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Abstract

We analyzed the influence of prior exercise designed to reduce predominantly muscle glycogen in either type I or II fibers
on pacing and performance during a 4-km cycling time trial (TT). After preliminary and familiarization trials, in a randomized,
repeated-measures crossover design, ten amateur cyclists performed: 1) an exercise designed to reduce glycogen of type I
muscle fibers, followed by a 4-km TT (EX-FIB I); 2) an exercise designed to reduce glycogen of type II muscle fibers, followed
by a 4-km TT (EX-FIB II) and; 3) a 4-km TT, without the prior exercise (CONT). The muscle-glycogen-reducing exercise in both
EX-FIB I and EX-FIB II was performed in the evening, ,12 h before the 4-km TT. Performance time was increased and power
output (PO) was reduced in EX-FIB I (432.868.3 s and 204.9610.9 W) and EX-FIB II (428.766.7 s and 207.569.1 W)
compared to CONT (420.866.4 s and 218.469.3 W; P,0.01), without a difference between EX-FIB I and EX-FIB II (P.0.05).
The PO was lower in EX-FIB I than in CONT at the beginning and middle of the trial (P,0.05). The mean aerobic contribution
during EX-FIB I was also significantly lower than in CONT (P,0.05), but there was no difference between CONT and EX-FIB II
or between EX-FIB I and EX-FIB II (P.0.05). The integrated electromyography was unchanged between conditions (P.0.05).
Performance may have been impaired in EX-FIB I due a more conservative pacing at the beginning and middle, which was
associated with a reduced aerobic contribution. In turn, the PO profile adopted in EX-FIB II was also reduced throughout the
trial, but the impairment in performance may be attributed to a reduced glycolytic contribution (i.e. reduced lactate
accumulation).
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Introduction

To date, the effects of reduced endogenous carbohydrate

(CHO) stores on performance during a time trial (TT) has received

limited attention [1–4]. A study by Rauch et al. [1] reported that

three days on a high-CHO diet resulted in an increase in the mean

power output (PO) during a 60-min cycling TT compared to a

control-CHO diet. This increase in PO occurred as early as the

first minute of exercise. Despite significantly different starting

muscle glycogen values and TT performances, it is interesting to

note that the CHO-loaded condition enabled the participants to

finish the trial with the same critical low muscle glycogen level as

the control-CHO condition [1]. Recently, a reduction in overall

performance (,11%) was observed during a middle-distance

cycling TT (200 kJ, ,12 min) carried out after a validated

protocol designed to lower muscle glycogen content, when

compared to a control condition [3]. This reduction in perfor-

mance was accompanied by a shorter fast-start, followed by a less

pronounced increase in PO during the last part of the trial. The

authors attributed the impaired PO at the end to a reduced

glycogenolytic activity. Indeed, the final sprint seems to occur as a

result of the spared muscle glycogen and anaerobic capacity in the

earlier stages of a TT, accompanied by a consequent increase in

the anaerobic energy expenditure at the end of the trial [3,5,6].

Together, these results suggest that pacing during a cycling TT is

affected by pre-exercise muscle glycogen availability.

While it seems clear that pre-exercise muscle glycogen

availability affects the pacing strategy, it is not known if fiber-

selective glycogen depletion will have different effects on pacing

strategy. Due to the high-intensity at the beginning of a middle-

distance cycling TT [7], type II fibers may have a greater

contribution initially [8–10]. However, since type II fibers are

quickly fatigable, a decline in PO after a fast start may be

associated with a reduced contribution from type II fibers [11],

preserving the limited anaerobic energy reserve of type II fibers to

support the increase in PO in the last part of the trial [5]. These

specific changes in muscle fiber recruitment pattern during a

typical middle-distance TT have not been investigated, probably
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due to limitations of the gold-standard muscle biopsy technique.

Since this technique can increase variability and interfere directly

with athletes’ pacing strategy and performance, the utilization of

more practical and applied protocols has been recommended [12].

