized discomfort. Future 
studies should aim to examine knee kinematics under 
various weight-bearing conditions and at different knee 
flexion angles.

Conclusion
Changes in the 3D alignment of the knee under weight-
bearing conditions were assessed in patients with knee 
OA via a novel 320-row upright CT protocol. Changes 
in 3D deformities (flexion, adduction, and tibial inter-
nal rotation) from a non-weight-bearing to weight-
bearing condition were observed in end-stage OA 
knees. No differences were found in flexion and adduc-
tion between K-L grade 1 and 2 knees, but greater tibial 
internal rotation was observed in K-L grade 2 knees as 
opposed to K-L grade 1 knees when weight-bearing. 
These results suggest that greater tibial rotation when 
weight-bearing is a key consideration to differentiate 
early-stage patients from advanced stage patients.
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