An interesting and practical manner to test the effects of fiber-

selective glycogen depletion on pacing strategy would be to use

validated protocols to reduce selectively the muscle glycogen

content of type I or II fibers [8–10], and to verify if this affects

pacing strategy and performance during a cycling TT. It has been

shown that prolonged exercise lasting ,3 h predominantly

reduces the muscle glycogen stores from type I fibers [8,10],

while high-intensity, intermittent exercise reduces the muscle

glycogen from type II fibers [9,10]. Furthermore, the results would

have important practical implications since many athletes partic-

ipate in multi-stage races in which they perform a middle-distance

TT a few hours after either prolonged or short cycling races.

Therefore, the aim of this study was to analyze the influence of

prior selective muscle glycogen-lowering exercise, designed to

predominantly reduce the muscle glycogen content of either type I

or II fibers, on pacing strategy and performance during a 4-km

cycling TT. We hypothesized that the exercise protocol designed

to predominantly lower the muscle glycogen content of type I

fibers would impair PO during the midpoint of the TT, while the

exercise protocol designed to predominantly lower the muscle

glycogen content of type II fibers would impair PO at the

beginning and during the last part of the TT. In order to provide

some insights about muscle recruitment [13], we also measured

the muscle EMG signal throughout the TT.

Methods

Ethics Statement
This study was approved by the Ethics Committee of the

Federal University of Alagoas.

Participants
Ten amateur, competitive cyclists [age 3362 years, mass

74.463.3 kg, height 173.762.4 m, body fat 12.361.6%, peak

oxygen uptake (VO2peak) 4.160.1 L?min21

(55.362.6 mL?kg21?min21), peak PO (PPO) 253.568.6 W] took

part in this study. The athletes trained regularly (4–5 days per

week) for more than 60 minutes per day and cycled more than

200 km per week. The sample size required was estimated, using

mean power output (i.e. performance) as the main outcome, from

the equation n= 8e2/d2, as suggested by Hopkins [14], where n, e,
and d denote predicted sample size, coefficient of variation, and

the magnitude of the treatment effect, respectively. Coefficient of

variation was assumed to be 1.9% [15] and a detection of a very

conservative 2% difference as statistically significant would require

at least 7 participants. All study procedures, as well as protocol,

benefits, and risks were explained before the commencement of

the trials, and participants gave their written informed consent.

Experimental Design
Participants reported to the laboratory on seven different

occasions. During the first visit, participants answered a question-

naire on readiness for physical activity (PAR-Q), and underwent

anthropometric measures [16] and an incremental test to establish

their VO2peak and PPO [17]. At the second visit, participants

performed a 4-km cycling familiarization trial. The subsequent

visits (visits 3 to 7) were performed in a randomized and repeated-

measures crossover design. In the evening before the main trial

(,7PM), participants performed either an exercise protocol

designed to predominantly reduce muscle glycogen content in

type I fibers (EX-FIB I) [10], or type II fibers (EX-FIB II) [10], or

no exercise (CONT). Participants then followed a standardized

diet and performed in the next morning (,7 AM) a 4-km TT. A

1-week interval was applied between the experimental sessions to

wash out any residual effect of fatigue. The tests were performed at

the same time of the morning to minimize circadian variation [18].

Participants performed all tests (incremental and TTs) on a

provided racing bike attached to a stationary cyclosimulator

(Trainer Flow Ergo T1680, Tacx, Wassenaar, Netherlands).

Before each trial, the cyclosimulator was calibrated in accordance

with the manufacturer’s recommendations. To date, the reliability

and accuracy of the specific cyclosimulator model used in the

present study has not been reported, although this has previously

been provided in a similar cyclosimulator from the same

manufacturer [19]. Participants were asked to refrain from

vigorous physical activity, alcohol, tobacco, and caffeine for

24 hours before each experimental session. Subjects were blinded

to the objectives of this study until all tests had been performed.

Incremental test
The seat was adjusted vertically and horizontally for each

participant and cycling shoes were used to secure the feet to the

pedals. The seat position was recorded and replicated during all

subsequent experimental trials. Participants performed an incre-

mental test starting with a 3-min warm-up at 100 W. After the

warm up, 30 W increments were applied every minute until the

participant could no longer maintain the required pedal frequency

between 80–90 rev?min21. Measures of VO2, carbon dioxide

production, and ventilation were continuously sampled through-

out the test and averaged over 30-s intervals using an on-line

breath-by-breath gas analyzer (Quark CPET, Cosmed, Rome,

Italy). VO2peak was defined as the average VO2 during the last

30 s of the test. PPO was determined as the highest PO achieved

during the last completed 60-s stage. When participants were not

able to complete the last stage, the PPO was calculated from the

following equation:

PPO~POc z t=60| 30ð Þ ð1Þ

where POc is the PO in watts of the last completed stage

performed by the participant, t is the time (in seconds) sustained

during the last incomplete stage, and 30 corresponds to the

increments in PO in watts at each stage.

Familiarization trial
The gear ratio was standardized at the beginning of the TT (i.e.,

53616), but participants were free to adjust the gear and pedal

frequency once the TT had started. The participants were

instructed to perform the TT in the shortest possible time and

to remain seated throughout test. During the 48 h before the trial,

the athletes were instructed to record all foods consumed (type,

amount and time). These registers were later used to standardize

the diet before the experimental trials. The validity of the diet

register has been described in previous studies [20].

Exercise protocols to reduce muscle glycogen content
For the three conditions, participants were asked to replicate

exactly the diets recorded before the familiarization session during

the morning and afternoon of the muscle-glycogen-reducing

exercise day (total energy intake ,2400 kcal, 60% CHO, 20%

protein, and 20% fat). Participants arrived at the laboratory in the

evening (between 6:00 and 8:00 PM), at least two hours after their

last meal. Then, they either cycled at an intensity corresponding to
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30% of their PPO (75.962.6 W) for 3 h or performed 10 sets of

1 min at a PO corresponding to 120% of their PPO

(303.8610.3 W), interspersed with 5-min rest periods. These

protocols were designed to reduce predominantly the muscle

glycogen stores from either type I fibers (evening before EX-FIB I

trial) [8,10] or type II fibers (evening before EX-FIB II trial)

[9,10], respectively. These protocols were validated by Carter

et al. [10] using biopsies of the vastus lateralis muscle. They

showed that after an exercise at 30% PPO for 3 h, approximately

94% of type I fibers had their muscle glycogen depleted, while just

30 and 4% of the type IIa and IIx fibers, respectively, were

depleted. On the other hand, after an exercise at 120% PPO,

approximately 99% of type II fibers (type IIa and IIx) were

depleted, while only 15% of the type I fibers had their muscle

glycogen reduced. These results have also been corroborated by

others [8,9].

Following the muscle-glycogen-reducing protocols

(,10:00 PM), the participants were instructed to consume a

low-CHO dinner (total energy ,480 kcal, 13% CHO, 26%

protein, and 61% fat) provided by the investigators and instructed

to not consume any other additional food. For the control trial,

participants were asked to consume a normal-CHO dinner (total

energy intake ,480 kcal, 67% CHO, 13% protein, and 20% fat),

but no exercise was carried out in the prior evening.

Experimental trials
Experimental tests were performed the next morning (between

8:00 and 10:00 AM) in a stable laboratory environment (22.961.1

uC and 44.962.9% relative humidity). Two hours before the trials,

participants consumed a standardized breakfast, either with,67%

CHO, 13% protein, and 20% fat (,680 kcal) for the CONT

condition (equal to amount usually consumed as registered in the

recall), or containing a low CHO content (,680 kcal, 13% CHO,

26% protein, and 61% fat) for both EX-FIB I and EX-FIB II

conditions. A reduced CHO breakfast was administered during

EX-FIB I and EX-FIB II conditions to guarantee that muscle

glycogen would not have been replenished [21]. Maximal

voluntary contractions were carried out immediately before each

TT. Thereafter, the participants performed a 5-min warm-up at

100 W followed by a 5-min recovery. Then, a 4-km cycling TT

was completed as fast as possible. Feedback about elapsed distance

was given every 200 m, but participants were not informed about

PO, velocity or cadence.

Measurements
VO2, carbon dioxide production, ventilation, and respiratory

exchange ratio (RER) were measured breath-by-breath during all

experimental trials. Participants used a mask with ventilation and

gas exchange responses measured via a computerized system

(Quark CPET, Cosmed, Rome, Italy). The gas analyzer was

calibrated according to the manufacturer’s specifications before

each test (Quark CPET instruction manual) using room air and a

standard gas mixture (16% oxygen and 5% carbon dioxide). The

ventilometer was calibrated with a 3-L syringe. The PO was

measured every 1 second (Tacx Trainer software 3.0, Wassenaar,

Netherlands).

25 mL of blood were drawn from the ear lobe at rest,

immediately before (Pre-TT), and 1 min after the TT (Post-TT).

The blood samples were transferred into micro-tubes containing

sodium fluoride (1%) and then centrifuged at 3000 rpm at 5uC for

10 minutes. Plasma lactate concentrations [La] were measured

through enzymatic colorimetric reactions in a spectrophotometer

(546 nm wavelength, model Q798U2V5, Quimis, São Paulo,

Brazil).

To obtain the EMG signal, the skin of the vastus lateralis muscle

of the right leg was shaved, abraded, and cleansed with isopropyl

alcohol. Then, bipolar surface silver-silver chloride electrodes (Hal,

São Paulo, Brazil), at a 20-mm interelectrode distance, were

placed over the muscle belly and aligned to the muscle fiber

direction. Before the TT, four 5-s submaximal isometric contrac-

tions of the knee (50%, 60%, 70% and 80% of the participant’s

subjective maximum) were performed as a warm-up [22].

Thereafter, the maximal voluntary contraction and corresponding

EMG signal were obtained. Participants carried out three 5-s

isometric maximal voluntary contractions of the knee extensors of

both legs at an angle of 60u (full knee extension being the 0u), with
a 1-min rest between them [23]. Participants were verbally

encouraged during each maximal voluntary contraction. The peak

force during the three contractions was measured by a load cell

(EMG System Brazil, São Paulo, Brazil). The EMG signal of

vastus lateralis muscle during each maximal voluntary contraction,

as well as during each TT (every 200 m), was captured during 5-s

intervals with a sampling frequency of 2000 Hz (Four-channel

electromyograph, model 410C, EMG System Brazil, São Paulo,

Brazil). Raw EMG signals were full-wave rectified and, to remove

external interference noise and movement artifacts, filtered with a

second-order, Butterworth, band-pass filter with cut-off frequen-

cies set at 10 and 400 Hz. The integrated EMG (iEMG) was

normalized by dividing the value obtained during the TT (at each

200 m) by the iEMG obtained during the highest maximal

voluntary contraction [22,23]. The procedures were performed

using MATLAB 7.5 software (Mathworks Inc., Natick, US).

Calculations
The PO corresponding to aerobic and anaerobic contribution

(Paer and Pan, respectively) were estimated from calculations using

the metabolic power and gross mechanical efficiency, in accor-

dance with Hettinga et al. [24]. First, the Pmet was calculated from

the following equation [25]:

Metabolic power Wð Þ

~VO2 L:min{1
� �

: 4940 :RERz 16,040ð Þ = 60ð Þ
ð2Þ

where VO2 is the oxygen uptake in L?min21 and RER is the

respiratory exchange ratio. During the warm-up for each

experimental trial, the gross mechanical efficiency was determined

using the following equation:

Grossmechanical efficiency

~POwarm{up =metabolic power
ð3Þ

where POwarm-up is the PO in the warm-up (i.e., 100 W). As gross

mechanical efficiency was not different across the conditions, the

values were averaged for subsequent analyses. The Paer during the

TT was calculated by the equation:

Paer ~metabolic power : grossmechanical efficiency ð4Þ

where Paer is the aerobic mechanical power output. An RER equal

to 1.00 was assumed during the TT to calculate Pmet [24]. The Pan
was calculated from the following equation:

Pan ~PO{Paer ð5Þ
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where Pan is the anaerobic mechanical power output, PO is the

power output and Paer is the aerobic power output.

Statistical analysis
Data distribution was verified by Shapiro-Wilk’s test. Means of

the performance time, PO, Paer, Pan, iEMG, and maximal

voluntary contraction were compared between experimental

conditions using repeated-measures ANOVA. When a significant

effect was found, the main effect was analyzed using the least

significant difference test for pairwise comparisons. A linear mixed

model with Bonferroni correction was used to verify the effects of

condition and distance on dependent variables (PO, Paer, Pan,

iEMG and [La]). To allow magnitude-based inferences about

practical effects of prior low or high-intensity exercises on 4-km

cycling time-trial performance, the uncertainty in the effects were

expressed as likelihoods that the true value of the effects represent

substantial changes (harmful, trivial or beneficial) [26]. The

smallest standardized change was assumed to be 0.20. Data are

expressed as means and standard error of the mean (mean 6

SEM). All analyses were carried out in SPSS (13.0) software and

the statistical significance was accepted at p,0.05.

Results

Maximal voluntary contraction
The maximal voluntary contraction carried out immediately

before each TT was not significantly different between the three

experimental conditions (CONT: 1332.5680.1, EX-FIB I:

1265.5674.2 and EX-FIB II: 1305.1659.1 N; P.0.05), indicating

that there was no influence (residual effect of muscle fatigue) from

the exercise protocol performed in the evening before the TT.

Time trial performance, and mean PO, Paer, Pan and iEMG
The means for performance time, PO, Paer, Pan, and iEMG are

shown in Table 1. The time to complete the TT was significantly

slower in EX-FIB I (P= 0.001) and EX-FIB II (P = 0.004) than in

CONT, but there was no difference between EX-FIB I and EX-

FIB II (P = 0.344). Using magnitude-based inferences, the prior

low- and high-intensity exercise revealed a 98.5 and 92.6% chance

that the true value of the effect statistic is ‘very likely’ and ‘likely’

harmful to performance, respectively. Similarly, mean PO was

lower in EX-FIB I (P= 0.001) and EX-FIB II (P = 0.025) than in

CONT, but there was no difference between EX-FIB I and EX-

FIB II (P = 0.705). Likewise, the corresponding qualitative

inferences were 98.3 and 86.2% ‘very likely’ and ‘likely’ harmful

to performance, respectively. The mean Paer in the EX-FIB I was

significantly lower than in the CONT (P,0.05), but there was no

difference between CONT and EX-FIB II or between EX-FIB I

and EX-FIB II (P.0.05). Mean Pan and iEMG were similar for all

conditions (P.0.05).

Pacing strategy
There were significant main effects for condition (P,0.05),

distance (P,0.05), and interaction effects (P,0.05) for PO

(figure 1). In the EX-FIB I condition, participants adopted a

more conservative pacing strategy at the beginning and middle of

the trial, when compared with CONT (P,0.05). The PO during

the first 400 m and last 200 m was significantly higher than several

points in the middle of the TT for CONT, but remained relatively

stable up to 3.8 km in both EX-FIB I and EX-FIB II (P.0.05),

when there was a significant increase in the last 200 m (figure 1).

The results concerning the Paer and Pan every 200 m are shown

in Figures 2A and 2B, respectively. Main effects for condition and

distance were found for Paer (P,0.05), but there was no significant

interaction (P.0.05). In all conditions, the Paer increased

exponentially and stabilized after the first 800 m (P,0.05), but

was systematically lower during EX-FIB I than in the control (P,

0.05).

There was also a main effect for Pan only for distance (P,0.05),

but no condition (P.0.05) or interaction effect (P.0.05). In

general, the Pan in the first 600 m and last 200 m was higher than

the other intervals for all conditions (P,0.05; figure 2B).

iEMG and Plasma lactate
There was no main effect for condition or distance, or an

interaction effect, for iEMG (P.0.05; figure 3). A main effect for

condition (P,0.05) and time (P,0.05), and an interaction effect

(P,0.05), was observed for [La] (Table 2). The [La] increased

significantly with exercise in all three conditions, but the increase

was less pronounced in EX-FIB II than in CONT (P,0.05). There

were no differences between CONT and EX-FIB I or between

EX-FIB II and EX-FIB I (P.0.05).

Discussion

The aim of this study was to analyze the influence of two

different exercise protocols, designed to predominantly reduce

muscle glycogen levels in either type I or type II fibers, on pacing

and performance during a 4-km cycling TT. We had hypothesized

that an exercise protocol designed to reduce muscle glycogen in

type II fibers would impair PO at the beginning and last part of the

TT, while an exercise protocol designed to reduce muscle

glycogen of type I fibers would impair PO in the midpoint of

the TT. The main findings of the present study were that both

prior muscle-glycogen-reducing exercise protocols altered pacing

strategy and energy system contributions during a 4-km cycling

TT. As a consequence, overall performance was impaired after

both exercise protocols. These results might be attributed to a

more conservative PO distribution pattern adopted by the athletes

in the reduced muscle glycogen conditions. A decrease in PO at

the beginning and middle of the trial was observed in EX-FIB I,

accompanied by a reduced Paer throughout the trial. On the other

hand, PO mean and plasma [La] accumulation were decreased in

EX-FIB II. The iEMG remained unchanged throughout the TT

in all three conditions.

A lower mean PO and a longer time to completion of the TT

was observed in EX-FIB I and EX-FIB II compared with CONT.

Qualitative inferences indicated that these changes were ‘very

likely’ harmful and ‘likely’ when EX-FIB I and EX-FIB II were

compared to CON, respectively, suggesting that the impairments

in performance were meaningful. Using time-to-exhaustion tests, it

has previously been reported that performance during high-

intensity exercise (80–90% of VO2peak; 10–20 min) and supra

VO2peak exercise (115% of VO2peak; ,3 min) is impaired if

athletes start the trial after a muscle-glycogen-lowering exercise

protocol [27–29]. Likewise, the results of the present study are also

in accordance with earlier studies showing a reduction in

performance when participants performed a cycling TT after an

exercise protocol designed to reduce concomitantly the muscle

glycogen content of both type I and II muscle fibers [2–4].

However, to the best of our knowledge, this is the first study to

investigate these effects during a TT carried out after validated

exercise protocols designed to reduce selectively glycogen content

in specific muscle fibers (type I or II fibers).

The PO-versus-distance curve in CONT showed a classic initial

fast start, followed by a gradual decline in PO until completion of

approximately 80% (3.2 km) of the TT, when the PO increased

again in the last part, i.e. a U-shaped curve. This pacing model has

CHO-Lowering Exercise and Pacing Strategy
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previously been shown in studies investigating pacing during a TT

of similar distance and duration [30]. In contrast, participants

adopted a more conservative pacing strategy at the beginning and

during the middle of EX-FIB I. Previous studies demonstrated that

pacing at the beginning and middle [3] of a TT is affected

negatively by the prior reduction in muscle glycogen stores. The

results of the present study confirm our first hypothesis that an

exercise protocol designed to predominantly lower muscle

glycogen in type I muscle fibers impairs PO during the midpoint

of a 4-km TT. On the other hand, our second hypothesis that

previous depletion of the glycogen in the type II muscle fibers

would impair PO at the beginning was not confirmed. In contrast,

we found a reduction in PO at the beginning of the EX-FIB I trial

when compared to CONT (figure 1). However, the aerobic

contribution was systematically lower during EX-FIB I than

CONT (figure 2A), suggesting that muscle glycogen depletion of

type I fibers impaired aerobic metabolism from beginning of the

exercise. It should be noted that a less aggressive start is

accompanied by slower VO2 on-kinetics and a reduced aerobic

contribution [3,5,31]. As any time lost during the first part of a

time trial cannot be recovered later in the event [3], it could be

suggested that the impaired performance in the EX-FIB I may

have been partially due to the adoption of a suboptimal starting

pacing.

In the middle part of the trial, participants maintained a more

conservative pace in both reduced muscle glycogen conditions

(figure 1). The PO in EX-FIB I was significantly lower than in

CONT from 2.2 to 3.0 km, except for the 2.4-km interval. On the

other hand, there was a significant reduction in the mean PO

during the entire EX-FIB II trial when compared to CONT. It is

noteworthy that, although the PO was slightly impaired in the

middle of the trial, these differences were no longer apparent when

Table 1. Mean performance time, power output, aerobic and anaerobic power output, and integrated electromyographic activity
during the 4-km cycling time trial in the control and reduced muscle glycogen conditions.

CONT EX-FIB I EX-FIB II

Time (s) 420.866.4 432.868.3* 428.766.7*

PO (W) 218.469.3 204.9610.9* 207.569.1*

Paer (W) 163.866.0 155.167.0* 157.565.9

Pan (W) 54.666.6 49.866.5 50.065.8

iEMG (%) 50.562.1 53.361.7 45.861.3

Values are means 6 SEM. PO: power output. Paer: aerobic power output. Pan: anaerobic power output. iEMG: integrated electromyographic activity expressed as a
percentage of their EMG value obtained during the maximal voluntary contraction. CONT: control condition. EX-FIB I and EX-FIB II: time trial performed after a
carbohydrate-manipulation protocol designed to predominantly reduce muscle glycogen content in type I or II fibers, respectively. * Significantly different from CONT
(P,0.05).
doi:10.1371/journal.pone.0110320.t001

Figure 1. Mean and SEM for power output during the 4-km cycling time trial in the control (CONT) and reduced muscle glycogen
conditions. EX-FIB I and EX-FIB II: time trial performed after a type I or type II muscle fibers glycogen-lowering exercise protocol, respectively. *
CONT significantly higher than EX-FIB I for the same interval (P,0.05).
doi:10.1371/journal.pone.0110320.g001
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separated into Paer and Pan for EX-FIB II, but Paer was

systematically reduced during EX-FIB I (figures 2A and 2B).

The Post-TT [La] was significantly lower in EX-FIB II than in

the CONT condition. An interaction effect indicates that the

increase in [La] with exercise was less pronounced during EX-FIB

II than during the CONT or EX-FIB I. A previous study has

suggested that an exercise protocol designed to reduce glycogen

from both type I and II muscle fibers reduces the anaerobic

capacity by close to 20% during a single high-intensity (175 to

400 W) square-wave exercise [32]. In the present study, a

significant reduction in plasma [La] accumulation during EX-

FIB II suggests that selective muscle glycogen depletion of type II

muscle fibers may produce a slightly reduce glycolysis during the

exercise. However, overall Pan was not affected (,9% of

reduction, not significant), suggesting that selective muscle

glycogen depletion may not produce a reduction in the anaerobic

Figure 2. Mean and SEM for aerobic (A) and anaerobic (B) contribution during the 4-km cycling time trial in control (CONT) and
reduced muscle glycogen conditions. EX-FIB I and EX-FIB II: time trial performed after a type I or type II muscle fibers glycogen-lowering exercise
protocol, respectively. (A) * Significantly main effect of condition (P,0.05).
doi:10.1371/journal.pone.0110320.g002
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metabolism of the same magnitude as when both types of fibers are

depleted concomitantly [32].

The iEMG of the vastus lateralis did not parallel the changes in

PO throughout the trial. Specifically, iEMG remained unaltered

throughout the trial (figure 3). We [33,34] and others [35] have

observed a similar behavior during a 4-km cycling TT. Interest-

ingly, we also did not find significant differences in iEMG between

the conditions despite a gradual decline in PO in both EX-FIB I

and EX-FIB II. While iEMG cannot provide a measure of the

specific recruitment of type I and type II muscle fibers during

nonstationary conditions such as a TT, the iEMG signal may

indicate a general muscle fiber recruitment profile. Our results

therefore indicate that the muscle fiber recruitment pattern may

not have been altered with muscle glycogen depletion of either

type I or type II muscle fibers. It should be mentioned, however,

that interpretation of the iEMG signal during variable external PO

as in a TT is difficult and not free of misinterpretation [13]. The

surface iEMG may not be sufficiently sensitive to measure small

changes in muscle activation. In addition, the surface iEMG signal

quantifies both motor unit recruitment (i.e. the number of motor

units activated) and the firing rates of the activated motor units,

reflecting together the muscle activation [13]. Currently, it is not

possible to divide the signal to assess these two phenomena

separately. Other concerns that may affect iEMG analysis include:

1) surface EMG amplitude cancellation; 2) the stability of

neuromuscular propagation and; 3) fatigue related reflex inhibition

(reflex effects in the spinal cord) [13]. Therefore, caution is

warranted when interpreting iEMG data during a cycling TT.

Finally, we found that although the overall TT performance was

impaired in both reduced muscle glycogen conditions, force

production (i.e. maximal voluntary contraction) prior to the TT

was similar between the three conditions. These results highlight

the task-specific nature of fatigue and indicate that the mecha-

nism(s) that dictate task failure during a TT may not necessarily be

the same as those influencing pre-exercise maximal voluntary

contraction performances. In other words, the specific mechanism

responsible for performance reduction may be exercise task

dependent [3,36].

A possible limitation of the present study is that we did not use a

gold-standard technique (e.g., muscle biopsy) to quantify the

Table 2. Mean plasma lactate concentration at rest, immediately before and 1 min after the 4-km cycling time trial in the control
and reduced muscle glycogen conditions.

CONT EX-FIB I EX-FIB II

Rest (mmol?L21) 1.460.3 1.060.4 1.060.4

Pre-TT (mmol?L21) 1.460.6 1.060.3 1.160.4

Post-TT (mmol?L21) 11.461.9# 9.562.7# 8.861.2#*

Values are mean 6 SEM. Pre-TT: plasma lactate concentration immediately before the time trial. Post-TT: plasma lactate concentration 1 min after the time trial. CONT:
control condition. EX-FIB I and EX-FIB II: time trial performed after a carbohydrate-manipulation protocol designed to predominantly reduce muscle glycogen content in
type I or II fibers, respectively. # Significantly higher than Rest and Pre-TT (P,0.05). * Significantly lower than CONT (P,0.05).
doi:10.1371/journal.pone.0110320.t002

Figure 3. Mean and SEM for normalized integrated electromyography (% maximal voluntary contraction) during the 4-km cycling
time trial in control (CONT) and reduced muscle glycogen conditions. EX-FIB I and EX-FIB II: time trial performed after a type I or type II
muscle fibers glycogen-lowering exercise protocol, respectively.
doi:10.1371/journal.pone.0110320.g003
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muscle glycogen content. However, the muscle biopsy technique is

invasive and could have interfered directly with the athletes’

pacing and overall performance. Furthermore, the effectiveness of

the selective muscle glycogen-lowering exercises used in this study

is well established [8–10]. Gollnick et al. [8] found a reduced

muscle glycogen content in almost all type I fibers after 3 hours of

a constant-load exercise at 30% PPO. On the other hand, in the

protocol (10 sets of 1 min at 120% PPO) used by Thomson et al.

[9], almost all type II fibers had their muscle glycogen content

discernibly reduced. Later, Carter et al. [10] applied these two

validated protocols in their study and found that approximately

94% of type I fibers had their muscle glycogen depleted after the

prolonged-exercise protocol, whereas approximately 99% of type

II fibers had their muscle glycogen depleted after the high-intensity

protocol. An additional potential limitation is that the time for

recovery of muscle glycogen stores in type I and type II muscle

fibers may have been different. However, because we used a short

recovery period between the glycogen-depleting protocol and the

main TT (,12 h), and there were only two intervening meals, one

of them two hours before the TT, a significant muscle glycogen

replenishment is unlikely. Despite the total work during the

glycogen-depleting task differing between the trials, no significant

difference was found between pre-exercise maximal voluntary

contractions, suggesting no influence of the muscle glycogen

depletion protocol on pre-exercise neuromuscular fatigue. Taken

together, although we did not directly measure muscle glycogen

content, the results of these previous studies provide sufficient

evidence for the validity of these protocols for use in applied

research.

Conclusion

The results of the present study suggest that prior, prolonged,

low-intensity exercise (designed to reduce glycogen of type I

muscle fibers) was associated with impairment in PO at the

beginning and middle of a 4-km TT, and this was accompanied by

a reduction in the aerobic contribution. On the other hand, the

prior, short, high-intensity exercise (designed to reduce glycogen of

type II muscle fibers) impaired the PO and reduced the plasma

[La] accumulation. Irrespective of the inclusion of either a prior

prolonged, low-intensity exercise or short, high-intensity exercise,

an impairment in overall performance of a middle-distance cycling

TT was evident, but the pacing adopted, as well as energy system

alterations, occurred in a specific way. To the best of our

knowledge, this is the first study demonstrating that the

distribution of energy expenditure during a middle-distance

cycling TT is dependent of the intensity and duration of the

exercise carried out in the evening before.
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